(58)【調査した分野】(Int.Cl.,DB名)
レンズ部の周囲に配置されるオートフォーカス用コイル部と、短手方向に着磁され四角枠状に配置される4片の永久磁石で構成され前記オートフォーカス用コイル部に対して径方向に離間して配置されるオートフォーカス用マグネット部とを有し、前記オートフォーカス用コイル部と前記オートフォーカス用マグネット部とで構成されるボイスコイルモーターの駆動力を利用して、前記オートフォーカス用マグネット部を含むオートフォーカス固定部に対して前記オートフォーカス用コイル部を含むオートフォーカス可動部を光軸方向に移動させることにより自動的にピント合わせを行うオートフォーカス用駆動部と、
前記オートフォーカス用マグネット部に対して光軸方向に離間し、前記オートフォーカス用マグネット部の一つの対角部に対応する位置に、検出方向が光軸方向と一致するように配置されるホール素子と、
前記ホール素子に近接し、着磁方向が光軸方向と一致するように配置される第1の位置検出用磁石と、
前記第1の位置検出用磁石と同様の構成を有し、前記第1の位置検出用磁石と光軸方向に関して点対称な位置に配置される第2の位置検出用磁石と、を備えることを特徴とするレンズ駆動装置。
前記4片の永久磁石は、ぞれぞれ、長手方向において前記第1の位置検出用磁石又は前記第2の位置検出用磁石と近接する端面に、ヨーク部を有することを特徴とする請求項1に記載のレンズ駆動装置。
前記オートフォーカス可動部は、前記オートフォーカス用コイル部を配置するコイル巻線部と、前記オートフォーカス用コイル部の両端部のそれぞれを絡げる絡げ部とを有するレンズホルダーを備え、
前記絡げ部は、径方向外側に突出して形成され、径方向内側に向かって縮径するテーパー形状を有することを特徴とする請求項1に記載のレンズ駆動装置。
前記オートフォーカス可動部及び前記オートフォーカス固定部を含むオートフォーカスユニットに配置される振れ補正用マグネット部と、前記振れ補正用マグネット部に対して光軸方向に離間して配置される振れ補正用コイル部とを有し、前記振れ補正用コイル部と前記振れ補正用マグネット部で構成されるボイスコイルモーターの駆動力を利用して、前記振れ補正用コイル部を含む振れ補正固定部に対して前記振れ補正用マグネット部を含む振れ補正可動部を光軸方向に直交する平面内で揺動させることにより振れ補正を行う振れ補正用駆動部を備えることを特徴とする請求項1に記載のレンズ駆動装置。
【発明を実施するための形態】
【0018】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、本発明の一実施の形態に係るカメラモジュールAを搭載するスマートフォンMを示す図である。
図1AはスマートフォンMの正面図であり、
図1BはスマートフォンMの背面図である。
【0019】
スマートフォンMは、例えば背面カメラOCとして、カメラモジュールAを搭載する。カメラモジュールAは、オートフォーカス機能及び振れ補正機能を備え、被写体を撮影するときのピント合わせを自動的に行うとともに、撮影時に生じる手振れ(振動)を光学的に補正して像ぶれのない画像を撮影することができる。
【0020】
図2は、カメラモジュールAの外観斜視図である。
図3は、カメラモジュールAの分解斜視図である。
図2、
図3に示すように、本実施の形態では、直交座標系(X,Y,Z)を使用して説明する。後述する図においても共通の直交座標系(X,Y,Z)で示している。カメラモジュールAは、スマートフォンMで実際に撮影が行われる場合に、X方向が上下方向(又は左右方向)、Y方向が左右方向(又は上下方向)、Z方向が前後方向となるように搭載される。すなわち、Z方向が光軸方向であり、図中上側が光軸方向受光側(「マクロ位置側)ともいう)、下側が光軸方向結像側(「無限遠位置側」ともいう)となる。
【0021】
カメラモジュールAは、円筒形状のレンズバレルにレンズが収容されてなるレンズ部(図示略)、オートフォーカス用及び振れ補正用のレンズ駆動装置1、レンズ部により結像された被写体像を撮像する撮像部(図示略)、及び全体を覆うシールドカバー2等を備える。
【0022】
シールドカバー2は、光軸方向から見た平面視で正方形状の有蓋四角筒体であり、上面に円形の開口2aを有する。この開口2aからレンズ部(図示略)が外部に臨む。シールドカバー2は、底部に、レンズ駆動装置1(ベース部材23)に装着するための係合片2bを有する。係合片2bは、シールドカバー2の底部より下方に突出する。また、係合片2bにはスリット2cが形成され、弾性変形しやすいようになっている。
【0023】
撮像部(図示略)は、撮像素子(図示略)を有し、レンズ駆動装置1の光軸方向結像側に配置される。撮像素子(図示略)は、例えばCCD(charge coupled device)型イメージセンサー、CMOS(complementary metal oxide semiconductor)型イメージセンサー等により構成される。撮像素子(図示略)は、レンズ部(図示略)により結像された被写体像を撮像する。
【0024】
図4は、レンズ駆動装置1の分解斜視図である。
図4に示すように、レンズ駆動装置1は、OIS可動部10、OIS固定部20、及び支持部材30等を備える。OIS可動部10は、OIS用ボイスコイルモーターを構成するOIS用マグネット部を有し、振れ補正時にXY平面内で揺動する部分である。OIS固定部20は、OIS用コイル部を有する部分である。すなわち、レンズ駆動装置1のOIS用レンズ駆動部には、ムービングマグネット方式が採用されている。OIS可動部10は、AF用駆動部を含む「AFユニット」に他ならない。
【0025】
OIS可動部10は、OIS固定部20に対して光軸方向受光側に離間して配置され、支持部材30によってOIS固定部20と連結される。具体的には、支持部材30は、Z方向に沿って延在する6本のサスペンションワイヤーで構成される(以下「サスペンションワイヤー30」と称する)。サスペンションワイヤー30の一端(上端)はOIS可動部10(上側弾性支持部13)に固定され、他端(下端)はOIS固定部20(コイル基板21)に固定される。OIS可動部10は、サスペンションワイヤー30によって、XY平面内で揺動可能に支持される。
【0026】
本実施の形態では、6本のサスペンションワイヤー30のうち、サスペンションワイヤー31A、31Bはホール素子161(
図5参照)の信号経路として使用され(信号用サスペンションワイヤー)、サスペンションワイヤー32A、32Bはホール素子161への給電経路として使用され(ホール素子給電用サスペンションワイヤー)、サスペンションワイヤー33A、33BはAF用コイル部112(
図5参照)への給電経路として使用される(コイル給電用サスペンションワイヤー)。なお、サスペンションワイヤー30の本数は、これに限定されず、6本より多くてもよい。
【0027】
図5は、OIS可動部10の分解斜視図である。
図6は、OIS可動部10の平面図である。
図7は、OIS可動部10の底面図である。
