【実施例】
【0089】
以下、実施例及び比較例により本発明を具体的に説明するが、本発明は下記の実施例及び比較例により制限されない。
【0090】
以下に説明する実施例1〜4及び比較例1〜4では、評価用試料として
図1に示す樹脂部品100を以下の方法により製造した。樹脂部品100の製造に用いた材料及び樹脂部品100の評価結果について表1に示す。
【0091】
[実施例1]
<樹脂部材の製造>
(1)マスターバッチの製造
ブロック共重合体に金属微粒子が分散した樹脂ペレット(マスターバッチ)を高圧容器を用いたバッチ処理により製造した。まず、40℃に温調した高圧容器の内部に、ペレット状のブロック共重合体(原料ペレット)として三洋化成工業製、ペレスタット(登録商標)PL1251と、金属錯体としてヘキサフルオロアセチルアセトナトパラジウム(II)錯体を収容した。ブロック共重合体(原料ペレット)に対する、金属錯体の割合は、2000重量ppmとした。ブロック共重合体(原料ペレット)に対する、金属錯体中のパラジウムの割合は、約400重量ppmであった。
【0092】
ブロック共重合体及び金属錯体が収容された高圧容器内へ加圧二酸化炭素として15MPaの圧力の液体二酸化炭素を導入し、導入後、高圧容器内部を1時間、加圧状態に保持した。その後、高圧容器内部の加圧二酸化炭素を容器外に排気して減圧し、樹脂ペレット(マスターバッチ)を高圧容器から取り出した。樹脂ペレットは、原料ペレットの白色から、金属錯体の色である黄色に変色していた。
【0093】
マイクロ波溶解装置を用いて、得られた樹脂ペレットを濃塩酸中溶解し、樹脂ペレット中のパラジウム量をICP発光分析装置にて測定した。樹脂ペレット中のパラジウムの含有量は、190重量ppmであった。この結果から、高圧容器内へ導入した金属錯体に含まれるパラジウムのうち、50重量%弱のパラジウムが原料ペレットに浸透したことがわかった。次に、樹脂ペレットの断面をTEMを用いて観察した。TEMでは、樹脂ペレットの断面にパラジウムを検出できなかった。この結果から、樹脂ペレット中のパラジウムは、TEMの検出限界以下の原子レベル大きさで存在していると推定される。
【0094】
(2)二色成形
日本製鋼所製の二色成形機、J180AD−2Mを用いて、先に説明した
図11(a)〜(e)に示すコアバック法の二色成形方法により、第1の部位101及び第2の部位102を有する樹脂部材を成形した。ここで、樹脂部材とは、
図1に示す樹脂部品100からメッキ膜103を除いた部材を意味する。第1の熱可塑性樹脂として、ガラス繊維45重量%含有のガラス繊維強化ナイロン6(東レ製、アミランCM1011G45)、第2の熱可塑性樹脂としてガラス繊維60重量%含有のガラス繊維強化ナイロン6(東洋紡製、グラマイドTY791G60)、樹脂ペレット(マスターバッチ)として、上で製造した樹脂ペレットを用いた。
【0095】
第1の部位101の成形において、樹脂ペレット(マスターバッチ)と第1の熱可組成樹脂との総量に対する、樹脂ペレット(マスターバッチ)の割合は、5重量%とした。上述のように、本実施例で用いた樹脂ペレット(マスターバッチ)中のパラジウムの割合は、190重量ppmであったので、第1の部位101中のパラジウムの割合は、190×0.05=9.5重量ppmと計算できる。本実施例で得られた樹脂部材の第1の部位101中のパラジウムの割合をICP−MSにて測定したところ、上記計算値の誤差10%以内であることが確認できた。
【0096】
(3)メッキ膜の形成
成形した樹脂部材を常温の2.5N塩酸水溶液に1分間浸漬した後、80℃の1,3−ブタンジオール水溶液(75体積%)に5分間浸漬させ、その後、85℃の無電解ニッケルメッキ液(奥野製薬工業製、ニコロンDK)に10分間浸漬した。これにより、第1の部位にのみ、ニッケルリンメッキ膜が1μm形成された。ニッケルリンメッキ膜により、第1の部位の全表面が覆われるまでに要した時間(メッキ時間)は5分であった。次に、ニッケルリンメッキ膜上に、汎用の方法により、電解銅メッキ膜10μm、電解ニッケルメッキ膜10μm、電解三価クロムメッキを0.2μm、この順に積層し、
図1に示す樹脂部品100を得た。
【0097】
<樹脂部品の評価>
(1)第1及び第2の部位の吸水率
第1の部位101と同組成の第1の評価用成形体、第2の部位102と同組成の第2の評価用成形体を成形した。第1及び第2の評価用成形体の大きさは、10cm×20cm×0.3cmであった。次に、第1及び第2の評価用成形体を23℃の水中に24時間浸漬して、浸漬後の重量増加率を求め、これらをそれぞれ、23℃の水に24時間浸漬させたときの第1及び第2の部位の吸水率とした。第1の部位101の前記吸水率は1.1重量%であり、第2の部位102の前記吸水率は0.7重量%であった。第1の部位と第2の部位の差は、0.4重量%である。
