(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0002】
携帯電話等に使用されるフィルタ素子や発振子として機能させることができる弾性表面波デバイスや、圧電薄膜を用いたラム波素子や薄膜共振子(FBAR:Film Bulk Acoustic Resonator)などの弾性波デバイスが知られている。こうした弾性波デバイスとしては、支持基板と弾性表面波を伝搬させる圧電基板とを貼り合わせ、圧電基板の表面に弾性表面波を励振可能な櫛形電極を設けたものが知られている。このように圧電基板よりも小さな熱膨張係数を持つ支持基板を圧電基板に貼付けることにより、温度が変化したときの圧電基板の大きさの変化を抑制し、弾性表面波デバイスとしての周波数特性の変化を抑制している。
【0003】
例えば、特許文献1には、圧電基板とシリコン基板とをエポキシ接着剤からなる接着層によって貼り合わせた構造の弾性表面波デバイスが提案されている。
【0004】
ここで、圧電基板とシリコン基板とを接合するのに際して、圧電基板表面に酸化珪素膜を形成し、酸化珪素膜を介して圧電基板とシリコン基板とを直接接合することが知られている(特許文献2)。この接合の際には、酸化珪素膜表面とシリコン基板表面とにプラズマビームを照射して表面を活性化し、直接接合を行う(プラズマ活性化法)。
【0005】
また、圧電基板の表面を粗面とし、その粗面上に充填層を設けて平坦化し、この充填層を接着層を介してシリコン基板に接着することが知られている(特許文献3)。この方法では、充填層、接着層にはエポキシ系、アクリル系の樹脂を使用しており、圧電基板の接合面を粗面にすることで、バルク波の反射を抑制し、スプリアスを低減している。
【0006】
また、いわゆるFAB(Fast Atom Beam)方式の直接接合法が知られている(特許文献4)。この方法では、中性化原子ビームを常温で各接合面に照射して活性化し、直接接合する。
【0007】
一方、特許文献5では、圧電性単結晶基板を、シリコン基板ではなく、セラミックス(アルミナ、窒化アルミニウム、窒化珪素)からなる支持基板に対して、中間層を介して直接接合することが記載されている。この中間層の材質は、珪素、酸化珪素、窒化珪素、窒化アルミニウムとされている。
【発明を実施するための形態】
【0015】
以下、適宜図面を参照しつつ、本発明を詳細に説明する。
本発明の接合体は、支持基板および圧電性材料層を備えている接合体であって、支持基板がムライトからなり、圧電性材料層の材質がLiAO
3である(Aは、ニオブおよびタンタルからなる群より選ばれた一種以上の元素である)。例えば、
図1(a)に示す接合体1においては、支持基板3の活性化面3aに対して圧電性材料層2の活性化面2aが直接接合されている。なお、2bは、圧電性材料層2の主面であり、3bは支持基板3の主面である。
【0016】
ここで、
図1(a)の接合体の接合界面を拡大して
図1(b)に模式図として示す。
支持基板3と圧電性材料層2との界面に沿って界面層4が設けられており、界面層4と支持基板3との間に支持基板側中間層5が存在している。界面層4および支持基板側中間層5が、それぞれ、ニオブおよびタンタルからなる群より選ばれた一種以上の元素、酸素、アルミニウムおよび珪素を主成分とする材質からなる。
【0017】
圧電性材料層の材質はLiAO
3とする。ここで、Aは、ニオブおよびタンタルからなる群より選ばれた一種以上の元素である。このため、LiAO
3は、ニオブ酸リチウムであってよく、タンタル酸リチウムであってよく、ニオブ酸リチウム−タンタル酸リチウム固溶体であってよい。
【0018】
支持基板はムライトからなる。ムライトは、3Al
2O
3・2SiO
2(Al
6O
13Si
2)の組成を有するムライト結晶からなるセラミックスである。ムライトは焼結体であることが好ましいが、製造法は特に限定されない。
【0019】
本発明で用いるムライトの相対密度は、接合強度の観点からは、99.5%以上が好ましく、100%であってもよい。相対密度はアルキメデス法によって測定する。また、ムライトの純度は、接合強度の観点からは、98%以上が好ましく、99%以上が更に好ましい。
【0020】
ここで、
図1(b)、
図2において、各層の組成は以下のようになる。
支持基板3の組成: Al
6O
13Si
