特許第6563829号(P6563829)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 未来工業株式会社の特許一覧

特許6563829中空筒体構造の製造方法、中空筒体及び中空筒体構造
<>
  • 特許6563829-中空筒体構造の製造方法、中空筒体及び中空筒体構造 図000002
  • 特許6563829-中空筒体構造の製造方法、中空筒体及び中空筒体構造 図000003
  • 特許6563829-中空筒体構造の製造方法、中空筒体及び中空筒体構造 図000004
  • 特許6563829-中空筒体構造の製造方法、中空筒体及び中空筒体構造 図000005
  • 特許6563829-中空筒体構造の製造方法、中空筒体及び中空筒体構造 図000006
  • 特許6563829-中空筒体構造の製造方法、中空筒体及び中空筒体構造 図000007
  • 特許6563829-中空筒体構造の製造方法、中空筒体及び中空筒体構造 図000008
  • 特許6563829-中空筒体構造の製造方法、中空筒体及び中空筒体構造 図000009
  • 特許6563829-中空筒体構造の製造方法、中空筒体及び中空筒体構造 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6563829
(24)【登録日】2019年8月2日
(45)【発行日】2019年8月21日
(54)【発明の名称】中空筒体構造の製造方法、中空筒体及び中空筒体構造
(51)【国際特許分類】
   H02G 1/06 20060101AFI20190808BHJP
   H02G 3/04 20060101ALI20190808BHJP
   F16L 11/11 20060101ALI20190808BHJP
   F16L 57/00 20060101ALI20190808BHJP
   H01B 7/24 20060101ALN20190808BHJP
【FI】
   H02G1/06
   H02G3/04 068
   F16L11/11
   F16L57/00 A
   !H01B7/24
【請求項の数】17
【全頁数】21
(21)【出願番号】特願2016-14865(P2016-14865)
(22)【出願日】2016年1月28日
(65)【公開番号】特開2017-135895(P2017-135895A)
(43)【公開日】2017年8月3日
【審査請求日】2018年9月18日
(73)【特許権者】
【識別番号】000243803
【氏名又は名称】未来工業株式会社
(74)【代理人】
【識別番号】110000659
【氏名又は名称】特許業務法人広江アソシエイツ特許事務所
(72)【発明者】
【氏名】北村 祐介
【審査官】 木村 励
(56)【参考文献】
【文献】 特開2010−200549(JP,A)
【文献】 実開昭60−117620(JP,U)
【文献】 国際公開第2007/034978(WO,A1)
【文献】 特開2017−135896(JP,A)
【文献】 特開2015−202037(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02G 1/06
H02G 3/04
H01B 7/24
F16L 11/11
F16L 57/00
(57)【特許請求の範囲】
【請求項1】
中空筒体内部に配線・配管材が配設された中空筒体構造の製造方法であって、
中空筒体を準備する工程であって、前記中空筒体は、該中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、前記積層部は、前記中空筒体の周方向の少なくとも一部で軸方向に連続して形成されており、前記積層部には、前記積層部を幅方向に分断して前記中空筒体の軸方向に連続的に延びる開放可能な切り割り部が形成されている、工程と、
前記切り割り部から配線・配管材を内部に収容する工程と、
前記切り割り部を介して相対する分断端面同士を密着させた上で、前記切り割り部に対して前記中空筒体の外面からレーザー光を照射し、前記分断端面同士をレーザー溶着して前記切り割り部を閉塞する工程と、
を含むことを特徴とする製造方法。
【請求項2】
中空筒体内部に配線・配管材が配設された中空筒体構造の製造方法であって、
前記中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を、前記中空筒体の周方向の少なくとも一部で軸方向に連続して形成した前記中空筒体を準備する工程と、
前記積層部を幅方向に分断するように前記中空筒体を軸方向に沿って連続的に切断することによって、前記中空筒体に開放可能な切り割り部を形成する工程と、
前記切り割り部から配線・配管材を内部に収容する工程と、
前記切り割り部を介して相対する分断端面同士を密着させた上で、前記切り割り部に対して前記中空筒体の外面からレーザー光を照射し、前記分断端面をレーザー溶着して前記切り割り部を閉塞する工程と、
を含むことを特徴とする製造方法。
【請求項3】
前記中空筒体を準備する工程は、前記中空筒体を成形する工程を含むことを特徴とする請求項1又は2に記載の製造方法。
【請求項4】
前記切り割り部を閉塞する工程は、レーザー光の照射時に前記分断端面同士を密着方向に加圧する工程を含むことを特徴とする請求項1から3のいずれか一項に記載の製造方法。
【請求項5】
前記各分断端面は、前記中空筒体の筒壁に直交する平面であることを特徴とする請求項1から4のいずれか一項に記載の製造方法。
【請求項6】
前記中空筒体は、軸方向に山部及び谷部が連続する波付管であり、
前記切り割り部を閉塞する工程は、レーザー光の照射時に前記波付管の山谷を軸方向にずらした状態で前記分断端面同士を密着させる工程を含むことを特徴とする請求項1から5のいずれか一項に記載の製造方法。
【請求項7】
前記中空筒体は、軸方向に山部及び谷部が連続する波付管であり、
前記切り割り部を閉塞する工程において、前記波付管の軸方向の山谷の傾斜角度に対して、前記レーザー光の照射角度が小さいことを特徴とする請求項1から6のいずれか一項に記載の製造方法。
【請求項8】
前記レーザー光透過層は、ポリオレフィン系の熱可塑性樹脂からなり、
前記レーザー光吸収層は、ポリオレフィン系の熱可塑性樹脂からなる母材と、前記母材に添加された、レーザー光を吸収して発熱するカーボンブラックとから構成されることを特徴とする請求項1から7のいずれか一項に記載の製造方法。
【請求項9】
配線・配管材を内部に配設するための中空筒体であって、
前記中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、
前記積層部は、前記中空筒体の周方向の一部で軸方向に連続して形成されていることを特徴とする中空筒体。
【請求項10】
配線・配管材を内部に配設するための中空筒体であって、
前記中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、
前記積層部は、前記中空筒体の周方向の一部で軸方向に連続して形成されており、前記積層部には、前記積層部を幅方向に分断して前記中空筒体の軸方向に連続的に延びる切り割り部が形成されていることを特徴とする中空筒体。
【請求項11】
前記切り割り部を介して相対する分断端面は、前記中空筒体の筒壁に直交する平面であることを特徴とする請求項10に記載の中空筒体。
【請求項12】
前記中空筒体は、軸方向に山部及び谷部が連続する波付管であることを特徴とする請求項9から11のいずれか一項に記載の中空筒体。
【請求項13】
前記波付管の前記山部におけるレーザー光吸収層の厚みが、前記谷部におけるレーザー光吸収層の厚みよりも薄いことを特徴とする請求項12に記載の中空筒体。
【請求項14】
前記積層部では、前記積層部以外の箇所と比べて、前記山部及び前記谷部の高低差が小さいことを特徴とする請求項12又は13に記載の中空筒体。
