【実施例】
【0063】
つぎに、本発明を実施例に基づいて説明する。ただし、本発明は、これら実施例に限定されるものではない。なお、例中、「部」とあるのは、断りのない限り重量基準を意味する。
【0064】
[実施例1]
まず、実施例となる光導波路の作製に先立ち、クラッド層形成材料およびコア層形成材料である各感光性ワニスを調製した。
【0065】
<クラッド層形成材料の調製>
遮光条件下にて、液状長鎖二官能半脂肪族エポキシ樹脂(EXA−4816、DIC社製)80部、固形多官能脂肪族エポキシ樹脂(EHPE−3150、ダイセル社製)20部、光カチオン重合開始剤(光酸発生剤)(アデカオプトマーSP−170、アデカ社製)2.0部を乳酸エチル40部に混合し、85℃加熱下にて撹拌完溶させ、その後室温(25℃)まで冷却した後、直径1.0μmのメンブランフィルタを用い加熱加圧濾過を行なうことにより、クラッド層形成材料となる感光性ワニスを調製した。
【0066】
<コア層形成材料の調製>
遮光条件下にて、固形クレゾールノボラック型エポキシ樹脂(YDCN−700−3、新日鐵化学社製)40部、固形ビスフェノールA型エポキシ樹脂(JER1002、三菱化学社製)40部、固形フルオレン骨格含有二官能エポキシ樹脂(オグソールPG−100、大阪ガスケミカル社製)20部、光カチオン重合開始剤(光酸発生剤)(CPI−101A、サンアプロ社製)0.5部、ヒンダードフェノール系酸化防止剤(Songnox1010、共同薬品社製)0.5部、リン酸エステル系酸化防止剤(HCA、三光社製)0.125部を、乳酸エチル50部に混合し、110℃加熱下にて攪拌完溶させ、その後室温(25℃)まで冷却した後、直径1.0μmメンブランフィルタを用い加熱加圧濾過を行なうことにより、コア層形成材料となる感光性ワニスを調製した。
【0067】
《光導波路の作製》
<アンダークラッド層の作製>
総厚22μmのフレキシブルプリント回路(FPC)基材の裏面上に、スピンコーターを用いて上記クラッド層形成材料である感光性ワニスを塗工した後、ホットプレート上にて有機溶剤の乾燥(130℃×10分間)を行なった。ついで、UV照射機〔5000mJ/cm
2(I線フィルタ)〕によりマスクパターン露光を行ない、さらに後加熱(130℃×10分間)を行なった。ついで、γ−ブチロラクトン中にて現像(室温25℃下、3分間)して、水洗した後、ホットプレート上で水分を乾燥(120℃×5分間)させることにより、アンダークラッド層(厚み:15μm)を作製した。
【0068】
<コア層の作製>
上記のようにして形成されたアンダークラッド層上に、スピンコーターを用いて、コア層形成材料である感光性ワニスを塗工した後、ホットプレート上にて有機溶剤(乳酸エチル)を乾燥させる(130℃×5分間)ことにより、未硬化フィルム状態の未硬化層(コア形成層)を形成した。形成された未硬化層(コア形成層)に対して、UV照射機〔混線(バンドフィルタ無し)〕にて8000mJ/cm
2(波長365nm積算)のマスクパターン露光〔パターン幅/パターン間隔(L/S)=50μm/200μm〕を行ない、後加熱(140℃×10分間)を行なった。その後、γ−ブチロラチクトン中にて現像(室温(25℃)下、3分間)した後、水洗し、ホットプレート上にて水分を乾燥(120℃×5分間)させることにより、所定パターンのコア層(厚み50μm)を作製した。
【0069】
<オーバークラッド層の作製>
上記のようにして形成されたコア層上に、スピンコーターを用いて、クラッド層形成材料である感光性ワニスを塗工した後、ホットプレート上にて有機溶剤(乳酸エチル)の乾燥(130℃×10分間)を行なった。その後、5000mJ/cm
2(I線フィルタ)の露光、130℃×10分間の露光後加熱処理(PEB処理)を行ない、さらに、γ−ブチロラチクトン中にて現像(室温(25℃)下、3分間)した後、水洗し、ホットプレート上にて水分を乾燥(120℃×10分間)させることにより、オーバークラッド層(コア層上のオーバークラッド層厚み10μm)を作製した。
【0070】
このようにして、FPC基材の裏面上に、アンダークラッド層が形成され、このアンダークラッド層上に所定パターンのコア層が形成され、さらにこのコア層上にオーバークラッド層が形成された光導波路(光導波路総厚み75μm)を作製した。
【0071】
[実施例2]
コア層形成材料である感光性ワニスの調製において、樹脂成分の配合組成を、固形クレゾールノボラック型エポキシ樹脂(YDCN−700−3、新日鐵化学社製)50部、固形ビスフェノールA型エポキシ樹脂(JER1002、三菱化学社製)30部、固形フルオレン骨格含有二官能エポキシ樹脂(オグソールPG−100、大阪ガスケミカル社製)20部に変えた。それ以外は実施例1と同様にしてコア層形成材料となる感光性ワニスを調製し、光導波路を作製した。