図5〜
図7に示すように、OIS可動部10(AFユニット)は、AF可動部11、AF固定部12、上側弾性支持部13、下側弾性支持部14等を備える。AF可動部11は、AF固定部12に対して径方向内側に離間して配置され、上側弾性支持部13及び下側弾性支持部14によってAF固定部12と連結される。
【0028】
AF可動部11は、AF用ボイスコイルモーターを構成するコイル部を有し、ピント合わせ時に光軸方向に移動する部分である。AF固定部12は、AF用ボイスコイルモーターを構成するマグネット部を有する部分である。すなわち、レンズ駆動装置1のAF用レンズ駆動部には、ムービングコイル方式が採用されている。
【0029】
AF可動部11は、レンズホルダー111、AF用コイル部112、及び位置検出用磁石15を有する。
【0030】
レンズホルダー111は、円筒形状の部材であり、内周面にレンズ部(図示略)が接着又は螺合により固定される。
レンズホルダー111は、周面の下半部に、面取りされた四角形状のコイル巻線部111aを有する。レンズホルダー111は、周面の上半部において、X方向及びY方向(以下「十字方向」と称する)と交差する4つの部分に、径方向外側に張り出す突出部111bを有する。突出部111bは、コイル巻線部111aよりも径方向外側に張り出して形成される。この突出部111bの上面がAF可動部11の光軸方向受光側への移動を規制するための被係止部となり、突出部111bの下面がAF可動部11の光軸方向結像側への移動を規制するための被係止部となる。
【0031】
レンズホルダー111は、周面の上半部において、十字方向を45°回転した方向(以下「対角方向」と称する)と交差する4つの部分に突出部111c、111dを有する。突出部111c、111dは、上側弾性支持部13を固定するための上バネ固定部となる(以下「上バネ固定部111c」「上バネ固定部111d」と称する)。
【0032】
上バネ固定部111c、111dは、上側弾性支持部13を位置決めして固定するための上側ボス111eを有する。上バネ固定部111c、111dのうちの第1の対角部に位置する2つの上バネ固定部111cは、径方向外側に突出する絡げ部111hを有する。上バネ固定部111c、111dのうちの第2の対角部に位置する2つの上バネ固定部111dは、位置検出用磁石15を配置するための磁石収容部111iを有する。
【0033】
レンズホルダー111は、下面の四隅に、下側弾性支持部14を固定する下バネ固定部111fを有する。下バネ固定部111fは、下側弾性支持部14を位置決めして固定するための下側ボス111gを有する。
【0034】
AF用コイル部112は、ピント合わせ時に通電される空心コイルであり、レンズホルダー111のコイル巻線部111aの外周面に巻線される。AF用コイル部112の一端は、レンズホルダー111の一方の絡げ部111hに絡げられ、他端は他方の絡げ部111hに絡げられる。
【0035】
レンズホルダー111の絡げ部111hの構造を
図8、
図9に示す。
図8は、レンズホルダー111の平面図である。
図9は、絡げ部111h近傍の拡大図である。
通常、AF用コイル部112は、巻線器を用いてレンズホルダー111のコイル巻線部111aに巻線された後、手作業によって両端部が絡げ部111h、111hに絡げられる。従来は、コイル巻線エリアより外側に絡げ部の根元がくるように、絡げ部がレイアウトされていた。コイル巻線エリアよりも内側に絡げ部の根元が位置すると、AF用コイル部112の端部を絡げ部の根元から順に絡げる作業が著しく困難となるためである。
【0036】
これに対して、本実施の形態では、絡げ部111hが、径方向内側、すなわち根元111jに向かって縮径するテーパー形状を有する。この場合、テンションを与えながら絡げ作業を行うことで、AF用コイル部112の端部は滑らかに根元111j側に移動し、整列巻きされる。したがって、コイル巻線エリアよりも内側に根元111jがくるように絡げ部111hをレイアウトすることができる。すなわち、絡げ作業の効率を損なうことなく、レンズホルダー111の外形寸法を小さくすることができる。
【0037】
位置検出用磁石15は、レンズホルダー111の上バネ固定部111dに形成された磁石収容部111iに配置される。位置検出部16に対応する側に配置される位置検出用磁石15(以下「第1の位置検出用磁石15A」と称する、
図5では現れていない)が、実際にAF可動部11の位置検出に用いられる。他方の位置検出用磁石15(以下「第2の位置検出用磁石15B」と称する)は、AF可動部11の位置検出には用いられないダミー磁石である。第2の位置検出用磁石15Bは、AF可動部11に作用する磁力をバランスさせ、AF可動部11の姿勢を安定させるために配置される。すなわち、第2の位置検出用磁石15Bを配置しない場合、マグネット部122が発生する磁界によってAF可動部11に片寄った磁力が作用し、AF可動部11の姿勢が不安定となるので、第2の位置検出用磁石15Bを配置することにより、これを防止している。位置検出用磁石15は、例えば、温度特性に優れ、高温環境下の使用に適したサマリウムコバルト磁石である。
【0038】
AF固定部12は、マグネットホルダー121、マグネット部122、及び位置検出部16を有する。
図5では、マグネットホルダー121にマグネット部122を取り付けた状態で示しているが、実際には、マグネットホルダー121にAF可動部11が挿入された後、マグネット部122が取り付けられる。
【0039】
マグネットホルダー121は、平面視正方形の四角筒形状を有する。マグネットホルダー121は、側壁同士の4つの連結部(Z軸方向に沿う4つの辺)に、径方向内側に凹んで形成される円弧溝121aを有する。この円弧溝121aにサスペンションワイヤー30が配置される。
【0040】
マグネットホルダー121は、上部内周面に、径方向内側に張り出す4つのストッパー部121bを有する。ストッパー部121bが形成されていない切欠部121cにレンズホルダー111の上バネ固定部111dが挿嵌される。
【0041】
マグネットホルダー121は、上部の四隅に、上側弾性支持部13を固定する上バネ固定部121dを有する。上バネ固定部121dは、上側弾性支持部13を位置決めして固定するための上側ボス121eを有する。上バネ固定部121dの角部121fの上面は周辺より僅かに凹んで形成され、上側弾性支持部13を取り付けたときに、隙間が形成されるようになっている。また、上バネ固定部121dの角部121fは、サスペンションワイヤー30が挿通されるワイヤー挿通部121gを有する。
【0042】
マグネットホルダー121は、下面の四隅に、下側弾性支持部14を固定する下バネ固定部(図示略)を有する。下バネ固定部(図示略)は、下側弾性支持部14を位置決めして固定するための下側ボス121hを有する。
【0043】