【請求項15】
前記中空筒体の母材がポリエチレンであることを特徴とする請求項9から14のいずれか一項に記載の中空筒体。
【請求項16】
配線・配管材と該配線・配管材を内部に配設している中空筒体とを備える中空筒体構造であって、
前記中空筒体は、前記中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、
前記積層部は、前記中空筒体の周方向の一部で軸方向に連続して形成されており、前記積層部には、前記積層部を幅方向に分断して前記中空筒体の軸方向に連続的に延びる接合部が形成され、前記接合部の融着痕が前記中空筒体の外面に現れずに前記積層部の断面に形成されていることを特徴とする中空筒体構造。
【請求項17】
中空筒体内部に配線・配管材が配設された中空筒体構造の製造方法であって、
中空筒体を準備する工程であって、前記中空筒体は、熱溶融性のレーザー光透過層と、前記レーザー光透過層に隣接し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、前記積層部は、前記中空筒体の周方向の少なくとも一部で軸方向に連続して形成されており、前記積層部には、前記積層部を幅方向に分断して前記中空筒体の軸方向に連続的に延びる開放可能な切り割り部が形成されている、工程と、
前記切り割り部から配線・配管材を内部に収容する工程と、
前記切り割り部を介して相対する分断端面同士を密着させた上で、前記切り割り部に対して前記レーザー光透過層側からレーザー光を照射し、前記分断端面同士をレーザー溶着して前記切り割り部を閉塞する工程と、
を含むことを特徴とする製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、中空筒体の内部に配線・配管材が配設された中空筒体構造の製造方法、配線・配管材を内部に配設するための中空筒体、及び、配線・配管材を中空筒体内部に配設した中空筒体構造に関する。
【背景技術】
【0002】
一般的に配線・配管材の保護等を目的として、中空筒体(例えば保護管)は配線・配管材を内部に収容することに用いられている。従来、配線・配管材を中空筒体内部に収容し易くするために、中空筒体の筒壁の軸(長尺)方向に沿って連続的に延びる切り割り部を形成し、該切り割り部を開いて、該切り割り部から中空筒体内部に配線・配管材を挿入することが行われている。そして、配線・配管材を収納した後、切り割り部を接合するために種々の手段が採用されている。
【0003】
例えば、特許文献1は、ケーブル用保護管の敷設方法を開示する。ケーブル用保護管(1)は、周壁部に割り部(2a)が形成された管本体(2)と、割り部(2a)のところで管本体(2)と係合する結合部材(3)とからなっている。保護管(1)の内部には、電力ケーブル、通信ケーブル、光ケーブルなどのケーブル(4)が少なくとも1本収容される。そして、割り部(2a)のところで管本体(2)の周壁部(200)を分離して開くことができるようになっている。保護管(1)内にケーブル(4)を収容する際には、先ず管本体(2)を割り部(2a)のところで拡開して、管本体(2)の内部にケーブル(4)を挿入する。次いで、電熱線(310,311,312)が埋設された結合部材(3)を、割り部(2a)のところで管本体(2)に嵌め合わせ、結合部材(3)の外側鍔板部(301)と内側鍔板部(302)との間に、割り部(2a)を介して相対する管本体(2)の周壁部の周方向端部(200a,200b)を挟み込む。そして、結合部材(3)を管本体(2)に嵌め合わせた状態で電熱線(310,311,312)に通電する。電熱線(310,311,312)に通電すると、電熱線(310)からの発熱により結合部材(3)の主板部(300)の両面が管本体(2)の割り部(2a)の内面に融着され、管本体の周壁部の周方向端部(200a,200b)が主板部(300)を介して機械的に接合される。なお、()内に特許文献1の符号を示した。
【0004】
特許文献2は、分断部を有する保護材を用いて電線束を保護するワイヤーハーネスの製造方法を開示する。ワイヤーハーネスは、複数の電線(21)から成る電線束(20)と、電線束(20)を覆って保護する筒状のコルゲートチューブ(30)と、を備える。このコルゲートチューブ(30)は、このチューブ(30)を周方向に分断するように、軸方向に沿って一端から他端まで延びるように形成されたスリット(33)を有する。電線束(20)は、コルゲートチューブ(30)の軸方向に対して垂直な方向からスリット(33)を通してチューブ(30)内に挿入され得る。そして、熱可塑性樹脂吐出用設備(40)によって電線束(20)が挿入された後のコルゲートチューブ(30)のスリット(33)が封止される。具体的には、熱可塑性樹脂吐出用設備(40)の加熱部(41)で溶融されるとともにノズル(42)から吐出された熱可塑性樹脂(44)が、スリット(33)の一端から他端までの全域にわたって充填される。このように充填された熱可塑性樹脂(44)は、その後冷却して固化され、これにより、スリット(33)が封止されてワイヤーハーネスが製造される。なお、()内に特許文献2の符号を示した。
【0005】
特許文献3は、コルゲートチューブのワイヤハーネス外装方法を開示する。コルゲートチューブ(1)は、環状の山部(3)と谷部(4)とを長さ方向(L)に交互に設けていると共に、長さ方向の全長に1本のスリット(2)を設けている。スリット(2)を挟む分割部(5、6)には、長さ方向(L)に沿って谷部(4)の底壁部(4a)に連続して周方向に突出すると共に長さ方向(L)に延在する帯部(7、8)を設け、該帯部(7、8)の先端、即ち、前記分割端(5a、6a)に外方へ突出する平板形状の溶接板部(9、10)を突設している。スリット(2)を閉鎖するには、電気コテ(30)の側板部(30a)と(30b)の間に溶接板部(9、10)を重ねて挟み、この状態で溶接板部(9、10)を加熱する。この電気コテ(30)による溶接板部(9、10)への加熱で、溶接板部(9、10)の接合面は溶接される。電気コテ(30)からなる加熱器に加えて、超音波発生器からなる溶接機が好適に用いられる。なお、()内に特許文献3の符号を示した。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2008−295146号公報
【特許文献2】特開2015−84627号公報
【特許文献3】特開2010−200549号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
上記した従来の、内部に配線・配管材が配設された中空筒体を製造する方法には、以下のような課題がある。例えば、特許文献1の方法は、電熱線が埋設された結合部材を、保護管の割り部の内面の間に介在させて熱溶融させることにより、割り部を閉塞することを特徴とする。しかしながら、特許文献1の方法では、電熱線入りの結合部材を別途準備又は製造した上で結合部材を保護管に宛がうことが必要であるので、その作業性や製造コストの点で芳しくない。さらに、割り部の内面の間に溶融した結合部材が介在するので、保護管の径が切断前よりも大きくなり、且つ、結合部材の溶融の痕が比較的大きく残るので、見栄えが良くないことが問題であった。また、保護管とは別体の材料が、保護管の割り部内面を繋ぐので、接合強度を維持するのが困難であるといった問題もある。さらに、固化した結合部材が軸方向に延びる背骨(突条)となり、波付管である保護管の屈曲容易性が低下することが問題として挙げられる。
【0008】