【0072】
[実施例3]
コア層形成材料である感光性ワニスの調製において、樹脂成分の配合組成を、固形クレゾールノボラック型エポキシ樹脂(YDCN−700−3、新日鐵化学社製)55部、固形ビスフェノールA型エポキシ樹脂(JER1002、三菱化学社製)30部、固形フルオレン骨格含有二官能エポキシ樹脂(オグソールPG−100、大阪ガスケミカル社製)15部に変えた。それ以外は実施例1と同様にしてコア層形成材料となる感光性ワニスを調製し、光導波路を作製した。
【0073】
[実施例4]
コア層形成材料である感光性ワニスの調製において、樹脂成分の配合組成を、固形クレゾールノボラック型エポキシ樹脂(YDCN−700−3、新日鐵化学社製)60部、固形ビスフェノールA型エポキシ樹脂(JER1002、三菱化学社製)20部、固形フルオレン骨格含有二官能エポキシ樹脂(オグソールPG−100、大阪ガスケミカル社製)20部に変えた。それ以外は実施例1と同様にしてコア層形成材料となる感光性ワニスを調製し、光導波路を作製した。
【0074】
[実施例5]
コア層形成材料である感光性ワニスの調製において、樹脂成分の配合組成を、固形クレゾールノボラック型エポキシ樹脂(YDCN−700−5、新日鐵化学社製)50部、固形ビスフェノールA型エポキシ樹脂(JER1002、三菱化学社製)30部、固形フルオレン骨格含有二官能エポキシ樹脂(オグソールPG−100、大阪ガスケミカル社製)20部に変えた。それ以外は実施例1と同様にしてコア層形成材料となる感光性ワニスを調製し、光導波路を作製した。
【0075】
[実施例6]
コア層形成材料である感光性ワニスの調製において、樹脂成分の配合組成を、固形クレゾールノボラック型エポキシ樹脂(YDCN−700−7、新日鐵化学社製)50部、固形ビスフェノールA型エポキシ樹脂(JER1002、三菱化学社製)30部、固形フルオレン骨格含有二官能エポキシ樹脂(オグソールPG−100、大阪ガスケミカル社製)20部に変えた。それ以外は実施例1と同様にしてコア層形成材料となる感光性ワニスを調製し、光導波路を作製した。
【0076】
[実施例7]
コア層形成材料である感光性ワニスの調製において、樹脂成分の配合組成を、固形クレゾールノボラック型エポキシ樹脂(YDCN−700−10、新日鐵化学社製)50部、固形ビスフェノールA型エポキシ樹脂(JER1002、三菱化学社製)30部、固形フルオレン骨格含有二官能エポキシ樹脂(オグソールPG−100、大阪ガスケミカル社製)20部に変えた。それ以外は実施例1と同様にしてコア層形成材料となる感光性ワニスを調製し、光導波路を作製した。
【0077】
[実施例8]
コア層形成材料である感光性ワニスの調製において、樹脂成分の配合組成を、固形クレゾールノボラック型エポキシ樹脂(YDCN−700−3、新日鐵化学社製)60部、固形ビスフェノールA型エポキシ樹脂(JER1003、三菱化学社製)20部、固形フルオレン骨格含有二官能エポキシ樹脂(オグソールPG−100、大阪ガスケミカル社製)20部に変えた。それ以外は実施例1と同様にしてコア層形成材料となる感光性ワニスを調製し、光導波路を作製した。
【0078】
[実施例9]
コア層形成材料である感光性ワニスの調製において、樹脂成分の配合組成を、固形クレゾールノボラック型エポキシ樹脂(YDCN−700−3、新日鐵化学社製)65部、固形ビスフェノールA型エポキシ樹脂(JER1002、三菱化学社製)15部、固形フルオレン骨格含有二官能エポキシ樹脂(オグソールPG−100、大阪ガスケミカル社製)20部に変えた。それ以外は実施例1と同様にしてコア層形成材料となる感光性ワニスを調製し、光導波路を作製した。
【0079】
[実施例10]
コア層形成材料である感光性ワニスの調製において、樹脂成分の配合組成を、固形クレゾールノボラック型エポキシ樹脂(YDCN−700−3、新日鐵化学社製)35部、固形ビスフェノールA型エポキシ樹脂(JER1002、三菱化学社製)45部、固形フルオレン骨格含有二官能エポキシ樹脂(オグソールPG−100、大阪ガスケミカル社製)20部に変えた。それ以外は実施例1と同様にしてコア層形成材料となる感光性ワニスを調製し、光導波路を作製した。
【0080】
[実施例11]
コア層形成材料である感光性ワニスの調製において、樹脂成分の配合組成を、固形クレゾールノボラック型エポキシ樹脂(YDCN−700−3、新日鐵化学社製)60部、固形ビスフェノールA型エポキシ樹脂(JER1002、三菱化学社製)30部、固形フルオレン骨格含有二官能エポキシ樹脂(オグソールPG−100、大阪ガスケミカル社製)10部に変えた。それ以外は実施例1と同様にしてコア層形成材料となる感光性ワニスを調製し、光導波路を作製した。