マグネット部122は、4つの直方体状の永久磁石122A〜122D及び連結ヨーク123を有する。永久磁石122A〜122Dは、マグネットホルダー121の4つの側壁の内面に沿って配置される。永久磁石122A、122CがY方向に対向して配置され、永久磁石122B、122DがX方向に対向して配置される。マグネット部122とマグネットホルダー121のストッパー部121bの間の空間Sに、レンズホルダー111の突出部111bが位置することとなる。
【0044】
永久磁石122A〜122Dは、AF用コイル部112に径方向に直交する磁界が形成されるように着磁される。例えば、永久磁石122A〜122Dは、内周側がN極、外周側がS極に着磁される。永久磁石122A〜122Dは、例えば、ネオジウム磁石である。
マグネット部122及びAF用コイル部112によって、AF用ボイスコイルモーターが構成される。また、マグネット部122は、AF用マグネット部とOIS用マグネット部を兼用する。
【0045】
永久磁石122Aの一方の長手方向端面と、これに隣接する永久磁石122Bの長手方向端面は、平面視W形状の連結ヨーク123によって連結される。連結ヨーク123は、一方の端部にヨーク部123aを有し、他方の端部にヨーク部123bを有する。すなわち、永久磁石122Aの第1の位置検出用磁石15Aと近接する端面にヨーク部123aが配置され、永久磁石122Bの第1の位置検出用磁石15Aと近接する端面にヨーク部123bが配置される。
【0046】
同様に、永久磁石122Cの一方の長手方向端面と、これに隣接する永久磁石122Dの長手方向端面は、平面視W形状の連結ヨーク124によって連結される。永久磁石122Cの第2の位置検出用磁石15Bと近接する端面にヨーク部124aが配置され、永久磁石122Dの第2の位置検出用磁石15Bと近接する端面にヨーク部124bが配置される。
【0047】
ヨーク部123a、123bは、マグネット部122が発生する磁束がホール素子161の検出部と交差するのを抑制するため、すなわち漏れ磁束を低減するために用いられる。ヨーク部123a、123bを配置することにより、ホール素子161の検出感度が向上する。
ヨーク部123a、123bを配置した場合、第1の位置検出用磁石15Aとの間に吸引力が生じる。ヨーク部124a、124bは、AF可動部11に作用する磁力をバランスさせ、AF可動部11の姿勢を安定させるために配置される。
【0048】
本実施の形態では、連結ヨーク123、124を適用しているが、ヨーク部123a、123b、124a、124bは、それぞれ独立した部材で構成されていてもよい。
【0049】
ただし、ヨーク部123a、123bは、本実施の形態で示すように、連結されていることが好ましい。これにより、永久磁石122A、122Bのそれぞれにヨーク部を取り付ける場合に比較して、取付作業が格段に容易化される。また、ヨーク部123aとヨーク部123bとを連結する連結部と第1の位置検出用磁石15Aとの間でも吸引力が生じるため、この吸引力が所望の値となるように連結ヨーク123を設計する場合、ヨーク部123a、123bの厚さを薄くすることができる。その分だけ永久磁石122A、122Bの長さを長くすることができるので、AF用駆動部の駆動特性が向上する。さらには、AF固定部12の強度を補強する上でも有用である。
【0050】
位置検出部16は、マグネットホルダー121の4つの上バネ固定部121dのうち、第2の対角部に位置する上バネ固定部121dに配置される。位置検出部16は、ホール効果を利用して磁界の変化を検出するホール素子161と、ホール素子161への給電と検出信号の取り出し用の位置検出用基板162を有する。ホール素子161は、半導体素子からなる検出部161a(
図12参照)を有し、検出部161aの検出方向が光軸方向と一致するように配置される。位置検出部16は、主として第1の位置検出用磁石15Aによる磁界の変化を検出する。これにより、光軸方向におけるAF可動部11の位置が検出される。
【0051】
上側弾性支持部13は、例えばベリリウム銅、ニッケル銅、ステンレス等からなる板バネであり、全体として平面視で正方形状を有する。上側弾性支持部13は、AF固定部12に対してAF可動部11を弾性支持する上側板バネ131、132、ホール素子161に給電するための電源ライン部133、134、及びホール素子161からの検出信号を取り出す信号ライン部135、136を有する。上側板バネ131、132、電源ライン部133、134及び信号ライン部135、136は、一枚の板金を打ち抜いて切断することにより成形される。
【0052】
上側板バネ131は、2つのバネ部131A、131Bを有する。バネ部131Aは、レンズホルダー111に固定されるレンズホルダー固定部131a、レンズホルダー固定部131aの径方向外側に配置されマグネットホルダー121に固定されるマグネットホルダー固定部131b、及びレンズホルダー固定部131aとマグネットホルダー固定部131bを連結するアーム部131cを有する。同様に、バネ部131Bは、レンズホルダー固定部131d、マグネットホルダー固定部131e、及びアーム部131fを有する。レンズホルダー固定部131a、131dはアーム部131cの内側で連結され、マグネットホルダー固定部131b、131eはアーム部131cの外側で連結される。
【0053】
レンズホルダー固定部131a、131dは、レンズホルダー111の上側ボス111eに対応する固定穴131g、131hを有する。マグネットホルダー固定部131b、131eは、マグネットホルダー121の上側ボス121eに対応する固定穴131i、131jを有する。アーム部131c、131fは、折り返し部131k、131mを有し、XY平面内で波打つように延在する。このような形状とすることにより、アーム部131c、131fに作用する捻りモーメントを低減することができる。
【0054】
上側板バネ131は、マグネットホルダー固定部131bから湾曲して延在するワイヤー接続部131nを有する。ワイヤー接続部131nには、AF用コイル部112への給電用のサスペンションワイヤー33B(
図4参照)が接続される。
上側板バネ131は、レンズホルダー固定部131dから延在する絡げ接続部131pを有する。絡げ接続部131pは、レンズホルダー111の一方の絡げ部111hに絡げられたAF用コイル部112の一端部に接続される。
【0055】
上側板バネ132は、上側板バネ131と完全に同一の形状ではないが、基本的な構造は同様であるので説明を省略する。上側板バネ132のワイヤー接続部132nには、AF用コイル部112への給電用のサスペンションワイヤー33A(
図4参照)が接続される。また、絡げ接続部132pは、レンズホルダー111の他方の絡げ部111hに絡げられたAF用コイル部112の他端部に接続される。
【0056】
電源ライン部133は、両端部にマグネットホルダー121の上側ボス121eに対応する固定穴133a、133bを有する。電源ライン部133は、一方の端部に、湾曲して延在するワイヤー接続部133cを有する。ワイヤー接続部133cには、ホール素子161への給電用のサスペンションワイヤー32A(