また、特許文献2の方法では、コルゲートチューブのスリットの一端から他端までの全域に亘って熱溶融した熱可塑性樹脂を充填することにより、スリットを閉塞する。すなわち、特許文献2においても同様に、別途、溶融した熱可塑性樹脂を用意することが求められるので、その作業性や製造コストの点で芳しくない。さらに、熱可塑性樹脂がスリットを介する端面間に介在するので、コルゲートチューブの径が切断前よりも大きくなり、且つ、固化した熱可塑性樹脂が隆起して溶融痕が比較的はっきりと残るので、見栄えが良くない。また、コルゲートチューブとは別体の材料が、保護管の割り部内面を繋ぐので、接合強度を維持することが困難であるといった問題もある。さらに、熱可塑性樹脂の充填の際、熱可塑性樹脂がチューブの谷部にたまりこみ、コルゲートチューブの屈曲容易性が低下することが問題として挙げられる。
【0009】
さらに、特許文献3では、スリットの分割端に外方へ突出する平板形状の溶接板部を形成し、該溶接板部を重ね合わせた状態で加熱器又は超音波発生器によって重合部分を挟んで加熱することにより、溶接板部を溶接してスリットを封止する。特許文献3では、別途溶着用の材料を用意することなく、コルゲートチューブの一部が互いに溶着される。しかしながら、特許文献3のような、加熱器や超音波発生器によって溶接する方法では、対象を局所的に加熱することができないので、熱がコルゲートチューブの比較的広範囲に亘って付加されたり、コルゲートチューブ全体に亘って超音波振動が付加される。それ故、コルゲートチューブの周壁に熱等による影響を及ぼさないように、溶接板部のような溶接代を幅広に形成しなければならない。そして、加熱及び冷却された溶接代全体が溶融及び固化することによって、コルゲートチューブの比較的広範囲に亘ってバリなどが発生し、見栄えが非常に悪くなる。さらに、溶接板部の重合・溶接部分は、山谷から形成された他の箇所と比べて屈曲性が低いので、スリットの溶接によってコルゲートチューブの屈曲容易性が低下することが問題として挙げられる。
【0010】
すなわち、従来の切り割り部(特許文献1の割り部、特許文献2、3のスリット)を接合する方法では、切り割り部を見栄え良く閉塞することが困難であった。さらには、従来の方法では、接着又は溶接箇所に硬化した溶融樹脂による突条が形成されたり、熱可塑性樹脂が波付管の谷部に入り込むことにより、屈曲性の低い1本の背骨が軸方向に形成され、可撓性のある配線・配管材(波付管)の屈曲性が阻害されることが問題であった。本発明は、従来にない新規な切り割り部の閉塞方法を導入して上記課題を解決するものである。すなわち、本発明の目的は、従来よりも、閉塞された切り割り部の見栄え、中空筒体の屈曲性及び切り割り部の接合強度を改善すべく、中空筒体の内部に配線・配管材が配設された中空筒体構造の製造方法、配線・配管材を内部に配設するための中空筒体、及び、配線・配管材が中空筒体内部に配設された中空筒体構造を提供することにある。
【課題を解決するための手段】
【0011】
請求項1に記載の中空筒体構造の製造方法は、中空筒体内部に配線・配管材が配設された中空筒体構造の製造方法であって、
中空筒体を準備する工程であって、前記中空筒体は、該中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、前記積層部は、前記中空筒体の周方向の少なくとも一部で軸方向に連続して形成されており、前記積層部には、前記積層部を幅方向に分断して前記中空筒体の軸方向に連続的に延びる開放可能な切り割り部が形成されている、工程と、
前記切り割り部から配線・配管材を内部に収容する工程と、
前記切り割り部を介して相対する分断端面同士を密着させた上で、前記切り割り部に対して前記中空筒体の外面からレーザー光を照射し、前記分断端面同士をレーザー溶着して前記切り割り部を閉塞する工程と、
を含むことを特徴とする。
【0012】
請求項2に記載の中空筒体構造の製造方法は、請求項1に記載の中空筒体構造の製造方法において、中空筒体内部に配線・配管材が配設された中空筒体構造の製造方法であって、
前記中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を、前記中空筒体の周方向の少なくとも一部で軸方向に連続して形成した前記中空筒体を準備する工程と、
前記積層部を幅方向に分断するように前記中空筒体を軸方向に沿って連続的に切断することによって、前記中空筒体に開放可能な切り割り部を形成する工程と、
前記切り割り部から配線・配管材を内部に収容する工程と、
前記切り割り部を介して相対する分断端面同士を密着させた上で、前記切り割り部に対して前記中空筒体の外面からレーザー光を照射し、前記分断端面をレーザー溶着して前記切り割り部を閉塞する工程と、
を含むことを特徴とする。
【0013】
請求項3に記載の中空筒体構造の製造方法は、請求項1又は2に記載の中空筒体構造の製造方法において、前記中空筒体を準備する工程は、前記中空筒体を成形する工程を含むことを特徴とする。
【0014】
請求項4に記載の中空筒体構造の製造方法は、請求項1から3のいずれかに記載の中空筒体構造の製造方法において、前記切り割り部を閉塞する工程は、レーザー光の照射時に前記分断端面同士を密着方向に加圧する工程を含むことを特徴とする。
【0015】
請求項5に記載の中空筒体構造の製造方法は、請求項1から4のいずれかに記載の中空筒体構造の製造方法において、前記各分断端面は、前記中空筒体の筒壁に直交する平面であることを特徴とする。
【0016】
請求項6に記載の中空筒体構造の製造方法は、請求項1から5のいずれかに記載の中空筒体構造の製造方法において、前記中空筒体は、軸方向に山部及び谷部が連続する波付管であり、
前記切り割り部を閉塞する工程は、レーザー光の照射時に前記波付管の山谷を軸方向にずらした状態で前記分断端面同士を密着させる工程を含むことを特徴とする。
【0017】
請求項7に記載の中空筒体構造の製造方法は、請求項1から6のいずれかに記載の中空筒体構造の製造方法において、前記中空筒体は、軸方向に山部及び谷部が連続する波付管であり、
前記切り割り部を閉塞する工程において、前記波付管の軸方向の山谷の傾斜角度に対して、前記レーザー光の照射角度が小さいことを特徴とする。
【0018】
請求項8に記載の中空筒体構造の製造方法は、請求項1から7のいずれかに記載の中空筒体構造の製造方法において、前記レーザー光透過層は、ポリオレフィン系の熱可塑性樹脂からなり、
前記レーザー光吸収層は、ポリオレフィン系の熱可塑性樹脂からなる母材と、前記母材に添加された、レーザー光を吸収して発熱するカーボンブラックとから構成されることを特徴とする。
【0019】
請求項9に記載の中空筒体は、配線・配管材を内部に配設するための中空筒体であって、
前記中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、
前記積層部は、前記中空筒体の周方向の一部で軸方向に連続して形成されていることを特徴とする。
【0020】
請求項10に記載の中空筒体は、配線・配管材を内部に配設するための中空筒体であって、
前記中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、
前記積層部は、前記中空筒体の周方向の一部で軸方向に連続して形成されており、前記積層部には、前記積層部を幅方向に分断して前記中空筒体の軸方向に連続的に延びる切り割り部が形成されていることを特徴とする。
【0021】
請求項11に記載の中空筒体は、請求項10に記載の中空筒体において、前記切り割り部を介して相対する分断端面は、前記中空筒体の筒壁に直交する平面であることを特徴とする。
【0022】
請求項12に記載の中空筒体は、請求項9から11のいずれかに記載の中空筒体において、前記中空筒体は、軸方向に山部及び谷部が連続する波付管であることを特徴とする。
【0023】
請求項13に記載の中空筒体は、請求項12に記載の中空筒体において、前記波付管の前記山部におけるレーザー光吸収層の厚みが、前記谷部におけるレーザー光吸収層の厚みよりも薄いことを特徴とする。
【0024】
請求項14に記載の中空筒体は、請求項12又は13に記載の中空筒体において、前記積層部では、前記積層部以外の箇所と比べて、前記山部及び前記谷部の高低差が小さいことを特徴とする。