【0098】
(2)曲げ弾性率
第1の部位101と同組成の第3の評価用成形体、第2の部位102と同組成の第4の評価用成形体を成形した。第3及び第4の評価用成形体は、試験法 ISO178に準拠したダンベル試験片形状の成形体である。次に、同試験法に準拠した方法にて、第3及び第4の評価用成形体の常温における曲げ弾性率を測定し、これらの曲げ弾性率をそれぞれ、第1及び第2の部位の曲げ弾性率とした。本実施例の第1の部位の曲げ弾性率は13.0GPa、第2の部位の曲げ弾性率は、16.0GPaであった。第1の部位及び第2の部位とも、10GPaを超える高い弾性率を有していることがわかった。
【0099】
(3)温水試験
製造した樹脂部品100を40℃の水に200時間浸漬させた。浸漬後の樹脂部品100を目視で観察し、以下の評価基準に基づき評価した。
温水試験評価基準:
○:第1の部位101と第2の部位102の間で剥離なし。
×:第1の部位101と第2の部位102の間で剥離あり。
温水試験後、本実施例の樹脂部品100では、第1の部位101と第2の部位102の間で剥離は無く、温水試験評価は「○」であった。
【0100】
(4)熱衝撃試験(ヒートショック試験)
製造した樹脂部品100を−40℃の雰囲気と120℃の雰囲気に交互に曝すヒートショック試験を50サイクル実施した。熱衝撃試験の後の樹脂部品100を目視で観察し、以下の評価基準に基づき評価した。
熱衝撃試験評価基準:
A:メッキ膜103に、膨れ、割れ、剥離等がいずれも生じていない。
C:メッキ膜103に、膨れ、割れ、剥離等がいずれか生じている。
本実施例の樹脂部品100は、メッキ膜103に膨れ、割れ、剥離等がいずれも生じておらず、評価結果は「A」であった。
【0101】
本実施例の樹脂部品100は、第1の部位101のみに容易にメッキ膜を形成でき、メッキ膜の有無のコントラストが明確であり意匠性に優れていた。第2の部位102に、メッキ膜の析出は見られなかった。また、剛性、耐熱性及び耐水性が高く、それらが要求される自動車の内装部品に好適である。
【0102】
[実施例2]
第1の熱可塑性樹脂として、ミネラル約40重量%含有のミネラル強化ナイロン6(東洋紡製、グラマイド T777−02)、第2の熱可塑性樹脂として、ガラス繊維50重量%含有の芳香族系のガラス繊維強化6Tナイロン(東洋紡製、グラマイド TY791G)を用いた以外、実施例1と同様の材料を用いて同様の製造方法により、
図1に示す樹脂部品100を製造した。尚、ニッケルリンメッキ膜により、第1の部位の全表面が覆われるまでに要した時間(メッキ時間)は3分であった。また、本実施例の第1の部位101中のパラジウムの割合は、実施例1と同様に、190×0.05=9.5重量ppmと計算できる。本実施例で得られた樹脂部材の第1の部位101中のパラジウムの割合をICP−MSにて測定したところ、上記計算値の誤差10%以内であることが確認できた。
【0103】
<樹脂部品の評価>
実施例1と同様の方法により、(1)第1及び第2の部位の吸水率、(2)曲げ弾性率、(3)温水試験及び(4)熱衝撃試験(ヒートショック試験)を行った。結果を表1に示す。
【0104】
本実施例の樹脂部品100は、第1の部位101のみに容易にメッキ膜を形成でき、メッキ膜の有無のコントラストが明確であり意匠性に優れていた。第2の部位102に、メッキ膜の析出は見られなかった。また、剛性、耐熱性及び耐水性が高く、それらが要求される自動車の内装部品に好適である。また、本実施例では、第1の熱可塑性樹脂として低熱膨張係数のミネラル強化ナイロンを用いたため、実施例1と比較して、メッキ膜の光沢感を高めることができた。
【0105】
[実施例3]
第1の熱可塑性樹脂として、非強化ナイロン6(東洋紡製、T−802)、第2の熱可塑性樹脂として、ガラス繊維50重量%含有のガラス繊維強化MXDナイロン6(三菱エンジニアリングプラスチック製、レニー 1025)を用い、第1の部位101の成形において、樹脂ペレット(マスターバッチ)と第1の熱可組成樹脂との総量に対する、樹脂ペレット(マスターバッチ)の割合を10重量%とした以外は、実施例1と同様の材料を用いて同様の製造方法により、