2
圧電性材料層2の組成: LiAO
3(A=Ta、Nb)
【0021】
そして、支持基板3と圧電性材料層2とを直接接合する段階において、各接合面の活性化条件を制御することで、両者の界面において適度の原子拡散を生じさせることで、本発明の界面層4および支持基板側中間層5を生成させることができる。すなわち、界面層および支持基板側中間層が、それぞれ、ニオブおよびタンタルからなる群より選ばれた一種以上の元素(A)、酸素(O)、アルミニウム(Al)および珪素(Si)を主成分とする。これは、ニオブおよびタンタルからなる群より選ばれた一種以上の元素(A)が、圧電性材料層2から支持基板3側へと向かって拡散したことを示している。また、アルミニウム(Al)および珪素(Si)が、支持基板3(Al
6O
13Si
2)から圧電性材料層(LiAO
3)へと向かって拡散したことを示している。
このような微構造によって、ムライトからなる支持基板上に、ニオブ酸リチウムやタンタル酸リチウムからなる圧電性材料層を強固に安定して接合できることを見いだした。
【0022】
なお、「ニオブおよびタンタルからなる群より選ばれた一種以上の元素(A)、酸素(O)、アルミニウム(Al)および珪素(Si)を主成分とする」とは、全原子比率を100原子%としたときに、これらの原子の原子比率の合計が95原子%以上であることを意味しており、97原子%以上であることが更に好ましい。
【0023】
本発明者が更にこれらの組成を詳細に検討したところ、以下のことが判明した。すなわち、界面層4における珪素比率が支持基板側中間層5における珪素比率よりも高くなっている場合に、接合強度が特に顕著に向上し、接合界面以外の部分でバルク破壊を生じ易いことを発見した。
【0024】
この理由は明確ではない。珪素(Si)原子は、支持基板から圧電性材料層2に向かって拡散するため、通常であれば、支持基板側中間層5における珪素比率が界面層4における珪素比率よりも高くなるはずである。しかし、支持基板側中間層や界面層は非常に薄く、各接合面の活性化状態によっては珪素の拡散が進行し易くなっており、このために支持基板3から少し離れた界面層4へと珪素の拡散がより集中したものと考えられる。そして、このような拡散が生じている場合に、接合強度が特に向上していることを見いだしたものである。
【0025】
好適な実施形態においては、たとえば
図2、
図3に示すように、界面層4が明るく、支持基板側中間層5とが暗くなっている。ただし、この写真は、透過型電子顕微鏡の明視野像であり、以下の条件で撮影するものとする。
測定装置:
透過型電子顕微鏡(日本電子製 JEM−ARM200F)を用いて微構造観察する。
測定条件:
FIB(集束イオンビーム)法にて薄片化したサンプルに対して、加速電圧200kVにて観察する。
【0026】
本発明においては、支持基板、支持基板側中間層、界面層、圧電性材料層の各原子比率は、以下のようにして決定する。
測定装置:
元素分析装置(日本電子製JED−2300T)を用いて元素分析を行う。
測定条件:
FIB(集束イオンビーム)法にて薄片化したサンプルに対して、加速電圧200kV、X線取出角21.9°、立体角0.98sr、取込時間30秒にて分析する。
【0027】
測定値の処理:
ニオブおよびタンタルからなる群より選ばれた一種以上の元素(A)、酸素(O)、アルミニウム(Al)、珪素(Si)およびアルゴン(Ar)の原子比率を、圧電性材料層、界面層、支持基板側中間層および支持基板の各部分で測定する。元素(A)の原子比率は、TaとNbとの合計量とする。この際、各部分において、前記元素比率の合計が100原子%になるように調整し、各原子の原子比率(原子%)を算出する。
【0028】
次いで、支持基板におけるアルミニウム(Al)、珪素(Si)の原子比率を100に換算し、これに応じて他の各層におけるアルミニウム(Al)、珪素(Si)の原子比率を算出する。これは、支持基板からアルミニウムと珪素とが各層に向かって拡散している度合いを示す指標となる。圧電性材料層においては、アルミニウム(Al)、珪素(Si)の原子比率が0となる。
【0029】
一方、圧電性材料層におけるニオブおよびタンタルからなる群より選ばれた一種以上の元素(A)の原子比率を100に換算し,これに応じて各層における元素(A)の原子比率を算出する。これは、圧電性材料層から元素(A)が各層に向かって拡散している度合いを示す指標となる。支持基板においては、元素(A)の原子比率が0となる。