【0025】
請求項15に記載の中空筒体は、請求項9から14のいずれかに記載の中空筒体において、前記中空筒体の母材がポリエチレンであることを特徴とする。
【0026】
請求項16に記載の中空筒体構造は、配線・配管材と該配線・配管材を内部に配設している中空筒体とを備える中空筒体構造であって、
前記中空筒体は、前記中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、
前記積層部は、前記中空筒体の周方向の一部で軸方向に連続して形成されており、前記積層部には、前記積層部を幅方向に分断して前記中空筒体の軸方向に連続的に延びる接合部が形成され、前記接合部の融着痕が前記中空筒体の外面に現れずに前記積層部の断面に形成されていることを特徴とする。
【0027】
請求項17に記載の中空筒体構造は、中空筒体内部に配線・配管材が配設された中空筒体構造の製造方法であって、
中空筒体を準備する工程であって、前記中空筒体は、熱溶融性のレーザー光透過層と、前記レーザー光透過層に隣接し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、前記積層部は、前記中空筒体の周方向の少なくとも一部で軸方向に連続して形成されており、前記積層部には、前記積層部を幅方向に分断して前記中空筒体の軸方向に連続的に延びる開放可能な切り割り部が形成されている、工程と、
前記切り割り部から配線・配管材を内部に収容する工程と、
前記切り割り部を介して相対する分断端面同士を密着させた上で、前記切り割り部に対して前記レーザー光透過層側からレーザー光を照射し、前記分断端面同士をレーザー溶着して前記切り割り部を閉塞する工程と、
を含むことを特徴とする。
【発明の効果】
【0028】
本発明の請求項1に記載の中空筒体構造の製造方法によれば、中空筒体は、その外層を構成する熱溶融性のレーザー光透過層と、該レーザー光透過層の内層側に位置し、レーザー光透過層よりも相対的に高い吸光度を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備える。該積層部を切り割るように形成された切り割り部を介して、配線・配管材を中空筒体の内部に挿入することができる。そして、配線・配管材を中空筒体に内挿した状態で、積層部を幅(周)方向に分断する分断端面同士を密着させた上で、切り割り部に対して中空筒体の外面からレーザー光を照射することにより、分断端面同士をレーザー溶着して切り割り部を見栄え良く閉塞することができる。これにより、本発明の製造方法で製造した中空筒体構造において、バリの発生や中空筒体構造の見栄えが悪くなることを極力抑えることができる。さらには、本発明の製造方法では、分断端面同士が他の材料を介さずに直接に接合されるので、中空筒体の筒壁に最初から切り割り部がなかったかのように切り割り部が閉塞され得る。すなわち、本発明の製造方法は、切り割り部の閉塞によって中空筒体の屈曲性(可撓性)を損なうことを防止することができる。
そして、本発明の製造方法は、結合部材のような別材料を別途用意することなく、中空筒体の一部(同一材料)同士を溶着するので、切り割り部の高い接合強度を確保し、尚且つ、作業性及びコストの点でも有利である。
【0029】
より具体的には、分断端面の密着部分に対して局所的に所定強度のレーザー光を照射すると、有意な量のレーザー光が外層側のレーザー光透過層を通過し、内層側のレーザー光吸収層に吸収される。このとき、レーザー光吸収層が、レーザー光が筒壁を透過して内部に配設した配線・配管材の外面を溶融及び損傷させてしまうことを防止するように機能する。そして、分断端面が密着する切り割り部において、レーザー光吸収層が優先的に加熱される。続いて、レーザー光吸収層の加熱部分(レーザー光透過層とレーザー光吸収層との界面)から、熱が分断端面間の界面に沿って厚み方向の内外(すなわちレーザー光透過層の外面側及びレーザー光吸収層の内面側の両方)へと伝導し、分断端面全体が加熱されて溶融する。特には、積層部がレーザー光透過層及びレーザー光吸収層の2層で構成され、レーザー光透過層がレーザー光吸収層を覆うので、レーザー光吸収層の溶融方向が分断端面側に定められて効率良く溶着できる。そして、この熱溶融した分断端面同士が溶融プールを形成し、材料的に混ざり合って冷却した結果、分断端面同士が一定的に接合(融着)される。すなわち、切り割り部のレーザー溶着工程において、分断端面が優先的に溶融及び固化するので、中空筒体の外面に溶融した痕跡がほとんど現れることがない。さらに、本発明において、
【0030】
本発明の請求項2に記載の中空筒体構造の製造方法によれば、中空筒体は、その外層を構成する熱溶融性のレーザー光透過層と、該レーザー光透過層の内層側に位置し、レーザー光透過層よりも相対的に高い吸光度を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備える。該積層部を切り割ることにより、切り割り部を形成し、該切り割り部を介して、配線・配管材を中空筒体の内部に挿入することができる。そして、配線・配管材を中空筒体に内挿した状態で、積層部を幅(周)方向に分断する分断端面同士を密着させた上で、切り割り部に対して中空筒体の外面からレーザー光を照射することにより、分断端面同士をレーザー溶着して切り割り部を見栄え良く閉塞することができる。すなわち、そして、本発明の製造方法は、結合部材のような別材料を別途用意することなく、中空筒体の一部(同一材料)同士を溶着するので、切り割り部の高い接合強度を確保し、尚且つ、作業性及びコストの点でも有利である。さらには、本発明の製造方法では、分断端面同士が他の材料を介さずに直接に接合されるので、中空筒体の筒壁に最初から切り割り部がなかったかのように切り割り部が閉塞され得る。すなわち、本発明の製造方法は、切り割り部の閉塞によって中空筒体の屈曲性(可撓性)を損なうことを防止することができる。
【0031】
本発明の請求項3に記載の中空筒体構造の製造方法によれば、請求項1又2に記載の発明に加え、中空筒体を成形工程を経て容易に準備することができる。
【0032】
本発明の請求項4に記載の中空筒体構造の製造方法によれば、請求項1から3のいずれかに記載の発明に加え、レーザー光の照射時に分断端面同士を密着方向に加圧することにより、切り割り部をより強固且つ確実にレーザー溶着で閉塞することができる。
【0033】
本発明の請求項5に記載の中空筒体構造の製造方法によれば、請求項1から4のいずれかに記載の発明に加え、各分断端面が中空筒体の筒壁に直交する平面であることにより、分断端面を確実に密着させることができる。
【0034】
本発明の請求項6に記載の中空筒体構造の製造方法によれば、請求項1から5のいずれかに記載の発明に加え、レーザー光の照射時に波付管の山谷を軸方向にずらした状態で分断端面同士を密着させることにより、加圧時に滑って端縁が重なりすぼむことを抑えることができる。
【0035】
本発明の請求項7に記載の中空筒体構造の製造方法によれば、請求項1から6のいずれかに記載の発明に加え、波付管の軸方向の山谷の傾斜角度に対してレーザー光の照射角度が小さい。これにより、波付管の山部に邪魔されることなく、谷部の外面にまでレーザー光をより確実に照射することが可能である。
【0036】
本発明の請求項8に記載の中空筒体構造の製造方法によれば、請求項1から7のいずれかに記載の発明に加え、照射されたレーザー光をレーザー光透過層に透過させ、レーザー光吸収層に吸収させる。レーザー光吸収層においてカーボンブラックを採用したことにより、レーザー光を効果的にレーザー光吸収層に吸収させることができる。
【0037】