図4参照)が接続される。電源ライン部133の他方の端部は、位置検出用基板162の電源端子162aに接続される。
【0057】
電源ライン部134は、電源ライン部133と対称な形状を有する。電源ライン部134のワイヤー接続部134cには、ホール素子161への給電用のサスペンションワイヤー32Bが接続される。また、電源ライン部134の他方の端部は、位置検出用基板162の電源端子162dに接続される。
【0058】
信号ライン部135は、マグネットホルダー121の上側ボス121eに対応する固定穴135aを有する。信号ライン部135は、一方の端部に、湾曲して延在するワイヤー接続部135bを有する。ワイヤー接続部135bには、ホール素子161からの検出信号取り出し用のサスペンションワイヤー31A(
図4参照)が接続される。信号ライン部135の他方の端部は、位置検出用基板162の信号端子162bに接続される。
【0059】
信号ライン部136は、信号ライン部135と対称な形状を有する。信号ライン部136のワイヤー接続部136bには、ホール素子161からの信号取り出し用のサスペンションワイヤー31Bが接続される。また、信号ライン部136の他方の端部は、位置検出用基板162の信号端子162cに接続される。
【0060】
下側弾性支持部14は、上側弾性支持部13と同様に、例えばベリリウム銅、ニッケル銅、ステンレス等からなる板バネであり(以下「下側板バネ14」と称する)、全体として平面視で正方形状を有する。下側板バネ14は、AF固定部12に対してAF可動部11を弾性支持する。下側板バネ14は、一枚の板金を打ち抜いて切断することにより成形される。
【0061】
下側板バネ14は、4つのバネ部14A〜14Dを有する。バネ部14A〜14Dは、それぞれ、レンズホルダー111に固定されるレンズホルダー固定部14a、レンズホルダー固定部14aの径方向外側に配置されマグネットホルダー121に固定されるマグネットホルダー固定部14b、及びレンズホルダー固定部14aとマグネットホルダー固定部14bを連結するアーム部14cを有する。アーム部14cは、つづら折り形状を有する。
【0062】
隣り合うレンズホルダー固定部14aは、内側リング部14dによって連結される。隣り合うマグネットホルダー固定部14bは、外側リング部14eによって連結される。
レンズホルダー固定部14aは、レンズホルダー111の下側ボス111gに対応する固定穴14fを有する。マグネットホルダー固定部14bは、マグネットホルダー121の下側ボス121iに対応する固定穴14gを有する。
【0063】
OIS可動部10を組み立てる場合、まず、マグネットホルダー121に位置検出部16(ホール素子161及び位置検出用基板162)が取り付けられ、マグネットホルダー121のヨーク収容部(図示略)に連結ヨーク123、124が取り付けられる。そして、上バネ固定部121dに上側弾性支持部13が取り付けられる。
【0064】
このとき、電源ライン部133、134の一端は、位置検出用基板162の電源端子162a、162dに半田付けされ、電気的に接続される。また、信号ライン部135、136の一端は、位置検出用基板162の信号端子162b、162cに半田付けされ、電気的に接続される。
【0065】
さらに、上側板バネ131の折り返し部131m、131kとマグネットホルダー121の間、及び上側板バネ132の折り返し部132m、132kとマグネットホルダー121の間には、ダンパー材(図示略)が配置される。これにより、不要共振(高次の共振モード)の発生が抑制されるので、動作の安定性を確保することができる。ダンパー材は、ディスペンサーを使用して容易に塗布することができる。ダンパー材としては、例えば紫外線硬化性のシリコーンゲルを適用できる。
【0066】
次に、レンズホルダー111の下バネ固定部111fに下側板バネ14が取り付けられ、この状態で、レンズホルダー111が光軸方向結像側からマグネットホルダー121に挿嵌される。このとき、マグネットホルダー121の切欠部121cにレンズホルダー111の上バネ固定部111dが嵌め込まれる。そして、上側板バネ131、132がレンズホルダー111の上バネ固定部111dに取り付けられる。また、マグネットホルダー121の下バネ固定部(図示略)に下側板バネ14が取り付けられる。
【0067】
このとき、上側板バネ131の絡げ接続部131pは、レンズホルダー111の一方の絡げ部111hに絡げられたAF用コイル部112の一端部に半田付けされ、電気的に接続される。同様に、上側板バネ132の絡げ接続部132pは、レンズホルダー111の他方の絡げ部111hに絡げられたAF用コイル部112の他端部に半田付けされ、電気的に接続される。
【0068】
次に、下側板バネ14のアーム部14cと外側リング部14eとで囲まれた領域から永久磁石122A〜122Dが挿入され、マグネットホルダー121に接着される。同時に、永久磁石122Aの長手方向端面には連結ヨーク123の一方のヨーク部123aが接着され、永久磁石122Bの長手方向端面には連結ヨーク123の他方のヨーク部123bが接着される。また、永久磁石122Cの長手方向端面には連結ヨーク124の一方のヨーク部124aが接着され、永久磁石122Dの長手方向端面には連結ヨーク124の他方のヨーク部124bが接着される。このようにしてOIS可動部10(AF用駆動部)が組み立てられる。
【0069】
このように、レンズ駆動装置1は、レンズ部の周囲に配置されるAF用コイル部(112)と、短手方向(内外方向)に着磁され四角枠状に配置される4片の永久磁石(122A〜122D)で構成されAF用コイル部(112)に対して径方向に離間して配置されるAF用マグネット部(122)とを有し、AF用コイル部(112)とAF用マグネット部(122)とで構成されるボイスコイルモーターの駆動力を利用して、AF用マグネット部(122)を含むAF固定部(12)に対してAF用コイル部(112)を含むAF可動部(11)を光軸方向に移動させることにより自動的にピント合わせを行うAF用駆動部(OIS可動部10)を備える。
【0070】
図10は、OIS固定部20の分解斜視図である。
図10に示すように、OIS固定部20は、コイル基板21、センサー基板22、及びベース部材23等を備える。
【0071】
コイル基板21は、平面視で正方形状の基板であり、中央に円形の開口21aを有する。コイル基板21は、四隅に、サスペンションワイヤー30の他端(下端)が挿入されるワイヤー固定穴21bを有する。また、コイル基板21は、開口21aの周縁部において、対角方向と交差する位置に、位置決め穴21cを有する。
【0072】
コイル基板21は、光軸方向においてマグネット部122と対向する位置にOIS用コイル部211を有する。OIS用コイル部211は、永久磁石122A〜122Dに対応する4つのOISコイル211A〜211Dを有する。OISコイル211A〜211Dのそれぞれの長辺部分を、永久磁石122A〜122Dの底面から放射される磁界がZ方向に横切るように、OISコイル211A〜211D及び永久磁石122A〜122Dの大きさや配置が設定される。マグネット部122とOIS用コイル部211とで、OIS用ボイスコイルモーターが構成される。