図1に示す樹脂部品100を製造した。尚、ニッケルリンメッキ膜により、第1の部位の全表面が覆われるまでに要した時間(メッキ時間)は1.5分であった。また、本実施例の第1の部位101中のパラジウムの割合は、190×0.10=19重量ppmと計算できる。本実施例で得られた樹脂部材の第1の部位101中のパラジウムの割合をICP−MSにて測定したところ、上記計算値の誤差10%以内であることが確認できた。
【0106】
<樹脂部品の評価>
実施例1と同様の方法により、(1)第1及び第2の部位の吸水率、(2)曲げ弾性率、(3)温水試験及び(4)熱衝撃試験(ヒートショック試験)を行った。結果を表1に示す。
【0107】
本実施例の樹脂部品100は、第1の部位101のみに容易にメッキ膜を形成でき、メッキ膜の有無のコントラストが明確であり意匠性に優れていた。第2の部位102に、メッキ膜の析出は見られなかった。また、剛性、耐熱性及び耐水性が高く、それらが要求される自動車の内装部品に好適である。
【0108】
本実施例では、第1の熱可塑性樹脂として吸水性の高い非強化ナイロンを用い、更に、マスターバッチの含有量も実施例1及び2より高い10重量%とした。この結果、第1の部位の吸水率は、2.9重量%と高くなり、第1の部位のメッキ反応性が向上し、メッキ時間は1.5分と大幅に短縮された。また、実施例2と比較して、メッキ膜の光沢感を高めることができた。
【0109】
本発明者らの検討によれば、吸水率の高い非強化ポリアミド樹脂からなる成形体にメッキ膜を形成した場合、成形体の線膨張係数が大きいため、ヒートショック試験に耐え難いことがわかっている。しかし、本実施例の樹脂部品100は、メッキ膜の形成されていない第2の部位の剛性が高いため、第2の部位の熱や吸水による動きが規制されて、メッキ膜の密着力が確保されたと推測される。
【0110】
[実施例4]
第1の熱可塑性樹脂として、実施例2と同様のミネラル約40重量%含有のミネラル強化ナイロン6(東洋紡製、グラマイド T777−02)、第2の熱可塑性樹脂として、ナイロン6・66共重合体(東レ製、アミランCM6041‐XF)を用いた以外は、実施例1と同様の材料を用いて同様の製造方法により、
図1に示す樹脂部品100を製造した。尚、ニッケルリンメッキ膜により、第1の部位の全表面が覆われるまでに要した時間(メッキ時間)は3分であった。また、本実施例の第1の部位101中のパラジウムの割合は、実施例1と同様に、190×0.05=9.5重量ppmと計算できる。本実施例で得られた樹脂部材の第1の部位101中のパラジウムの割合をICP−MSにて測定したところ、上記計算値の誤差10%以内であることが確認できた。
【0111】
<樹脂部品の評価>
実施例1と同様の方法により、(1)第1及び第2の部位の吸水率、(2)曲げ弾性率、(3)温水試験及び(4)熱衝撃試験(ヒートショック試験)を行った。結果を表1に示す。
【0112】
本実施例の部分的メッキ膜を有する樹脂部品100は、第1の部位101のみに容易にメッキ膜を形成でき、メッキ膜の有無のコントラストが明確であり意匠性に優れていた。第2の部位102に、メッキ膜の析出は見られなかった。また、剛性、耐熱性及び耐水性が高く、それらが要求される自動車の内装部品に好適である。
【0113】
本実施例では、第1の熱可塑性樹脂として低熱膨張係数のミネラル強化ナイロンを用いたため、実施例2と同様に、メッキ部の光沢感を高めることができた。また、メッキ膜を有さない第2の部位に、柔軟性の高い共重合ナイロンを用いているため、柔軟な樹脂部品が得られた。本実施例の樹脂部品100は、耐熱性、耐水性と共に柔軟性も高く、それらが要求される自動車の内装部品、に好適である。
【0114】
本発明者らの検討によれば、メッキ膜が形成されない第2の部位に、吸水性の高い樹脂を用いた場合、温水試験において第1の部位と第2の部位との界面に水が溜まって部位間が剥離する虞やメッキ膜が割れる虞がある。しかし、本実施例の結果から、第2の部位の前記吸水率が2.0重量%までは、温水試験の結果が良好であることがわかった。
【0115】
[比較例1]
第1の熱可塑性樹脂として、アクリロニトリル・ブタジエン・スチレン共重合樹脂(ABS樹脂)(東レ製、トヨラック 125X82)、第2の熱可塑性樹脂として、ポリカーボネート(PC)(帝人製、パンライト L−1225Y)を用い、樹脂ペレット(マスターバッチ)を用いずに、実施例1と同様の二色成形方法により、第1の部位101及び第2の部位102を有する樹脂部材を成形した。ここで、樹脂部材とは、
図1に示す樹脂部品100からメッキ膜103を除いた部材を意味する。
【0116】