本発明の請求項9に記載の中空筒体によれば、中空筒体は、その外層を構成する熱溶融性のレーザー光透過層と、該レーザー光透過層の内層側に位置し、レーザー光透過層よりも相対的に高い吸光度を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備える。積層部は、中空筒体の周方向の一部で軸方向に連続して形成されている。すなわち、施工者は、軸方向に延びる積層部に沿って中空筒体を切断することで、配線・配管材を内部に挿入するための切り割り部を容易に形成可能である。該切り割り部を介して、配線・配管材を中空筒体の内部に容易に挿入することができる。そして、配線・配管材を中空筒体に内挿した状態で、積層部を幅(周)方向に分断する分断端面同士を密着させた上で、切り割り部に対して中空筒体の外面からレーザー光を照射することにより、分断端面同士をレーザー溶着して切り割り部を見栄え良く閉塞することができる。すなわち、本発明の中空筒体を用いることにより、バリの発生や見栄えの悪化を抑えつつ、配線・配管材を中空筒体の内部に配設した中空筒体構造を構築可能である。さらには、本発明の中空筒体では、分断端面同士が他の材料を介さずに直接に接合されるので、中空筒体の筒壁に最初から切り割り部がなかったかのように切り割り部が閉塞され得る。すなわち、本発明の中空筒体は、切り割り部の閉塞によって中空筒体の屈曲性(可撓性)を損なうことを防止することができる。
【0038】
本発明の請求項10に記載の中空筒体によれば、中空筒体は、その外層を構成する熱溶融性のレーザー光透過層と、該レーザー光透過層の内層側に位置し、レーザー光透過層よりも相対的に高い吸光度を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備える。該積層部を切り割るように予め形成された切り割り部を介して、配線・配管材を中空筒体の内部に容易に挿入することができる。そして、配線・配管材を中空筒体に内挿した状態で、積層部を幅(周)方向に分断する分断端面同士を密着させた上で、切り割り部に対して中空筒体の外面からレーザー光を照射することにより、分断端面同士をレーザー溶着して切り割り部を見栄え良く閉塞することができる。すなわち、本発明の中空筒体を用いることにより、バリの発生や見栄えの悪化を抑えつつ、配線・配管材を中空筒体の内部に配設した中空筒体構造を構築可能である。さらには、本発明の中空筒体では、分断端面同士が他の材料を介さずに直接に接合されるので、中空筒体の筒壁に最初から切り割り部がなかったかのように切り割り部が閉塞され得る。すなわち、本発明の中空筒体は、切り割り部の閉塞によって中空筒体の屈曲性(可撓性)を損なうことを防止することができる。
【0039】
本発明の請求項11に記載の中空筒体によれば、請求項10に記載の発明に加え、各分断端面が中空筒体の筒壁に直交する平面であることにより、分断端面を確実に密着させることができる。
【0040】
本発明の請求項12に記載の中空筒体によれば、請求項9から11のいずれかに記載の発明に加え、中空筒体を軸方向に山部及び谷部が連続する波付管とすることができる。
【0041】
本発明の請求項13に記載の中空筒体によれば、請求項12に記載の発明に加え、レーザー光の焦点が谷部外面に定められ、山部のレーザー光吸収層に融着に必要な熱エネルギーを与えた場合、谷部への熱エネルギーが山部への熱エネルギーよりも相対的に大きくなる。これに対し、谷部におけるレーザー光吸収層の厚みを相対的に厚くすることにより、谷部の筒壁が焼き切れる虞を軽減している。
【0042】
本発明の請求項14に記載の中空筒体によれば、請求項12又は13に記載の発明に加え、積層部における山部及び谷部の高低差が比較的小さくなっていることにより、山部及び谷部でレーザー照射による加熱量がばらつくことが抑えられている。
【0043】
本発明の請求項15に記載の中空筒体によれば、請求項9から14のいずれかに記載の発明に加え、中空筒体の母材がポリエチレンとすることにより、容易且つ低コストに中空筒体を準備することができる。
【0044】
本発明の請求項16に記載の中空筒体構造によれば、中空筒体は、その外層を構成する熱溶融性のレーザー光透過層と、該レーザー光透過層の内層側に位置し、レーザー光透過層よりも相対的に高い吸光度を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備える。積層部には、該積層部を幅(周)方向に分断して中空筒体の軸方向に連続的に延びる接合部が設けられている。つまり、接合部は、幅方向に2つに分割されていた積層部の両片の端面を(他の結合材料を介さずに)融着している箇所である。そして、接合部は、積層部の断面内で2つの分離した端面が融着している(レーザー)融着痕からなり、該融着痕は中空筒体の外面(接合部の両縁)には及んでいない。すなわち、本実施形態の中空筒体構造は、バリの発生や見栄えが悪くなることが極力抑えられたものであり、尚且つ、中空筒体の一部(同一材料)同士が融着されているので、切り割り部の高い接合強度が確保されている。さらには、本発明の中空筒体構造では、分断端面同士が他の材料を介さずに直接に接合されているので、中空筒体の筒壁に最初から切り割り部がなかったかのように切り割り部が閉塞されている。すなわち、本発明の中空筒体構造は、切り割り部の閉塞によって中空筒体の屈曲性(可撓性)が低下することが防止し、所定の屈曲性が維持されている。
【0045】
本発明の請求項17に記載の中空筒体構造の製造方法によれば、中空筒体は、熱溶融性のレーザー光透過層と、該レーザー光透過層に隣接し、レーザー光透過層よりも相対的に高い吸光度を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備える。該積層部を切り割ることにより、切り割り部を形成し、該切り割り部を介して、配線・配管材を中空筒体の内部に挿入することができる。そして、配線・配管材を中空筒体に内挿した状態で、積層部を幅(周)方向に分断する分断端面同士を密着させた上で、切り割り部に対してレーザー透過層側からレーザー光を照射することにより、分断端面同士をレーザー溶着して切り割り部を見栄え良く閉塞することができる。すなわち、そして、本発明の製造方法は、結合部材のような別材料を別途用意することなく、中空筒体の一部(同一材料)同士を溶着するので、切り割り部の高い接合強度を確保し、尚且つ、作業性及びコストの点でも有利である。さらには、本発明の製造方法では、分断端面同士が他の材料を介さずに直接に接合されるので、中空筒体の筒壁に最初から切り割り部がなかったかのように切り割り部が閉塞され得る。すなわち、本発明の製造方法は、切り割り部の閉塞によって中空筒体の屈曲性(可撓性)が低下することを防止することができる。
【図面の簡単な説明】
【0046】
図1】本発明の一実施形態の中空筒体構造の概略斜視図。
図2図1の中空筒体構造に用いられる中空筒体の(a)正面図及び(b)側面図。
図3図2の中空筒体の(a)A−A断面図及び(b)その部分拡大図。
図4図2の中空筒体の(a)B−B断面図及び(b)その部分拡大図。。
図5】本発明の一実施形態の中空筒体構造を製造する方法の一工程であって、(a)中空筒体内部に切り割り部を介して配線・配管材を挿入する工程、(b)配線・配管材を中空筒体内部に配置した状態で切り割り部の分断端面を密接させる工程、(c)切り割り部の分断端面を密接させた状態で切り割り部をレーザー溶接する工程を示す模式図。
図6図7のレーザー溶接工程を詳細に説明する模式図。
図7図1の中空筒体構造の(a)横断面図及び(b)部分拡大図。
図8】本発明の変形例の中空筒体の部分拡大断面図。
図9】本発明の変形例の中空筒体構造の製造方法を説明する模式図。
【発明を実施するための形態】
【0047】
以下、本発明の一実施形態について図面を参照しつつ説明する。なお、以下の説明において参照する各図の形状は、好適な形状寸法を説明する上での概念図又は概略図であり、寸法比率等は実際の寸法比率とは必ずしも一致しない。つまり、本発明は、図面における寸法比率に限定されるものではない。