【0073】
センサー基板22は、コイル基板21と同様に平面視で正方形状の基板であり、中央に円形の開口22aを有する。センサー基板22は、開口22aの周縁部において、コイル基板21の位置決め穴21cと対応する位置に位置決め穴22bを有する。
センサー基板22は、X方向に沿う2辺に、下方に屈曲して形成される第1の係止片22cを有する。また、センサー基板22は、Y方向に沿う2辺に、下方に屈曲して形成される第2の係止片22dを有する。第2の係止片22dには、電源端子及び信号端子が配置される。
【0074】
センサー基板22は、開口22aの内周縁部の対角方向と交差する4箇所に、OIS用コイル部211に給電するための電源端子22eを有する。また、センサー基板22は、AF用コイル部112及びOIS用コイル部211に給電するための電源ライン(図示略)、ホール素子24A、24Bから出力される検出信号用の信号ライン(図示略)を有する。
【0075】
ベース部材23は、コイル基板21と同様に平面視で正方形状の部材であり、中央に円形の開口23aを有する。ベース部材23は、開口23aの周縁部において、コイル基板21の位置決め穴21c及びセンサー基板22の位置決め穴22bと対応する位置に位置決めボス23bを有する。また、ベース部材23は、側壁において、センサー基板22の第1の係止片22cと対応する位置に小凹部23cを有し、第2の係止片22dと対応する位置に大凹部23dを有する。
【0076】
また、ベース部材23は、開口23aの周縁部において、ホール素子24A、24Bを収容するホール素子収容部23f、センサー基板22の電源端子22eを収容する端子収容部23e、及び薄肉となる端子収容部23eにウェルドラインが重なるのを防止するための凹部23gを有する。
【0077】
ホール素子24A、24Bは、センサー基板22の裏面側に配置され、ベース部材23のホール素子収容部23fに収容される。マグネット部122によって形成される磁界を、ホール素子24A、24Bで検出することにより、XY平面におけるOIS可動部10の位置を特定することができる。なお、マグネット部122とは別に、XY位置検出用磁石をOIS可動部10に配置するようにしてもよい。
【0078】
OIS固定部20を組み立てる場合、まず、コイル基板21とセンサー基板22を半田付けにより接着する。これにより、OIS用コイル部211とセンサー基板22の電源ライン(図示略)が電気的に接続される。
【0079】
次に、ベース部材23の位置決めボス23bにコイル基板21の位置決め穴21c及びセンサー基板22の位置決め穴22bを挿嵌し、コイル基板21及びセンサー基板22をベース部材23に載置する。センサー基板22の第1の係止片22cがベース部材23の小凹部23cに係合され、第2の係止片22dが大凹部23dに係合されることにより、コイル基板21及びセンサー基板22がベース部材23に固定される。このようにしてOIS固定部20が組み立てられる。
【0080】
このように、レンズ駆動装置1は、AF可動部(11)及びAF固定部(12)を含むAFユニットに配置されるOIS用マグネット部(マグネット部122)と、OIS用マグネット部(122)に対して光軸方向に離間して配置されるOIS用コイル部(211)とを有し、OIS用コイル部(211)とOIS用マグネット部(122)で構成されるボイスコイルモーターの駆動力を利用して、OIS用コイル部(211)を含むOIS固定部(20)に対してOIS用マグネット部(122)を含むOIS可動部(10)を光軸方向に直交する平面内で揺動させることにより振れ補正を行うOIS用駆動部を備える。
【0081】
レンズ駆動装置1を組み立てる場合、サスペンションワイヤー33A、33Bの一端が、それぞれ上側板バネ132のワイヤー接続部132n、上側板バネ131のワイヤー接続部131nに挿通され、半田付けにより固定される。サスペンションワイヤー32A、32Bの一端が、それぞれ電源ライン部133のワイヤー接続部133c、電源ライン部134のワイヤー接続部134cに挿通され、半田付けにより固定される。サスペンションワイヤー31A、31Bの一端が、それぞれ信号ライン部135のワイヤー接続部135b、信号ライン部136のワイヤー接続部136bに挿通され、半田付けにより固定される。これにより、サスペンションワイヤー30と上側板バネ131、132、電源ライン部133、134、及び信号ライン部135、136が電気的に接続される。
【0082】
次に、サスペンションワイヤー30の他端(下端)が、コイル基板21のワイヤー固定穴21bに挿通され、はんだ付けにより固定される。これにより、サスペンションワイヤー30とセンサー基板22の電源ライン及び信号ラインが電気的に接続される。すなわち、サスペンションワイヤー30と上側弾性支持部13を介して、AF用コイル部112、ホール素子161への給電及びホール素子161の動作制御が可能となる。
【0083】
ここで、サスペンションワイヤー30を囲むように、マグネットホルダー121のワイヤー挿通部121gには、ダンパー材(図示略)が配置される。ダンパー材が上側弾性支持部13とマグネットホルダー121との間に介在することとなる。上側弾性支持部13とマグネットホルダー121との間にダンパー材(図示略)を介在させることにより、不要共振(高次の共振モード)の発生が抑制されるので、動作の安定性を確保することができる。ダンパー材は、ディスペンサーを使用して、ワイヤー挿通部121gに容易に塗布することができる。ダンパー材としては、例えば紫外線硬化性のシリコーンゲルを適用できる。
【0084】
また、上側板バネ131、132のワイヤー接続部131n、132n、電源ライン部133、134のワイヤー接続部133c、134c、及び信号ライン部135、136のワイヤー接続部135b、136bは、湾曲して形成され弾性変形しやすいようになっている。これとサスペンションワイヤー30との撓みにより、落下時の衝撃が吸収されるので、サスペンションワイヤー30が塑性変形したり破断したりすることはない。
【0085】
レンズ駆動装置1には、シールドカバー2の係合片2bがセンサー基板22の第1の係止片22cに当接するように、シールドカバー2が取り付けられる。ベース部材23の小凹部23cがテーパー形状を有することにより、センサー基板22の第1の係止片22cとシールドカバー2の係合片2bとの間には付勢力が働く。したがって、半田付けをすることなく、シールドカバー2とセンサー基板22は電気的に接続される。これにより、シールドカバー2を容易に接地することができ、EMCノイズを遮断することができる。
【0086】