次に、以下に説明する汎用の方法により第1の部位101上にメッキ膜103を形成した。まず、6価のクロム酸を用いて樹脂部材のエッチングを行った。6価のクロム酸は、ABS樹脂のブタジエン成分をエッチングし、ポリカーボネートをエッチングしないため、第1の部位101のみがエッチングされた。次に、無電解メッキの触媒核となるパラジウムコロイドの付与(キャタリスト)及び活性化(アクセレレータ)を行い、その後、85℃の無電解ニッケルメッキ液(奥野製薬工業製、ニコロンDK)に10分間浸漬した。ニッケルリンメッキ膜により、第1の部位の全表面が覆われるまでに要した時間(メッキ時間)は1分であった。次に、ニッケルリンメッキ膜上に、実施例1と同様の方法により、電解銅メッキ膜10μm、電解ニッケルメッキ膜10μm、電解三価クロムメッキを0.2μm、この順に積層し、
図1に示す樹脂部品100を得た。
【0117】
<樹脂部品の評価>
実施例1と同様の方法により、(1)第1及び第2の部位の吸水率、(2)曲げ弾性率及び(3)温水試験を行った。結果を表1に示す。
【0118】
(4)熱衝撃試験(ヒートショック試験)
実施例1と同様の方法により熱衝撃試験を行い、実施例1と同様の評価基準により評価を行った。本比較例の樹脂部品100は、メッキ膜103に剥離が生じた。
【0119】
本比較例では、次に説明する実施例1で行った試験よりも穏やかな条件の熱衝撃試験も行った。製造した樹脂部品100を−40℃の雰囲気と80℃の雰囲気に交互に曝すヒートショック試験を10サイクル実施した。熱衝撃試験の後の樹脂部品100を目視で観察し、以下の評価基準に基づき評価した。
熱衝撃試験評価基準:
B:メッキ膜103に、膨れ、割れ、剥離等がいずれも生じていない。
D:メッキ膜103に、膨れ、割れ、剥離等がいずれか生じている。
本比較例の樹脂部品100は、メッキ膜103に膨れ、割れ、剥離等がいずれも生じておらず、評価結果は「B」であった。
【0120】
本比較例では、第1の部位101のみに容易にメッキ膜を形成でき、メッキ膜の有無のコントラストが明確であり意匠性に優れていた。第2の部位102に、メッキ膜の析出は見られなかった。しかし、曲げ弾性率及び熱衝撃試験の結果から、本比較例の樹脂部品は、ポリアミドを用いている実施例1〜4の樹脂部品と比較して、剛性及び耐熱性が低いことがわかった。また、ABS樹脂及びポリカーボネートは、耐薬品性が低いことが知られており、本比較例の樹脂部品は、実施例1〜4の樹脂部品と比較して、耐薬品性も低いと推測される。
【0121】
[比較例2]
第2の熱可塑性樹脂として、非強化ナイロン6(東洋紡製 グラマイド T−802)を用いた以外、実施例1と同様の材料を用いて同様の製造方法により、
図1に示す樹脂部品100を製造した。ニッケルリンメッキ膜により、第1の部位の全表面が覆われるまでに要した時間(メッキ時間)は1.5分であった。得られた樹脂部品100は、第1の部位101と、第2の部位102の間で、一部の剥離が発生していた。
【0122】
<樹脂部品の評価>
実施例1と同様の方法により、(1)第1及び第2の部位の吸水率、(2)曲げ弾性率、(3)温水試験及び(4)熱衝撃試験(ヒートショック試験)を行った。結果を表1に示す。尚、本比較例の樹脂部品100は、温水試験を実施する前から、第1の部位101と、第2の部位102の間で一部の剥離が発生していたが、温水試験により更に剥離が進行し、評価は「×」であった。
【0123】
本比較例では、第1の部位101のみに容易にメッキ膜を形成でき、メッキ膜の有無のコントラストが明確であった。第2の部位102に、メッキ膜の析出は見られなかった。しかし、上述のように得られた樹脂部品100は、第1の部位101と、第2の部位102の間で、一部の剥離が発生していた。この原因は、第2の部位102の吸水率が2.6重量%と高いため、第1の部位101と第2の部位102との界面に水分が溜まったためと推測される。実施例4と本比較例の結果から、第2の部位の吸水率は2.6重量%より低いことが必要であり、2.0重量%以下が好ましいことがわかった。
【0124】
[比較例3]
第1の熱可塑性樹脂として、ガラス繊維50重量%含有のガラス繊維強化MXDナイロン6(三菱エンジニアリングプラスチック製、レニー 1025)を用いた以外、実施例1と同様材料を用い、同様の製造方法により、
図1に示す樹脂部品100を製造した。得られた樹脂部品100は、ニッケルリンメッキ膜に抜けが生じており、メッキ膜103が第1の部位の表面全てを覆っていなかった。このため、本比較例では、第1の部位の全表面が覆われるまでに要した時間(メッキ時間)は測定できなかった。
【0125】