【0030】
好適な実施形態においては、支持基板における珪素比率を100としたときの界面層における珪素比率が41以上である。これを41以上とすることによって、接合強度が一層高くなる。この観点からは、界面層における珪素比率を51以上とすることが好ましく、61以上とすることが一層好ましい。
【0031】
また、好適な実施形態においては、支持基板における珪素比率を100としたときの界面層における珪素比率が98以下である。界面層における珪素比率は、89以下が好ましく、79以下が更に好ましい。
【0032】
本発明においては、界面層における珪素比率が支持基板側中間層おける珪素比率よりも低くともよい。ただし、この場合には、支持基板における珪素比率を100としたとき、界面層における珪素比率と支持基板側中間層における珪素比率との差は、21以下であることが好ましく、12以下であることが更に好ましい。また、好適な実施形態においては、界面層における珪素比率を支持基板側中間層における珪素比率よりも高くする。この場合には、界面層における珪素比率と支持基板側中間層における珪素比率との差は、19以上であることが好ましく、38以上であることが更に好ましい。
【0033】
好適な実施形態においては、支持基板側中間層におけるアルミニウム比率が支持基板におけるアルミニウム比率よりも高くなる。これは、支持基板側中間層において、支持基板からのアルミニウム(Al)が拡散する際に局所的に集中することを意味している。この場合には、特に接合強度が高くなる傾向がある。
【0034】
こうした観点からは、支持基板におけるアルミニウム比率を100としたとき、支持基板側中間層におけるアルミニウム比率を105以上とすることが好ましく、112以上とすることが更に好ましい。また、現実的には、支持基板側中間層におけるアルミニウム比率は116以下であることが多い。
【0035】
支持基板におけるアルミニウム比率を100としたとき、界面層におけるアルミニウム比率は、接合強度の観点からは、31以上であることが好ましく、また通常は45以下であることが多い。また、界面層におけるアルミニウム比率は、支持基板側中間層におけるアルミニウム比率よりも低いことが好ましい。
【0036】
ニオブおよびタンタルからなる群より選ばれた一種以上の元素(A)は、圧電性材料層から支持基板へと向かって拡散する。このため、圧電性材料層における元素(A)の原子比率を100としたとき、界面層における元素(A)の原子比率は、50〜90であることが好ましく、60〜88であることが更に好ましい。また、支持基板側中間層における元素(A)の原子比率は、6〜30であることが好ましく、16〜23であることが更に好ましい。
また、支持基板側中間層における元素(A)の原子比率は、界面層における元素(A)の原子比率よも低いことが通常である。
【0037】
たとえば、界面層におけるアルゴン(Ar)等のキャリアガスの原子比率は、1.8〜2.5原子%であることが好ましい。また、支持基板側中間層におけるアルゴン(Ar)等のキャリアガスの原子比率は、0.1〜0.5原子%であることが好ましい。
【0038】
以下、本発明の接合体の好適な製造例について述べる。
図4〜
図5は、支持基板を圧電性材料層の表面に直接接合する製造例を説明するための模式図である。
【0039】
図4(a)に示すように、圧電性材料層2の表面2cに対して、矢印Aのように中性化ビームを照射し、圧電性材料層2の表面を活性化して活性化面とする。
【0040】
一方、
図4(b)に示すように、支持基板3の表面3cに中性化ビームAを照射することによって活性化し、活性化面が形成された支持基板を得る。次いで、
図5(a)に示すように、圧電性材料層2の活性化面2aと支持基板3の活性化面3aとを直接接合することによって、接合体1を得る。
【0041】
好適な実施形態においては、接合体1の圧電性材料層2の表面2bを更に研磨加工し、
図5(b)に示すように圧電性材料層2Aの厚さを小さくし、接合体7を得る。2dは研磨面である。
【0042】
図5(c)では、圧電性材料層2Aの研磨面2d上に所定の電極9を形成することによって、弾性表面波素子8を作製している。
【0043】
以下、本発明の各構成要素について更に説明する。