レンズ駆動装置1において振れ補正を行う場合には、OIS用コイル部211に通電する。OIS用コイル部211に通電すると、マグネット部122の磁界とOIS用コイル部211に流れる電流との相互作用により、OIS用コイル部211にローレンツ力が生じる(フレミング左手の法則)。ローレンツ力の方向は、磁界の方向(Z方向)とOIS用コイル部211の長辺部分に流れる電流の方向(X方向又はY方向)に直交する方向(Y方向又はX方向)である。OIS用コイル部211は固定されているので、マグネット部122に反力が働く。この反力がOIS用ボイスコイルモーターの駆動力となり、マグネット部122を有するOIS可動部10がXY平面内で揺動し、振れ補正が行われる。
【0087】
レンズ駆動装置1において自動ピント合わせを行う場合には、AF用コイル部112に通電する。AF用コイル部112に通電すると、マグネット部122の磁界とAF用コイル部112に流れる電流との相互作用により、AF用コイル部112にローレンツ力が生じる。ローレンツ力の方向は、磁界の方向(X方向又はY方向)とAF用コイル部112に流れる電流の方向(Y方向又はX方向)に直交する方向(Z方向)である。マグネット部122は固定されているので、AF用コイル部112に反力が働く。この反力がAF用ボイスコイルモーターの駆動力となり、AF用コイル部112を有するAF可動部11が光軸方向に移動し、ピント合わせが行われる。
【0088】
ここで、ピント合わせを行わない無通電時には、AF可動部11は、上側板バネ131、132及び下側板バネ14によって、無限遠位置とマクロ位置との間に吊られた状態(以下「基準状態」と称する)となる。すなわち、OIS可動部10において、AF可動部11(レンズホルダー111)は、上側板バネ131、132及び下側板バネ14によって、AF固定部12(マグネットホルダー121)に対して位置決めされた状態で、Z方向両側に変位可能に弾性支持される。
【0089】
ピント合わせを行うときには、AF可動部11を基準状態からマクロ位置側へ移動させるか、無限遠位置側に移動させるかに応じて、電流の向きが制御される。また、AF可動部11の移動距離に応じて、電流の大きさが制御される。
【0090】
ピント合わせ時にAF可動部11が無限遠位置側へ移動する場合、レンズホルダー111の突出部111bの下面がマグネット部122の上面に近づき、最終的に当接する。すなわち、レンズホルダー111の突出部111bの下面とマグネット部122の上面によって、無限遠位置側への移動が規制される。
一方、ピント合わせ時にAF可動部11がマクロ位置側へ移動する場合、レンズホルダー111の突出部111bの上面がマグネットホルダー121のストッパー部121bの下面に近づき、最終的に当接する。すなわち、レンズホルダー111の突出部111bの上面とマグネットホルダー121のストッパー部121bの下面によって、マクロ位置側への移動が規制される。
【0091】
さらに、レンズ駆動装置1のAF用駆動部においては、位置検出部16の検出信号に基づいて、クローズドループ制御が行われる。クローズドループ制御方式によれば、ボイスコイルモーターのヒステリシス特性を考慮する必要がなく、またAF可動部11の位置が安定したことを直接的に検出できる。さらには、像面検出方式の自動ピント合わせにも対応できる。したがって、応答性能が高く、自動ピント合わせ動作の高速化を図ることができる。
【0092】
図11は、ホール素子161と位置検出用磁石15の配置を示す平面図である。
図12は、ホール素子161と第1の位置検出用磁石15Aの配置を示す側面図である。
図13は、ホール素子161と位置検出用磁石15の配置を示す斜視図である。
図11〜13では、ホール素子161と位置検出用磁石15の配置を明確にするため、AF可動部11についてはAF用コイル部112だけを示し、AF固定部12についてはマグネット部122及び連結ヨーク123、124だけを示している。
【0093】
AF固定部12にホール素子161を配置し、AF可動部11に第1の位置検出用磁石15Aを配置する場合、ホール素子161の検出部が第1の位置検出用磁石15Aの磁束とだけ交差することが理想的である。しかし、本実施の形態のように、マグネット部122が4片の永久磁石122A〜122Dで構成され、永久磁石122A〜122Dが四角枠状をなすように配置される場合、ホール素子161を配置可能な領域が極めて制限されるため、マグネット部122の漏れ磁束の影響を完全に排除することはできない。すなわち、ホール素子161の検出部は、少なからずマグネット部122の漏れ磁束と交差する。そして、マグネット部122の漏れ磁束の影響が出力電圧オフセットとして現れるため、検出感度のダイナミックレンジが著しく低下する。
【0094】
本実施の形態では、マグネット部122の漏れ磁束の影響が最小限に抑制される位置に、ホール素子161が配置される。すなわち、四角形の4つの頂点に位置する対角部においてマグネット部122の漏れ磁束の影響が最も少なくなるので、第2の対角部の一方にホール素子161が配置される。
また、ホール素子161は、検出部161aの検出方向が光軸方向と一致するように配置される。この場合、ホール素子161の検出方向は、マグネット部122の漏洩磁束と略垂直になる。ホール素子161とマグネット部122の離間距離は、レンズ駆動装置1の大型化を伴わない範囲で、できるだけ大きい方が好ましい。
ホール素子161をこのように配置することにより、マグネット部122の漏れ磁束の影響を最小限に抑制することができる。
【0095】
一方、AF可動部11に配置される第1の位置検出用磁石15Aは、ホール素子161とできるだけ近接させて配置される。また、第1の位置検出用磁石15Aは、着磁方向が光軸方向と一致するように配置される。これにより、ホール素子161の検出部と交差する有効磁束が増大するので、ホール素子161の検出感度が向上する。
なお、第2の位置検出用磁石15Bは、第1の位置検出用磁石15Aと光軸に関して点対称な位置に配置される。
【0096】
このように、レンズ駆動装置1は、AF用マグネット部(マグネット部122)に対して光軸方向に離間し、AF用マグネット部(122)の一つの対角部(第2の対角部の一方)に対応する位置に、検出方向が光軸方向と一致するように配置されるホール素子(161)と、ホール素子(161)に近接して、着磁方向が光軸方向と一致するように配置される第1の位置検出用磁石(15A)と、第1の位置検出用磁石(15A)と同様の構成を有し、第1の位置検出用磁石(15A)と光軸方向に関して点対称な位置に配置される第2の位置検出用磁石(15B)と、を備える。
【0097】
レンズ駆動装置1によれば、マグネット部122の漏れ磁束の影響を最小限に抑制でき、ホール素子161の検出感度が向上するので、AF可動部11の光軸方向の位置を精度よく検出することができる。したがって、小型化、省電力化を図ることができるとともに、クローズドループ制御方式で自動ピント合わせを行う場合に有用である。
【0098】