<樹脂部品の評価>
実施例1と同様の方法により、(1)第1及び第2の部位の吸水率、(2)曲げ弾性率、(3)温水試験及び(4)熱衝撃試験(ヒートショック試験)を行った。結果を表1に示す。
【0126】
上述のように、本比較例では、安定にメッキ膜が成長せず、ニッケルリンメッキ膜に抜けが生じた。これは、第1の部位の吸水率が低すぎるためと推測される。この結果から、第1の部位の吸水率は、0.4重量%より高いことが必要であり、0.5重量%以上が好ましいことがわかった。
【0127】
[比較例4]
第1の熱可塑性樹脂として、非強化ナイロン6(東洋紡製、T−802)を用い、樹脂ペレット(マスターバッチ)と第1の熱可組成樹脂との総量に対する、樹脂ペレット(マスターバッチ)の割合を15重量%とした以外は、実施例1と同様の材料を用いて同様の製造方法により、
図1に示す樹脂部品100を製造した。尚、ニッケルリンメッキ膜により、第1の部位の全表面が覆われるまでに要した時間(メッキ時間)は1.2分であった。本比較例の樹脂部品100は、メッキ膜103の一部に割れが確認された。
【0128】
<樹脂部品の評価>
実施例1と同様の方法により、(1)第1及び第2の部位の吸水率、(2)曲げ弾性率、(3)温水試験及び(4)熱衝撃性試験を行った。結果を表1に示す。尚、本比較例の樹脂部品100は、熱衝撃試験の前からメッキ膜103の一部に割れが確認されていたが、熱衝撃試験により、メッキ膜の割れが進行した。評価結果は、「C」であった。
【0129】
本比較例の樹脂部品100は、第1の部位101のみに容易にメッキ膜を形成でき、メッキ膜の有無のコントラストが明確であった。第2の部位102に、メッキ膜の析出は見られなかった。しかし、本比較例の樹脂部品100は、メッキ膜103の一部に割れが確認された。これは、第1の部材の吸水率が高過ぎたため、メッキ時に第1の部位が膨潤してメッキ膜との密着性が確保できなかったと推定される。この結果から、第1の部位の吸水率は、3.2重量%より小さいことが必要であり、3.0重量%以下が好ましいことがわかった。
【0130】
【表1】
【0131】
以下に説明する実施例5〜10及び比較例5及び6では、具体的な本発明の自動車用樹脂部品を製造して評価した。
【0132】
[実施例5]
本実施例では、先に説明した
図3(b)、
図4(a)及び(b)に示すレジスタ・ブレート320を製造した。第1の熱可塑性樹脂として、ミネラル約40重量%含有のミネラル強化ナイロン6(東洋紡製、グラマイド T777−02)、第2の熱可塑性樹脂として、ガラス繊維60重量%含有のガラス繊維強化ナイロン6(東洋紡製、グラマイド TY791‐G60)の黒色グレード、樹脂ペレットとして実施例1で製造した樹脂ペレット(マスターバッチ)を用い、汎用の二色成形方法により、第1の部位321及び第2の部位322を有する樹脂部材を成形した。ここで、樹脂部材とは、
図4に示すレジスタ・ブレート320からメッキ膜を除いた部材を意味する。第1の部位321の成形において、樹脂ペレット(マスターバッチ)と第1の熱可組成樹脂との総量に対する、樹脂ペレット(マスターバッチ)の割合は5重量%とした。また、本実施例では、第1の部位321に対応する面に鏡面加工、第2の部位322に対応する面にシボ加工を施した金型を用いて成形を行った。次に、得られた樹脂部材に実施例1と同様の方法により、第1の部位321にメッキ膜を形成し、
図4に示すレジスタ・ブレート320を得た。ニッケルリンメッキ膜により、第1の部位の全表面が覆われるまでに要した時間(メッキ時間)は5分であった。
【0133】
<レジスタ・ブレートの評価>
実施例1と同様の方法により、(1)第1及び第2の部位の吸水率、(2)曲げ弾性率、(3)温水試験及び(4)熱衝撃試験(ヒートショック試験)を行った。結果を表2及び表3に示す。
【0134】
(5)高温保存試験
本実施例のレジスタ・ブレート320を140℃〜150℃の環境下に48時間放置した。試験後のレジスタ・ブレート320を目視で観察し、以下の評価基準に基づき評価した。
高温保存試験評価基準:
○:塑性変形が認められず、メッキ膜に膨れ、割れ、剥離がいずれも生じていなかった。
×:塑性変形が認められ、メッキ膜に膨れ、割れ、剥離のいずれかが生じていた。
本実施例のレジスタ・ブレート320は、塑性変形が認められず、メッキ膜に膨れ、割れ、剥離等がいずれも生じておらず、評価は「○」であった。
【0135】
(6)たわみ量評価