本発明の接合体の用途は特に限定されず、例えば、弾性波素子や光学素子に好適に適用できる。
【0044】
弾性波素子としては、弾性表面波デバイスやラム波素子、薄膜共振子(FBAR)などが知られている。例えば、弾性表面波デバイスは、圧電性材料層の表面に、弾性表面波を励振する入力側のIDT(Interdigital Transducer)電極(櫛形電極、すだれ状電極ともいう)と弾性表面波を受信する出力側のIDT電極とを設けたものである。入力側のIDT電極に高周波信号を印加すると、電極間に電界が発生し、弾性表面波が励振されて圧電性材料層上を伝搬していく。そして、伝搬方向に設けられた出力側のIDT電極から、伝搬された弾性表面波を電気信号として取り出すことができる。
【0045】
圧電性材料層の底面に金属膜を有していてもよい。金属膜は、弾性波デバイスとしてラム波素子を製造した際に、圧電性材料層の裏面近傍の電気機械結合係数を大きくする役割を果たす。この場合、ラム波素子は、圧電性材料層の表面に櫛歯電極が形成され、支持基板に設けられたキャビティによって圧電性材料層の金属膜が露出した構造となる。こうした金属膜の材質としては、例えばアルミニウム、アルミニウム合金、銅、金などが挙げられる。なお、ラム波素子を製造する場合、底面に金属膜を有さない圧電性性材料層を備えた複合基板を用いてもよい。
【0046】
また、圧電性材料層の底面に金属膜と絶縁膜を有していてもよい。金属膜は、弾性波デバイスとして薄膜共振子を製造した際に、電極の役割を果たす。この場合、薄膜共振子は、圧電性材料層の表裏面に電極が形成され、絶縁膜をキャビティにすることによって圧電性材料層の金属膜が露出した構造となる。こうした金属膜の材質としては、例えば、モリブデン、ルテニウム、タングステン、クロム、アルミニウムなどが挙げられる。また、絶縁膜の材質としては、例えば、二酸化ケイ素、リンシリカガラス、ボロンリンシリカガラスなどが挙げられる。
【0047】
また、光学素子としては、光スイッチング素子、波長変換素子、光変調素子を例示できる。また、圧電性材料層中に周期分極反転構造を形成することができる。
【0048】
本発明の対象が弾性波素子であり、圧電性材料層の材質がタンタル酸リチウムである場合には、弾性表面波の伝搬方向であるX軸を中心に、Y軸からZ軸に36〜47°(例えば42°)回転した方向のものを用いるのが伝搬損失が小さいため好ましい。
また圧電性材料層がニオブ酸リチウムからなる場合には、弾性表面波の伝搬方向であるX軸を中心に、Y軸からZ軸に60〜68°(例えば64°)回転した方向のものを用いるのが伝搬損失が小さいため好ましい。更に、圧電性材料層の大きさは、特に限定されないが、例えば、直径50〜150mm,厚さが0.2〜60μmである。
【0049】
本発明の接合体を得るためには、以下の方法が好ましい。
まず、圧電性材料層、支持基板の表面(接合面)を平坦化して平坦面を得る。ここで、各表面を平坦化する方法は、ラップ(lap)研磨、化学機械研磨加工(CMP)などがある。また、平坦面は、Ra≦1nmが好ましく、0.3nm以下にすると更に好ましい。
次いで、研磨剤の残渣の除去のため、圧電性材料層、支持基板の表面を洗浄する。表面を洗浄する方法は、ウエット洗浄、ドライ洗浄、スクラブ洗浄などがあるが、簡便かつ効率的に清浄表面を得るためには、スクラブ洗浄が好ましい。この際には、洗浄液としてセミクリーンM−LOを用いた後に、アセトンとIPAの混合溶液を用いてスクラブ洗浄機にて洗浄することが特に好ましい。
【0050】
次いで、圧電性材料層、支持基板の表面に中性化ビームを照射することで、平坦な各表面を活性化する。
【0051】
中性化ビームによる表面活性化を行う際には、特許文献4に記載のような装置を使用して中性化ビームを発生させ、照射することが好ましい。すなわち、ビーム源として、サドルフィールド型の高速原子ビーム源を使用する。そして、チャンバーに不活性ガスを導入し、電極へ直流電源から高電圧を印加する。これにより、電極(正極)と筺体(負極)との間に生じるサドルフィールド型の電界により、電子eが運動して、不活性ガスによる原子とイオンのビームが生成される。グリッドに達したビームのうち、イオンビームはグリッドで中和されるので、中性原子のビームが高速原子ビーム源から出射される。ビームを構成する原子種は、不活性ガス(アルゴン、窒素等)が好ましい。