【0048】
本発明の一実施形態の中空筒体構造10は、保護管として機能する可撓性の中空筒体100の内部に配線・配管材11を配設したものである。換言すると、中空筒体構造10は、配線・配管材11と、該配線・配管材11を内部に配設している中空筒体100とを備える。図1は、中空筒体構造10の概略斜視図である。図1に示すように、中空筒体100は、積層部102内の接合部108によって周方向全体で閉塞されている。そして、配線・配管材11が中空筒体100の径方向において外部に露出されることなく、中空筒体100内部に収容及び保護されている。本実施形態の中空筒体構造10では、配線・配管材11は一般的なケーブルであり、中空筒体100は波付管である。しかしながら、本発明の構成・用途は、本実施形態に限定されることはない。例えば、配線・配管材は、導管やワイヤであってもよく、中空筒体は、直状管や筒状の被覆材であってもよい。さらに、中空筒体構造10は、被覆付きの電線やワイヤーハーネスなどであってもよい。すなわち、本発明の技術的思想は種々の用途に適用可能である。
【0049】
図2乃至図4を参照して、本実施形態の中空筒体構造10に用いられる中空筒体100の構造を説明する。図2(a),(b)は、中空筒体100の正面図及び側面図である。図3(a),(b)は、該中空筒体100の縦(A−A)断面図及びその部分拡大図である。図4(a),(b)は、該中空筒体100の横(B−B)断面図及びその部分拡大図である。
【0050】
中空筒体100は、軸方向に山部100a及び谷部100bが連続する可撓性の波付管である。中空筒体100の筒壁は、周方向の大部分を占める周壁部101と、その残りの一部分を占める積層部102とからなる。積層部102は、中空筒体100の周方向の一部で軸方向に連続して形成されている。この積層部102は、所定の幅で直線的に帯状に延在しており、該積層部102上に切り割り部105が形成され得る。積層部102の幅は、切り割り部105を直線的に切断形成するためのガイド(目印)として機能するように細幅であることが好ましいが、任意に定められてもよい。
【0051】
また、積層部102では、山部100a及び谷部100bの高低差が積層部102以外の箇所(周壁部101)と比べて小さい。本実施形態では、積層部102における高低差h1が約1.5mmであり、周壁部101における高低差h2が2.5mmとなっている。このように、積層部102の高低差が相対的に小さくなることにより、積層部102に照射されるレーザーの強度が山部100aと谷部100bとで不均一になることが抑えられている。
【0052】
図3及び図4に示すとおり、周壁部101は、単一(単層)の樹脂材料からなり、中空筒体100の周壁の大半を構成している。本実施形態において、周壁部101は、切り割り及びレーザー溶着の対象とならないので、その材料は任意に選択され得る。他方、積層部102は、該中空筒体100の外層を構成する熱可塑性樹脂(熱溶融性)のレーザー光透過層103と、該レーザー光透過層103の内層側に位置する熱可塑性樹脂(熱溶融性)のレーザー光吸収層104とから構成されている。すなわち、積層部102は、レーザー光透過層103とレーザー光吸収層104とが一体的に積層されたものである。
【0053】
レーザー光透過層103は、照射されたレーザー光の少なくとも一部を透過可能に構成されている。すなわち、レーザー光透過層103は、熱可塑性を有し、透過率が好ましくは15%以上、より好ましくは30%以上となるように、その厚み及び材質が選択される。本実施形態では、レーザー光透過層103の厚みは約0.5mmであり、その材質はポリオレフィン系樹脂であるポリエチレン(PE)である。しかしながら、本発明は、本実施形態に限定されない。例えば、レーザー光透過層103を構成する熱可塑性樹脂として、ポリアミド(PA)、ポリプロプレン(PP)、ポリカーボネート(PC)、ポリオキシメチレン(POM)、アクリロニトリル−ブタジエン−スチレン(ABS)、ポリブチレンテレフタレート(PBT)、ポリフェニレンスルフィド(PPS)、アクリル(PMME)等が用いられてもよい。なお、レーザー光透過層103の樹脂材の塗料については、一般的にレーザー光を透過させ易い染料が用いられ、レーザー光の透過率を大きく低下させる顔料の添加は一部制約される。
【0054】
さらに好ましくは、レーザー光透過層103は、レーザー光を透過させるとともに、レーザー光の一部を吸収可能であってもよい。例えば、レーザー光透過層103は、母材であるポリエチレンに対し、微量のカーボンブラック(例えば、約0.01重量%以下)やレーザー光弱吸収剤を添加することにより形成される。レーザー光弱吸収剤は、ニグロシン、アニリンブラック、フタロシアニン、ナフタロシアニン、ポルフィリン、ペリレン、クオテリレン、アゾ染料、アントラキノン、スクエア酸誘導体、インモニウム染料等から選択され得る。すなわち、レーザー光透過層103にレーザー光が照射されたとき、レーザー光透過層103のレーザー光弱吸収剤がレーザー光の一部を吸収して弱く発熱し、レーザー光吸収層104の熱溶融が補助される。なお、レーザー光吸収層104の透過率が約15%以上を維持するように、カーボンブラックやレーザー光弱吸収剤の添加量が調整されることが好ましい。
【0055】
レーザー光吸収層104は、レーザー光透過層103よりも相対的に低い透過率(又は相対的に高い光吸収率)を有する層として定義される。レーザー光吸収層104は、熱可塑性を有し、レーザー光を吸収し得るものであれば、その材質において特に限定されない。本実施形態では、レーザー光吸収層104の厚みは、約0.5mm〜1.0mm(位置に応じて変化する)である。なお、中空筒体100の軸方向において、成形の都合上、山部100aから谷部100bの間の壁部が相対的に肉薄となり、樹脂たまりとなる箇所が相対的に肉厚となる(図面には詳述せず)。また、レーザー光吸収層104の材質は、母材であるポリエチレン(PE)に添加剤であるカーボンブラックを所定量(本実施形態では約2重量%、ただし添加量は限定されない)添加したものである。つまり、適量のカーボンブラックを混入することで樹脂材の光吸収性が高くなり、その結果、レーザー照射による発熱量が高くなる。レーザー光吸収層104の透過率は、10%以下であることが好ましい。そして、目的とするレーザー光吸収層104の透過率に合わせるように、カーボンブラックの添加量が調整され得る。なお、本発明のレーザー光吸収層の材料は、本実施形態に限定されず、例えば、レーザー光吸収層104を構成する熱可塑性樹脂の母材として、ポリアミド(PA)、ポリプロプレン(PP)、ポリカーボネート(PC)、ポリオキシメチレン(POM)、アクリロニトリル−ブタジエン−スチレン(ABS)、ポリブチレンテレフタレート(PBT)、ポリフェニレンスルフィド(PPS)、アクリル(PMME)等が用いられてもよい。そして、レーザー光を吸収して発熱可能であれば、カーボンブラックに変えて、他の黒色以外の顔料系吸収色素が母材に添加されてもよい。
【0056】
本実施形態では、図4(b)に示すように、周壁部101と、積層部102のレーザー光吸収層104とが同一材料で一体的に形成されている。そして、周壁部101の周方向の端部と、レーザー光吸収層104の外面とにレーザー光透過層103が一体的に結合している。また、図3(b)に示すように、レーザー光透過層103の厚みが山部100a及び谷部100bにおいて略一様であるのに対し、レーザー光吸収層104の厚みは、連続する山部100a及び谷部100bにおいて異なっている。すなわち、山部100aにおけるレーザー光吸収層104の厚みt1(約0.8mm)が、谷部100bにおけるレーザー光吸収層104の厚みt2(約1.0mm)よりも薄い。また、中空筒体100の軸方向の山部100a及び谷部100b間の壁部の傾斜角度α(図3(b)参照)は、レーザー光Lの照射角度θ(図6参照)よりも大きい。本実施形態の製造方法では、傾斜角度αが6°であり、レーザー光Lの照射角度θが5°に定められた。