レジスタ・ブレート320の長さ(L)は150mm、平均厚み(D)は3mmとした。これらの比(L/D)は、50であった。レジスタ・ブレート320の長さ(L)方向(延在方向)の両端部を支持して中心部を50Nで加圧した。前記中心部のたわみ量は、1mmであった。
【0136】
[実施例6]
本実施例では、先に説明した
図3(c)に示すスライド・ノブ330を製造した。第1の熱可塑性樹脂として、ミネラル約40重量%含有のミネラル強化ナイロン6(東洋紡製、グラマイド T777−02)、第2の熱可塑性樹脂として、ガラス繊維30重量%含有のガラス繊維強化ナイロン66(東レ製、CM3006G−30)の黒色グレード、樹脂ペレットとして実施例1で製造した樹脂ペレット(マスターバッチ)を用い、汎用の二色成形方法により、第1の部位331及び第2の部位332を有する樹脂部材を成形した。ここで、樹脂部材とは、
図3(c)に示すスライド・ノブ330からメッキ膜を除いた部材を意味する。第1の部位331の成形において、樹脂ペレット(マスターバッチ)と第1の熱可組成樹脂との総量に対する、樹脂ペレット(マスターバッチ)の割合は5重量%とした。また、本実施例では、第1の部位331に対応する面に鏡面加工、第2の部位332に対応する面にシボ加工を施した金型を用いて成形を行った。次に、得られた樹脂部材に実施例1と同様の方法により、第1の部位331にメッキ膜を形成し、
図3(c)に示すスライド・ノブ330を得た。ニッケルリンメッキ膜により、第1の部位の全表面が覆われるまでに要した時間(メッキ時間)は4分であった。
【0137】
<スライド・ノブの評価>
実施例1と同様の方法により、(1)第1及び第2の部位の吸水率、(2)曲げ弾性率、(3)温水試験及び(4)熱衝撃試験(ヒートショック試験)を行い、実施例5と同様の方法により、(5)高温保存試験を行った。結果を表2及び表3に示す。
【0138】
[実施例7]
本実施例では、先に説明した
図6に示すダイヤル・ノブ340を製造した。第1の熱可塑性樹脂として、ミネラル約40重量%含有のミネラル強化ナイロン6(東洋紡製、グラマイド T777−02)、第2の熱可塑性樹脂として、オレフィン系エラストマー(TPO)(プライムポリマー製、プライムTPO E−2910)の黒色グレード、樹脂ペレットとして実施例1で製造した樹脂ペレット(マスターバッチ)を用い、汎用の二色成形方法により、第1の部位341及び第2の部位342を有する樹脂部材を成形した。ここで、樹脂部材とは、
図6に示すダイヤル・ノブ340からメッキ膜を除いた部材を意味する。第1の部位341の成形において、樹脂ペレット(マスターバッチ)と第1の熱可組成樹脂との総量に対する、樹脂ペレット(マスターバッチ)の割合は5重量%とした。次に、得られた樹脂部材に実施例1と同様の方法により、第1の部位341にメッキ膜を形成し、
図6に示すダイヤル・ノブ340を得た。ニッケルリンメッキ膜により、第1の部位の全表面が覆われるまでに要した時間(メッキ時間)は4分であった。
【0139】
<ダイヤル・ノブの評価>
実施例1と同様の方法により、(1)第1及び第2の部位の吸水率、(2)曲げ弾性率及び(3)温水試験を行った。また、ダイヤル・ノブは、上述した実施例5のレジスタ・ブレードや実施例6のスライド・ノブ程の耐熱性は要求されない。そのため、(4)熱衝撃試験は、以下に説明する実施例1で行った試験よりも穏やかな条件で行い、実施例5で行った(5)高温保存試験は行わなかった。結果を表2及び表3に示す。
【0140】
(4)熱衝撃試験(ヒートショック試験)
製造したダイヤル・ノブ340を−40℃の雰囲気と90℃の雰囲気に交互に曝すヒートショック試験を50サイクル実施した。熱衝撃試験の後のダイヤル・ノブ340を目視で観察し、以下の評価基準に基づき評価した。
熱衝撃試験評価基準:
B:メッキ膜に、膨れ、割れ、剥離等がいずれも生じていない。
D:メッキ膜に、膨れ、割れ、剥離等がいずれか生じている。
本実施例のダイヤル・ノブ340は、メッキ膜341に膨れ、割れ、剥離等がいずれも生じておらず、評価結果は「B」であった。
【0141】
[実施例8]
本実施例では、先に説明した
図8に示すシフトノブ600を製造した。第1の熱可塑性樹脂として、ミネラル約40重量%含有のミネラル強化ナイロン6(東洋紡製、グラマイド T777−02)、第2の熱可塑性樹脂として、ポリ塩化ビニル(信越ポリマー製、JD476)、樹脂ペレットとして実施例1で製造した樹脂ペレット(マスターバッチ)を用い、汎用の二色成形方法により、第1の部位601及び第2の部位602a、602b、602cを有する樹脂部材を成形した。ここで、樹脂部材とは、