ここで、マグネット部122の漏れ磁束は、ホール素子161の検出感度だけでなく、第1の位置検出用磁石15Aに作用する磁力にも影響を与える。すなわち、第1の位置検出用磁石15Aとマグネット部122の近接する部分同士が同極性である場合は両者間に反発力が生じ、逆極性である場合は吸引力が生じる(
図13参照)。
図13では、第1の位置検出用磁石15Aについて、ヨーク部123bとの間に生じる吸引力と永久磁石122Bとの間に生じる反発力を示しているが、同様に、ヨーク部123aとの間にも吸引力が生じ、永久磁石122Aとの間にも反発力が生じる。第2の位置検出用磁石15Bに生じる磁力についても同様である。
【0099】
第1の位置検出用磁石15Aと光軸に関して点対称な位置に第2の位置検出用磁石15Bが配置されているため、XY平面内の並進作用力は相殺される。したがって、AF可動部11に対する作用力として、AF可動部11の移動方向(Z方向)の作用力を考えればよい。AF可動部11に対するZ方向の作用力は、AF可動部11の移動動作を阻害するため、できるだけ小さい方が好ましい。
【0100】
本実施の形態では、永久磁石122Aは、第1の位置検出用磁石15Aと近接する端面にヨーク部123aを有する。また、永久磁石122Bは、第1の位置検出用磁石15Aと近接する端面にヨーク部123bを有する。ヨーク部123a、123bを配置することにより、マグネット部122の漏れ磁束が低減されるので、マグネット部122と第1の位置検出用磁石15Aとの間の磁力(反発力又は吸引力)は小さくなる。したがって、マグネット部122の漏れ磁束によって生じるAF可動部11に対する移動方向の作用力(以下「移動方向作用力」又は「Z方向作用力」と称する)を小さくすることができる。
【0101】
また、ヨーク部123a、123bを配置する場合、第1の位置検出用磁石15Aとマグネット部122の近接する部分同士が同極性であることが好ましい。この場合、第2の位置検出用磁石15Bとマグネット部122の近接する部分同士も同極性となる。
第1の位置検出用磁石15Aとヨーク部123a、123bとの間に生じる吸引力の一部又は全部が、マグネット部122と第1の位置検出用磁石15Aとの間に生じる反発力によって相殺されるので、AF可動部11に対するZ方向作用力をさらに小さくすることができる。
【0102】
上述したように、AF可動部11に対するZ方向作用力を小さくすることができるが、このZ方向作用力はAF可動部11の移動動作に伴い変動する。そこで、
図14に示すように、基準位置においてAF可動部11に対するZ方向作用力が0となり、かつAF可動部11が光軸方向受光側に移動した場合には反発力が支配的となり+方向のZ方向作用力が生じ、AF可動部11が光軸方向撮像側に移動した場合には吸引力が支配的となり−方向のZ方向作用力が生じるように、第1の位置検出用磁石15A及び第2の位置検出用磁石15Bの位置や選定を行うのが好ましい。
【0103】
この場合、第1の位置検出用磁石15A、第2の位置検出用磁石15B、及びマグネット部122を、上側板バネ131、132、及び下側板バネ14に対する逆バネとみなすことができる。すなわち、AF可動部11が移動したときに上側板バネ131、132と下側板バネ14に生じる復元力と逆方向にZ方向作用力が生じる。
【0104】
このように、レンズ駆動装置1は、AF可動部(11)に対するZ方向作用力がAF可動部(11)の基準位置において0であり、かつAF可動部(11)が移動したときに弾性支持部の復元力と逆方向にZ方向作用力を生じさせる補助磁石(位置検出用磁石15)を備える。
具体的には、補助磁石(15)は、AF用マグネット部(マグネット部122)に対して光軸方向に離間し、AF用マグネット部(122)の一つの対角部に対応する位置に配置される第1の補助磁石(第1の位置検出用磁石15A)と、第1の補助磁石(15A)と同様の構成を有し、第1の補助磁石(15A)と光軸方向に関して点対称な位置に配置される第2の補助磁石と、を有する。
【0105】
これにより、上側板バネ131、132及び下側板バネ14の剛性を増大しても、全体として所望のばね定数を実現することができる。上側板バネ131、132及び下側板バネ14の剛性を増大することにより、不要共振の周波数が高くなり、サーボ安定性が向上するので、サーボ設計の自由度を高めることができる。また、OISチルト特性の改善を図ることができる。
【0106】
<変形例>
近年、カメラの高画素化に伴い、撮像素子の発熱が問題化している。例えば、撮像素子の発熱の影響を受けてホール素子の温度が上昇すると、ホール素子の特性が変化するため、AF可動部の位置を精度良く検出できないという問題がある。
【0107】
この問題を解決するため、本発明では、レンズ駆動装置にホール素子の近傍の温度を検出する温度検出部を設け、その温度検出部で検出された温度に基づいてホール素子の出力を補正し、AF可動部の位置を検出することが好ましい。以下、実施の形態で説明した位置検出用基板162の代わりに、温度検出部180を備えた位置検出用基板170を用いた場合について、
図15、
図16を用いて具体的に説明する。
【0108】
図15Aは、位置検出用基板170の第1面を示す平面図であり、
図15Bは位置検出用基板170の第2面(第1面の裏面)を示す平面図である。
図16は、位置検出用基板170を示す回路図である。
【0109】
図15Aに示すように、位置検出用基板170の第1面には、実施の形態で説明した位置検出用基板162と同様に、電源端子162a、162dと信号端子162b、162dが設けられている。また、
図15Bに示すように、位置検出用基板170の第2面には、実施の形態で説明したホール素子161が設けられている。
【0110】
また、
図15A、
図15Bに示すように、電源端子162a、162dと信号端子162b、162dは、それぞれ、スルーホールH1〜H4を介して、第2面に設けられた銅箔パターンと接続している。
【0111】
また、
図15A、
図15Bに示すように、位置検出用基板170には、ホール素子161の近傍の温度を検出する温度検出部180が設けられている。
【0112】
温度検出部180は、
図15A、
図15Bに示すように、信号端子180a、180b及び銅箔パターン180c、180d(抵抗回路の一例)を有する。信号端子180a、180b及び銅箔パターン180cは、位置検出用基板170の第1面に設けられている。また、銅箔パターン180cは、位置検出用基板170の第2面に設けられている。
【0113】
温度変化に伴う抵抗の変化を精度よく検出するため、銅箔パターン180c、180dは、できるだけ抵抗値が大きいことが好ましい。ここでは、銅箔パターン180cは渦巻き状に形成され、銅箔パターン180dはつづら折れ状に形成されている。
【0114】
また、
図15A、
図15Bに示すように、銅箔パターン180cは、スルーホールH5を介して、第2面に設けられた銅箔パターンと接続している。また、信号端子180bは、スルーホールH6を介して、第2面に設けられた銅箔パターンと接続している。