【0057】
本実施形態の中空筒体100は、コルゲート成形によって波付管として成形され、積層部102のレーザー光透過層103が二色成形によって、周壁部101及びレーザー光吸収層104に対して一体的に成形されることで製造可能である。しかしながら、本発明の中空筒体は、他の一般的な製法によっても製造可能である。
【0058】
次に、図5を参照して、配線・配管材11を中空筒体100の内部に配設して中空筒体構造10を製造する方法を説明する。
【0059】
まず、配線・配管材11とともに中空筒体100を準備する。該中空筒体100の積層部102を幅方向に分断するように中空筒体100を軸方向に沿って連続的に切断することによって、中空筒体100の筒壁に開放可能な切り割り部105を形成する。切り割り部105は、中空筒体100の軸方向全体に亘って形成されてもよく、あるいは、配線・配管材11を導入可能であれば中空筒体100の軸方向に部分的に形成されてもよい。本実施形態では、比較的細い幅の積層部102が軸方向に沿って直線的に延在しているので、施工者は積層部102の幅方向中央に沿ってカッターなどで中空筒体100を切断することで、簡単に切り割り部105を形成することができる。なお、切り割り部105は、予め中空筒体100の積層部102に成形されたものであってもよい。この場合、施工者が中空筒体100を切断する工程が省略される。その結果、切り割り部105の外縁部には、切り割り部105を介して相対する分断端面106が形成される。該分断端面106は、中空筒体100の筒壁に直交する平面であることが好ましい。こうすると、対向する分断端面106相互をより確実に密着させることが可能となる。
【0060】
次に、図5(a)に示すように、中空筒体100の周壁部101を撓み変形させて切り割り部105を開放し、該切り割り部105から中空筒体100の内部に配線・配管材11を収容する。切り割り部105の開放幅は、配線・配管材11の径に対して、約1.5倍以上とすることが作業利便性上で好ましい。そして、切り割り部105に対して配線・配管材11をその径方向から平行移動させるようにして内部に収容してもよく、あるいは、配線・配管材11の端部を切り割り部105に差し込んで軸方向に移動させるように内部に収容してもよい。
【0061】
次いで、図5(b)に示すように、配線・配管材11を中空筒体100内部に配置した状態で、撓み変形した周壁部101を原形状に(弾性)復帰させつつ、切り割り部105を介して相対する分断端面106同士を密着させる。このとき、分断端面同士を密着方向に加圧することが好ましい。さらには、加圧時に滑って端縁が重なりすぼむことを抑えるべく、中空筒体100の山谷を軸方向に僅かにずらした状態で分断端面106同士を密着させることが好ましい。
【0062】
そして、図5(c)に示すように、分断端面106同士が密着及び加圧された状態の切り割り部105(分断端面106間の界面)に対して中空筒体100の外面から、レーザー光照射装置(図示せず)によってレーザー光Lを局所的に照射する。なお、レーザー光Lは、ファイバーレーザー(波長:1070nm)、YAG(イットリウム・アルミニウム・ガーネット結晶)レーザー、レーザーダイオード(波長:808、840、940nm)などから任意に選択され得る。そして、所定時間のレーザー照射により、被照射位置における両分断端面106,106が熱溶融する。溶融に必要なレーザー照射時間は、レーザー光Lの強度等に応じて適宜選択され得る。分断端面106を熱溶融させつつ、レーザー光Lを中空筒体100の軸方向に沿って切り割り部105の一端から他端まで相対移動させる。なお、中空筒体100に対してレーザー光Lを移動させてもよく、あるいは、レーザー光Lに対して中空筒体100を移動させてもよい。
【0063】
より詳細には、図6に示すように、分断端面106の密着部分に対して局所的にレーザー光Lを照射すると、レーザー光Lが外層側のレーザー光透過層104を通過(透過)し、レーザー光透過層103の透過率に応じた量のレーザー光Lが内層側のレーザー光吸収層104表面に吸収される。このとき、積層部102がレーザー光透過層103及びレーザー光吸収層104の少なくとも2層で構成されていることにより、該レーザー光吸収層104が、レーザー光Lが筒壁を透過して内部に配設した配線・配管材11の外面を溶融させてしまうことを防止することができる。そして、切り割り部105(分断端面106同士の界面)において、レーザー光吸収層104が優先的に加熱される。続いて、レーザー光吸収層104の加熱表面(レーザー光透過層103とレーザー光吸収層104との界面)から、熱が分断端面106間の界面に沿って厚み方向の内外(すなわちレーザー光透過層103の外面側及びレーザー光吸収層104の内面側の両方)へと伝導し、分断端面106全体が加熱されて溶融する。特には、積層部102がレーザー光透過層103及びレーザー光吸収層104の2層で構成され、レーザー光透過層103がレーザー光吸収層104を覆うので、レーザー光吸収層103の溶融方向が分断端面106側に定められて効率良く溶着できる。例えば、レーザー光Lの被照射部分(被接合部分)が1層である場合、樹脂が自由方向に溶融するので、熱伝達の効率は良くない。これに対し、本実施形態では、図6に示すように、分断端面106におけるレーザー光吸収層104表面(又は2層の界面)がレーザー光Lによって局所的に加熱されるので、その熱は、中空筒体100の周方向よりもむしろ、分断端面106側に優先的に伝達し得る。
【0064】
その結果、熱溶融した分断端面106同士が溶融プール107を形成し、材料的に混ざり合う。なお、レーザー光透過層103にレーザー光弱吸収剤が添加されている場合、レーザー光透過層103自身も(レーザー光吸収層104と比べて弱く)発熱し、レーザー光透過層103の熱溶融が補助される。つまり、中空筒体100の内部(断面)は、その外面と比べて大きく溶融する。当該被照射位置からレーザー光Lが移動した後、溶融プール107が自然冷却又は冷却処理により固化して、分断端面106同士が一体的に接合(融着)される。続いて、レーザー光Lは、軸方向に沿って山部100a及び谷部100b外面上を交互に前進していく。こうして、分断端面106同士を軸方向に沿って順にレーザー溶着して切り割り部105全体を閉塞することができる。
【0065】
なお、上記説明した配線・配管材11を中空筒体100の内部に配設する方法は、一連の工程として、以下のケーブル収容装置によって実施され得る。
ケーブル収容装置は、
中空筒体を軸方向へと送り出すコンベヤ手段と、
中空筒体に切り割り部を形成するための切断手段と、
該切り割り部を開放する開放手段と、
開放された切り割り部にケーブルを挿入する(又は押し込む)ケーブル挿入手段と、
切り割り部を介して相対する分断端面同士を密着及び押圧させる押圧手段と、
切り割り部にレーザー光を照射するレーザー照射装置と、
切り割り部を閉塞して構築した中空筒体構造を巻取る巻取り手段と、を備える。
上記各手段は、例えば、ロボットアームやカッター等の機械的な既知の手段として用意可能である。
【0066】
図7は、上記製造方法で製造した中空筒体構造10の横断面図である。図7に示すとおり、レーザー溶着により、積層部102を幅方向に分断して中空筒体100の軸方向に連続的に延びる接合部108が形成されている。接合部108は、中空筒体100の軸方向に沿った断面において分断端面106同士が溶融して材料的に融合したレーザー融着痕(又は融着痕、融着断面)108aを形成している。すなわち、レーザー融着痕108aは、同一材料からなる分断端面106同士が溶融、融合及び固化して一体的に結合した状態を示している。それ故、接合部108は、異種材料間の接合と比べて、十分な接合強度を有している。また、この接合部108のレーザー融着痕108aは、中空筒体100の外面に現れずに積層部102の実質的に断面のみに形成されているので、中空筒体構造10の見栄えを劣化させることがない。また、中空筒体構造10における(レーザー処理後の)中空筒体100の形状は、レーザー処理前の当初の中空筒体100形状とほぼ変わらない。それ故、従来のような屈曲性を低下させる背骨が接合部108に形成されることもなく、当初の中空筒体100とほぼ同等の屈曲性(可撓性)を有する。