図8に示すシフトノブ600からメッキ膜を除いた部材を意味する。第1の部位601の成形において、樹脂ペレット(マスターバッチ)と第1の熱可組成樹脂との総量に対する、樹脂ペレット(マスターバッチ)の割合は5重量%とした。次に、得られた樹脂部材に実施例1と同様の方法により、第1の部位601にメッキ膜を形成し、
図8に示すシフトノブ600を得た。ニッケルリンメッキ膜により、第1の部位の全表面が覆われるまでに要した時間(メッキ時間)は4分であった。
【0142】
<シフトノブの評価>
実施例1と同様の方法により、(1)第1及び第2の部位の吸水率、(2)曲げ弾性率、(3)温水試験を行った。また、シフトノブは、上述した実施例5のレジスタ・ブレードや実施例6のスライド・ノブ程の耐熱性は要求されない。そのため、(4)熱衝撃試験は、実施例7と同様の方法で行い、実施例5で行った(5)高温保存試験は行わなかった。結果を表2及び表3に示す。
【0143】
[実施例9]
本実施例では、先に説明した
図9(a)に示すアシストグリップ700を製造した。第1の熱可塑性樹脂として、ミネラル約40重量%含有のミネラル強化ナイロン6(東洋紡製、グラマイド T777−02)、第2の熱可塑性樹脂として、オレフィン系エラストマー(TPO)(プライムポリマー製、プライムTPO E−2910)及び無水マレイン酸変性ポリプロピレン(PP−MAH)(三洋化成工業製、ユーメックス1001)の混合物、樹脂ペレットとして実施例1で製造した樹脂ペレット(マスターバッチ)を用い、汎用の二色成形方法により、第1の部位701及び第2の部位702を有する樹脂部材を成形した。ここで、樹脂部材とは、
図9(a)に示すアシストグリップ700からメッキ膜を除いた部材を意味する。無水マレイン酸変性ポリプロピレンは、第1の部位と第2の部位との接着性を高めるための相溶化材料であり、第2の熱可塑性樹脂中に5重量%混合した。第1の部位701の成形において、樹脂ペレット(マスターバッチ)と第1の熱可組成樹脂との総量に対する、樹脂ペレット(マスターバッチ)の割合は5重量%とした。次に、得られた樹脂部材に実施例1と同様の方法により、第1の部位701にメッキ膜を形成し、
図9(a)に示すアシストグリップ700を得た。ニッケルリンメッキ膜により、第1の部位の全表面が覆われるまでに要した時間(メッキ時間)は5分であった。
【0144】
<アシストグリップの評価>
実施例1と同様の方法により、(1)第1及び第2の部位の吸水率、(2)曲げ弾性率、(3)温水試験を行った。また、アシストグリップは、上述した実施例5のレジスタ・ブレードや実施例6のスライド・ノブ程の耐熱性は要求されない。そのため、(4)熱衝撃試験は、実施例7と同様の方法で行い、実施例5で行った(5)高温保存試験は行わなかった。結果を表2及び表3に示す。
【0145】
[実施例10]
本実施例では、先に説明した
図7(a)に示す本実施形態のレジスタ・ベゼル410を製造した。第1の熱可塑性樹脂として、ミネラル約40重量%含有のミネラル強化ナイロン6(東洋紡製、グラマイド T777−02)、第2の熱可塑性樹脂として、ポリアミドとABS樹脂のアロイ樹脂(ダイセルポリマー製、ノバロイA1300)、樹脂ペレットとして実施例1で製造した樹脂ペレット(マスターバッチ)を用い、汎用の二色成形方法により、第1の部位411及び第2の部位412を有する樹脂部材を成形した。ここで、樹脂部材とは、
図7(a)に示すレジスタ・ベゼル410からメッキ膜を除いた部材を意味する。第1の部位411の成形において、樹脂ペレット(マスターバッチ)と第1の熱可組成樹脂との総量に対する、樹脂ペレット(マスターバッチ)の割合は5重量%とした。次に、得られた樹脂部材に実施例1と同様の方法により、第1の部位411にメッキ膜を形成し、
図7(a)に示す本実施形態のレジスタ・ベゼル410を得た。ニッケルリンメッキ膜により、第1の部位の全表面が覆われるまでに要した時間(メッキ時間)は5分であった。
【0146】
<レジスタ・ベゼルの評価>
実施例1と同様の方法により、(1)第1及び第2の部位の吸水率、(2)曲げ弾性率及び(3)温水試験を行い、実施例5と同様の方法により、(5)高温保存試験を行った。また、レジスタ・ベゼルは、上述した実施例5のレジスタ・ブレードや実施例6のスライド・ノブ程の耐熱性は要求されない。そのため、(4)熱衝撃試験は、実施例7と同様の方法で行った。結果を表2及び表3に示す。
【0147】