【0115】
このように構成された温度検出部180は、銅箔パターン180c、180dの抵抗値を検出する。検出された抵抗値の信号(以下「抵抗値信号」と称する)は、後述する経路を介して、オートフォーカス機能におけるピント合わせを制御する制御部(図示略。例えば、カメラモジュールAの制御部またはスマートフォンMの制御部)に出力される。
【0116】
以下、上述した抵抗値信号の経路の構成について説明する。
【0117】
上側弾性支持部13(
図5参照)は、実施の形態で説明した上側板バネ131、132、電源ライン部133、134、信号ライン部135、136に加えて、温度検出部180からの抵抗値信号を取り出す2つの信号ライン部(図示略。以下「第1の抵抗値信号ライン部」、「第2の抵抗値信号ライン部」と称する)を有する。
【0118】
第1の抵抗値信号ライン部の一端は、温度検出部180の信号端子180aに半田付けされ、電気的に接続される。また、第2の抵抗値信号ライン部の一端は、温度検出部180の信号端子180bに半田付けされ、電気的に接続される。
【0119】
サスペンションワイヤー30(
図4参照)は、実施の形態で説明したサスペンションワイヤー31A、31B、32A、32B、33A、33Bに加えて、抵抗値信号の経路として使用される2つの抵抗値信号用サスペンションワイヤー(図示略。以下「第1の抵抗値信号用サスペンションワイヤー」、「第2の抵抗値信号用サスペンションワイヤー」と称する)を有する。
【0120】
第1の抵抗値信号用サスペンションワイヤーの一端(上端)は、上側弾性支持部13の第1の抵抗値信号ライン部に固定され、他端(下端)は、コイル基板21(
図10参照)に固定される。また、第2の抵抗値信号用サスペンションワイヤーの一端(上端)は、上側弾性支持部13の第2の抵抗値信号ライン部に固定され、他端(下端)は、コイル基板21(
図10参照)に固定される。コイル基板21は、図示しない経路を介して、上述した制御部と電気的に接続している。
【0121】
温度検出部180から出力された抵抗値信号は、以上のように構成された経路を介して、上述した制御部へ入力される。制御部は、抵抗値信号とホール素子161から入力した検出信号に基づいてAF可動部11のZ方向(光軸方向)の位置を補正し、補正後の位置に応じた電流供給を行うことでAF可動部11の移動を制御する。
【0122】
このように本変形例によれば、撮像素子の発熱など、ホール素子161の近傍の温度が変化した場合でも、AF可動部11の位置を精度良く検出できる。その結果、適切なクローズドループ制御によって自動ピント合わせが行われるので、フォーカスずれを防ぐことができる。
【0123】
なお、本変形例では、信号端子180a、180b及び銅箔パターン180cが位置検出用基板170の第1面に設けられ、銅箔パターン180cが位置検出用基板170の第2面に設けられた構成を例に挙げて説明したが、信号端子180a、180b及び銅箔パターン180c、180dは、位置検出用基板170の第1面又は第2面のいずれか一方に設けられてもよいし、位置検出用基板170の内部に埋め込まれてもよい。
【0124】
また、本変形例では、温度検出部180として銅箔パターン180c、180dの抵抗回路を利用した構成を例に挙げて説明したが、温度検出部180は、ホール素子161の抵抗値に基づいて温度を検出するようにしてもよい。
【0125】
また、本変形例では、温度検出部180として銅箔パターン180c、180dの抵抗回路を利用した構成を例に挙げて説明したが、銅箔パターン180c、180dをチップ抵抗部品に置き換えた構成にしてもよい。この場合、位置検出用基板170の面積に対してより大きな抵抗値を持たせることができるので、抵抗値変化の検出分解能がラフであってもより精度よく温度を検出できる。
【0126】
また、本変形例において、ホール素子161の近傍の温度を検出する温度検出部180に加えて、ホール素子24Aの近傍の温度を検出する温度検出部(以下「第2の温度検出部」と称する)、及び、ホール素子24Bの近傍の温度を検出する温度検出部(以下「第3の温度検出部」と称する)を設けてもよい。例えば、第2の温度検出部及び第3の温度検出部は、温度検出部180と同様に構成され、抵抗値信号を制御部へ出力する。制御部は、ホール素子24Aから入力した検出信号とホール素子24Bから入力した検出信号を、抵抗値信号(ホール素子24A、24Bの近傍の温度)に基づいて補正し、OIS可動部10のXY平面内の位置を検出する。そして、制御部は、補正後の位置に応じた電流供給を行うことでOIS可動部10の揺動を制御する。なお、第2の温度検出部又は第3の温度検出部のいずれか一方が設けられる構成としてもよい。
【0127】
以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
【0128】
また、例えば、実施の形態では、AF機能及びOIS機能を備えたレンズ駆動装置1について説明したが、本発明は、AF機能だけを備えたレンズ駆動装置に適用することができる。また、永久磁石122A〜122Dの長手方向端面にヨーク部123a、123b、124a、124bを配置しているが、ヨーク部123a、123b、124a、124bはなくてもよい。
【0129】
また、例えば、実施の形態では、カメラモジュールAを備えるカメラ搭載装置の一例として、カメラ付き携帯端末であるスマートフォンを挙げて説明したが、本発明は、情報機器または輸送機器であるカメラ搭載装置に適用できる。情報機器であるカメラ搭載装置とは、カメラモジュールとカメラモジュールで得られた画像情報を処理する制御部を有する情報機器であり、例えばカメラ付き携帯電話機、ノート型パソコン、タブレット端末、携帯型ゲーム機、webカメラ、カメラ付き車載装置(例えば、バックモニター装置、ドライブレコーダー装置)を含む。また、輸送機器であるカメラ搭載装置とは、カメラモジュールとカメラモジュールで得られた画像を処理する制御部を有する輸送機器であり、例えば自動車を含む。
【0130】
図17は、カメラモジュールVC(Vehicle Camera)を搭載するカメラ搭載装置としての自動車Cを示す図である。
図17Aは自動車Cの正面図であり、
図17Bは自動車Cの後方斜視図である。自動車Cは、車載用カメラモジュールVCとして、実施の形態で説明したカメラモジュールAを搭載する。
図17に示すように、車載用カメラモジュールVCは、例えば前方に向けてフロントガラスに取り付けられたり、後方に向けてリアゲートに取り付けられたりする。この車載用カメラモジュールVCは、バックモニター用、ドライブレコーダー用、衝突回避制御用、自動運転制御用等として使用される。
【0131】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0132】
2014年7月11日出願の特願2014−143589の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。