【0067】
以下、本発明に係る一実施形態の作用効果について説明する。
【0068】
本実施形態によれば、中空筒体100は、その外層を構成する熱溶融性のレーザー光透過層103と、該レーザー光透過層103の内層側に位置し、レーザー光透過層103よりも相対的に高い吸光度を有する熱溶融性のレーザー光吸収層104とが一体的に積層された積層部102を備える。該積層部102を切り割るように形成された切り割り部105を介して、配線・配管材11を中空筒体100の内部に挿入することができる。そして、配線・配管材11を中空筒体100に内挿した状態で、積層部102を幅(周)方向に分断する分断端面106同士を密着させた上で、切り割り部105に対して中空筒体100の外面からレーザー光Lを照射することにより、分断端面106同士をレーザー溶着して切り割り部105を確実且つ見栄え良く閉塞することができる。すなわち、切り割り部105のレーザー溶着工程において、中空筒体100の厚み方向の央部のレーザー光吸収層104表面から厚み方向の内外に熱が順に伝導し、分断端面106が優先的に溶融及び固化することから、中空筒体の外面に溶融した痕跡がほとんど現れることがない。よって、本実施形態の中空筒体構造10において、中空筒体100外面にバリが発生したり、その外面に溶融痕が残り中空筒体構造10の見栄えが悪くなることを極力抑えることができる。さらには、本実施形態では、分断端面106同士が他の材料を介さずに直接に接合されるので、中空筒体100の筒壁に最初から切り割り部105がなかったかのように切り割り部105が閉塞され得る。すなわち、本実施形態は、切り割り部105の閉塞によって中空筒体100の屈曲性(可撓性)を損なうことを防止し、所定の屈曲性を維持することができる。そして、本実施形態の製造方法は、結合部材のような別材料を別途用意することなく、中空筒体100の一部(同一材料)同士を溶着するので、切り割り部105の高い接合強度を確保し、尚且つ、作業性及びコストの点でも有利である。
【0069】
本実施形態では、レーザー光Lの照射角度θは、中空筒体100の軸方向の山部100a及び谷部100b間の壁部の傾斜角度αよりも小さい。これにより、中空筒体100波付管の山部100aに邪魔されることなく、谷部100bの外面にまでレーザー光Lをより確実に照射することが可能である。また、本実施形態では、レーザー光Lの焦点は、中空筒体100の谷部100b側に定められたが、積層部102における山部100a及び谷部100bの高低差が比較的小さくなっている。このため、山部100a及び谷部100bでレーザー照射による加熱量がばらつくことが抑えられている。さらに、山部100aにおけるレーザー光吸収層104の厚みが、谷部100bにおけるレーザー光吸収層104の厚みよりも薄い。レーザー光の焦点が谷部100b外面に定められた場合、谷部100bへの熱エネルギーが山部100aへの熱エネルギーよりも相対的に大きくなる。それ故、山部100aのレーザー光吸収層104に融着に必要な熱エネルギーを与えた場合、谷部100bのレーザー光吸収層104に過大な熱エネルギーが与えられ、谷部100bの筒壁が焼き切れる虞があった。つまり、谷部100bにおけるレーザー光吸収層104の厚みを相対的に厚くすることにより、谷部100bの筒壁が焼き切れる虞を軽減している。
【0070】
[変形例]
本発明は、上記実施形態に限定されず、種々の変形例を取り得る。以下、本発明の変形例を説明する。なお、各変形例において、三桁で示される構成要素において下二桁が共通する構成要素は、説明がない限り、同一又は類似の特徴を有し、その説明を一部省略する。
【0071】
(1)本発明の中空筒体は、上記実施形態に限定されない。例えば、上記実施形態では、中空筒体が波付管であるが、平滑管であってもよい。その場合、平滑管は押し出し成形で製造され、積層部は二色成形により形成され得る。平滑管を採用した場合、管自体の可撓性は劣るが、レーザー光を軸方向に沿ってより均一に照射可能となる。
【0072】
(2)本発明の中空筒体は、上記実施形態に限定されない。中空筒体の積層部は、少なくともレーザー光透過層及びレーザー光吸収層を備えていれば、3層以上の構成であってもよい。例えば、図8(a)の中空筒体200のように、周壁部201及び積層部202の内面に追加層209が積層されてもよい。あるいは、図8(b)の中空筒体300のように、積層部302のレーザー光透過層303を第1透過層303a及び(該第1透過層303aとは組成及び吸光度が異なる)第2透過層303bの2層としてもよい。また、上記実施形態では、積層部は中空筒体の軸方向全体に亘って延びる1つの細幅の帯体として形成されているが、本発明はこれに限定されない。例えば、積層部は、中空筒体の軸方向の一部に形成されたものであってもよい。積層部は、中空筒体の周方向の大部分を占めてもよい。あるいは、積層部は、周方向に複数の積層部を形成してもよい。したがって、本発明の技術的思想の下で、中空筒体は種々の形態をとり得る。
【0073】
(3)本発明の製造方法において、中空筒体の積層部は、その周方向の一部に形成されたものであるが、本発明は上記実施形態に限定されない。すなわち、図9の中空筒体400のように、中空筒体400の筒壁の周方向全体を積層部402としてもよい。本変形例において、切り割り部405を介して配線・配管材11を挿入し、分断端面406を密着させ、該切り割り部405にレーザー光Lを照射することにより、上記実施形態と同様に、切り割り部405をレーザー溶着して見栄え良く閉塞することができる。
【0074】
(4)本発明の製造方法において、積層部は、中空筒体の外面側にレーザー光透過層を有し、内面側にレーザー光吸収層を有する。しかしながら、本発明はこれに限定されない。すなわち、レーザー光吸収層を筒壁外面側に配置し、レーザー光透過層を筒壁内面側に配置してもよい。この場合、中空筒体の内部にレーザー光照射装置を照射口を配置し、中空筒体の内面側から切り割り部に対してレーザー照射することにより、上記実施形態と同様に、切り割り部をレーザー溶着して見栄え良く閉塞することができる。さらに、本変形例において、中空筒体の内部からレーザー照射すると、中空筒体内部に配設した配線・配管材がレーザー光で溶融又は損傷する虞を排除することができる。
【0075】
(5)上記実施形態の製造方法では、中空筒体の外面に1つの切り割り部を軸方向に沿って形成した。しかしながら、本発明は、上記方法に限定されない。例えば、2箇所の積層部を備える中空筒体に対して、各積層部に2つの切り割り部を形成することで中空筒体を2つの分割片に切り分け、配線・配管材を包囲するように分割片を合わせて、2箇所の切り割り部をレーザー溶着で閉塞してもよい。例えば、中空筒体の内径に対する配線・配管材の外径の比率が大きい場合など、このような方法が選択され得る。
【0076】
本発明は上述した実施形態や変形例に限定されるものではなく、本発明の技術的範囲に属する限りにおいて種々の態様で実施しうるものである。
【符号の説明】
【0077】
10 中空筒体構造
11 配線・配管材
100 中空筒体
100a 山部
100b 谷部
101 周壁部
102 積層部
103 レーザー光透過層
104 レーザー光吸収層
105 切り割り部
106 分断端面
107 溶融プール
108 接合部
108a レーザー融着痕(又は融着痕)
L レーザー光
図1
図2
図3
図4
図5
図6
図7
図8
図9