以上説明した実施例5〜10の自動車用樹脂部品は、第1の部位のみに容易にメッキ膜を形成でき、メッキ膜の有無のコントラストが明確で意匠性に優れていた。第2の部位に、メッキ膜の析出は見られなかった。また、一体成形品であるので、第1の部位と第2の部位に段差も見られなかった。更に、高い耐水性、剛性及び耐熱性を有することから、100℃近く高温になることが想定される自動車の過酷な室内環境等においても長期に亘る信頼性が確保できる。
【0148】
[比較例5]
本比較例では、先に説明した
図3(b)、
図4(a)及び(b)に示すレジスタ・ブレート320と同一形状のレジスタ・ブレートを製造した。第1の熱可塑性樹脂として、アクリロニトリル・ブタジエン・スチレン共重合樹脂(ABS樹脂)(東レ製、トヨラック 125X82)、第2の熱可塑性樹脂として、ポリカーボネート(PC)(帝人製、パンライト L−1225Y)を用い、樹脂ペレット(マスターバッチ)を用いずに、実施例5と同様の金型を用いて、実施例5と同様の二色成形方法により、第1の部位321及び第2の部位322を有する樹脂部材を成形した。ここで、樹脂部材とは、
図4(a)に示すレジスタ・ブレート320からメッキ膜を除いた部材を意味する。
【0149】
次に、比較例1と同様の従来方法により、第1の部位321にメッキ膜を形成し、本比較例のレジスタ・ブレードを得た。6価のクロム酸は、ABS樹脂のブタジエン成分をエッチングし、ポリカーボネートをエッチングしないため、第1の部位321のみがエッチングされ、メッキ膜が形成された。ニッケルリンメッキ膜により、第1の部位の全表面が覆われるまでに要した時間(メッキ時間)は3分であった。
【0150】
<レジスタ・ブレートの評価>
実施例1と同様の方法により、(1)第1及び第2の部位の吸水率、(2)曲げ弾性率、(3)温水試験及び(4)熱衝撃試験(ヒートショック試験)を行い、実施例5と同様の方法により、(5)高温保存試験を行った。結果を表2及び表3に示す。
【0151】
(6)たわみ量評価
本比較例のレジスタ・ブレートは、実施例5と同様に、長さ(L)は150mm、平均厚み(D)は3mmとした。これらの比(L/D)は、50であった。実施例5と同様に、レジスタ・ブレートの長さ(L)方向(延在方向)の両端部を支持して中心部を50Nで加圧した。前記中心部のたわみ量は、10mmであった。
【0152】
以上の結果から、本比較例のレジスタ・ブレードは、剛性、耐熱性が低いことがわかった。また、ABS樹脂及びポリカーボネートは、耐薬品性が低いことが知られていることから、本比較例のレジスタ・ブレードも耐薬品性が低いと推測される。したがって、本比較例のレジスタ・ブレードは、自動車用樹脂部品として実用することは難しいと考えられる。
【0153】
[比較例6]
本比較例では、先に説明した
図3(b)、
図4(a)及び(b)に示すレジスタ・ブレード320と同一形状のレジスタ・ブレードを製造した。第2の熱可塑性樹脂として、非強化ナイロン66(東レ製 CM3001−N)を用いた以外は、実施例5と同様の材料を用いて同様の製造方法により、実施例5と同様のレジスタ・ブレードを製造した。ニッケルリンメッキ膜により、第1の部位の全表面が覆われるまでに要した時間(メッキ時間)は3分であった。得られたレジスタ・ブレードは、第1の部位と、第2の部位の間で、一部の剥離が発生していた。
【0154】
<樹脂部品の評価>
実施例1と同様の方法により、(1)第1及び第2の部位の吸水率、(2)曲げ弾性率、(3)温水試験及び(4)熱衝撃試験(ヒートショック試験)を行い、実施例5と同様の方法により、(5)高温保存試験を行った。(4)熱衝撃試験において、本比較例のレジスタ・ブレードは、メッキ膜に剥離が生じたため、より穏やかな条件の実施例7と同様の熱衝撃試験を行った。結果を表2及び表3に示す。尚、本比較例のレジスタ・ブレードは、温水試験を実施する前から第1の部位と、第2の部位の間で、一部の剥離が発生していたが、温水試験により更に剥離が進行した。
【0155】
(6)たわみ量評価
本比較例のレジスタ・ブレートは、実施例5及び比較例5と同様に、長さ(L)は150mm、平均厚み(D)は3mmとした。これらの比(L/D)は、50であった。実施例5と同様に、レジスタ・ブレートの長さ(L)方向(延在方向)の両端部を支持して中心部を50Nで加圧した。前記中心部のたわみ量は、10mmであった。
【0156】
本比較例では、上述のように得られたレジスタ・ブレードは、第1の部位321と、第2の部位322の間で、一部の剥離が発生していた。この原因は、第2の部位322の吸水率が2.8重量%と高いため、第1の部位321と第2の部位322との界面に水分が溜まったためと推測される。
【0157】
【表2】
【0158】
【表3】