ビーム照射による活性化時の電圧は0.5〜2.0kVとすることが好ましく、電流は50〜200mAとすることが好ましい。
【0052】
次いで、真空雰囲気で、活性化面同士を接触させ、接合する。この際の温度は常温であるが、具体的には40℃以下が好ましく、30℃以下が更に好ましい。また、接合時の温度は20℃以上、25℃以下が特に好ましい。接合時の圧力は、100〜20000Nが好ましい。
【実施例】
【0053】
(比較例1)
図4〜
図5を参照しつつ説明した方法に従い、接合体を得た。
具体的には、オリエンテーションフラット部(OF部)を有し、直径が4インチ、厚さが250μmのタンタル酸リチウム(LT)からなる圧電性材料層2を準備した。圧電性材料層2は、弾性表面波(SAW)の伝搬方向をXとし、切り出し角が回転Yカット板である46°YカットX伝搬LT基板を用いた。圧電性材料層2の表面2cは、算術平均粗さRaが1nmとなるように鏡面研磨しておいた。
【0054】
また、支持基板3として、OF部を有し、直径が4インチ,厚さが230μmのムライト基板を準備した。ムライトからなる支持基板3の表面3cの算術平均粗さRaは0.3nmである。算術平均粗さは原子間力顕微鏡(AFM)で、縦10μm×横10μmの正方形の視野を評価した。
【0055】
次いで、支持基板3をスクラブ洗浄した。洗浄液にはセミクリーンM−LOを用いた後に、アセトンとIPAの混合溶液を用いた。
スクラブ洗浄機にて洗浄後に支持基板3と圧電性材料層2を、真空チャンバーに導入した。10
−6Pa台まで真空引きした後、それぞれの基板の接合面に高速原子ビーム(加速電圧0.5kV、Ar流量27sccm)を120sec間照射した。次いで、圧電性材料層2のビーム照射面(活性化面)2aと支持基板3の活性化面3aとを接触させた後、10000Nで2分間加圧して両基板を接合した(
図5(a))。
【0056】
得られた接合体について、圧電性材料層、界面層、支持基板側中間層、支持基板における酸素(O)、アルミニウム(Al)、珪素(Si)、タンタル(Ta)、アルゴン(Ar)の各原子比率を測定し、結果を表1に示す。
なお、比較例1では、界面層が珪素を含有していないので本発明の範囲外となる。
【0057】
また、得られた接合体について、クラックオープニング法で接合強度を評価した所、0.5J/m
2であった。また、圧電性材料層2の表面2bを厚みが当初の250μmから30μmになるように研削及び研磨した。研削および研磨工程中に接合部分の剥がれが生じていた。
【0058】
【表1】
【0059】
(実施例1)
比較例1と同様にして接合体を製造した。ただし、接合時に基板の接合面に照射する高速電子ビームの加速電圧を0.6kVに変更した。
得られた接合体について、圧電性材料層、界面層、支持基板側中間層、支持基板における酸素(O)、アルミニウム(Al)、珪素(Si)、タンタル(Ta)、アルゴン(Ar)の各原子比率を測定し、結果を表2に示す。
【0060】
【表2】
【0061】
また、得られた接合体について、クラックオープニング法で接合強度を評価した所、0.75J/m
2であった。また、圧電性材料層2の表面2bを厚みが当初の250μmから30μmになるように研削及び研磨した。研削および研磨工程中に接合部分の剥がれは生じなかった。次に20μmになるように研削及び研磨したところ、研削および研磨工程中に接合部分の剥がれが生じていた。
【0062】
(実施例2〜4)
比較例1と同様にして接合体を製造した。ただし、接合時に基板の接合面に照射する高速電子ビームの加速電圧を実施例2は1.0kV、実施例3は1.2kV、実施例4は1.5kVに変更した。
【0063】
得られた接合体について、圧電性材料層、界面層、支持基板側中間層、支持基板における酸素(O)、アルミニウム(Al)、珪素(Si)、タンタル(Ta)、アルゴン(Ar)の各原子比率を測定し、結果を表3、表4、表5に示す。
【0064】
また、得られた接合体について、クラックオープニング法で接合強度を評価した所、いずれもバルク破壊を生じた。また、圧電性材料層2の表面2bを厚みが当初の250μmから20μmになるように研削及び研磨した。研削および研磨工程中に接合部分の剥がれは生じなかった。
【0065】
【表3】
【0066】
【表4】
【0067】
【表5】