【0081】
[実施例12]
コア層形成材料である感光性ワニスの調製において、樹脂成分の配合組成を、固形クレゾールノボラック型エポキシ樹脂(YDCN−700−3、新日鐵化学社製)55部、固形ビスフェノールA型エポキシ樹脂(JER1002、三菱化学社製)20部、固形フルオレン骨格含有二官能エポキシ樹脂(オグソールPG−100、大阪ガスケミカル社製)25部に変えた。それ以外は実施例1と同様にしてコア層形成材料となる感光性ワニスを調製し、光導波路を作製した。
【0082】
[比較例1]
コア層形成材料である感光性ワニスの調製において、樹脂成分の配合組成を、固形クレゾールノボラック型固形エポキシ樹脂(YDCN−700−3、新日鐵化学社製)65部、液状ビスフェノールA型エポキシ樹脂(JER828、三菱化学社製)15部、固形フルオレン骨格含有二官能エポキシ樹脂(オグソールPG−100、大阪ガスケミカル社製)20部に変えた。それ以外は実施例1と同様にしてコア層形成材料となる感光性ワニスを調製し、光導波路を作製した。
【0083】
[比較例2]
コア層形成材料である感光性ワニスの調製において、樹脂成分の配合組成を、固形クレゾールノボラック型固形エポキシ樹脂(YDCN−700−3、新日鐵化学社製)60部、固形ビスフェノールA型エポキシ樹脂(JER1002、三菱化学社製)30部、液状フルオレン骨格含有二官能エポキシ樹脂(オグソールEG−200、大阪ガスケミカル社製)10部に変えた。それ以外は実施例1と同様にしてコア層形成材料となる感光性ワニスを調製し、光導波路を作製した。
【0084】
このようにして得られた各コア層形成材料である感光性ワニス、および、各光導波路を用いて、R−to−R適合性、コア層の屈折率、光導波路の損失評価(直線損失)、ワニス安定性、総合評価に関して下記に示す方法に従って測定・評価した。これらの結果をコア層形成材料の配合組成とともに後記の表1〜表2に併せて示す。
【0085】
[R−to−R適合性]
上記実施例および比較例において調製したコア層形成材料となる感光性ワニスを用いて、下記の測定評価を行なった。
【0086】
(1)タック性
シリコンウエハ上にコア層形成材料(感光性ワニス)を塗工した後、これをホットプレート上にて130℃×5分間のプリベーク(加熱乾燥)を行なうことにより、厚み約50μmとなる塗工膜を作製した。上記塗工膜の表面を10秒間指触した後、指を離した際の表面状態によりタック発生の有無を確認した。
【0087】
(2)未硬化物(未硬化フィルム)柔軟性
ポリエチレンテレフタレート(PET)基材上にコア層形成材料(感光性ワニス)を塗工した後、加熱乾燥(130℃×5分間)することにより厚み約50μmの未硬化フィルム(アモルファスフィルム)を作製した。つぎに、PET基材上のアモルファスフィルムを直径8cmおよび4cmの各巻き芯に沿って巻回することにより、アモルファスフィルムに発生したクラックの有無を確認した。
【0088】
(3)硬化物(硬化フィルム)柔軟性
PET基材上にコア層形成材料(感光性ワニス)を塗工した後、加熱乾燥(130℃×5分間)することにより厚み約50μmの未硬化フィルム(アモルファスフィルム)を作製した。つぎに、PET基材上のアモルファスフィルムに対して、混線(超高圧水銀ランプ使用、バンドパスフィルタなし)にて波長365nm照度を基準に8000mJ/cm
2にて、厚み5mmのガラスマスク(パターンなし)を介して露光を行なった。その後、140℃×10分間の後加熱を行なうことにより硬化フィルムを作製した。作製したPET基材上の硬化フィルムを直径8cmの巻き芯、さらには直径4cmの巻き芯に沿って、硬化フィルムをそれぞれ外巻きに巻回した。その際、硬化フィルムに関してクラック発生の有無を目視により確認した。
【0089】
上記各測定項目の確認の結果に関して、下記の基準に基づき評価した。
○:タックの発生なく、かつ未硬化フィルムおよび硬化フィルムをそれぞれ直径4cmの巻き芯に巻き付けたが、クラックは発生しなかった。
△:タックの発生なく、かつ未硬化フィルムおよび硬化フィルムを直径8cmの巻き芯にそれぞれ巻き付けたが、クラックが発生しなかった。さらに、硬化フィルムをそれぞれ直径4cmの巻き芯に巻き付けたが、クラックが発生した。
×:タックが発生した。
【0090】
[屈折率]
厚み0.8mmのシリコンウエハ上に、得られたコア層形成材料(感光性ワニス)をスピンコーターにて塗工した後、130℃×10分間の加熱乾燥を行なった。ついで、混線(超高圧水銀ランプ使用、バンドパスフィルタなし)にて365nm照度を基準に、8000mJ/cm
2にて、厚み5mmのガラスマスク(パターンなし)を介して露光を行なった。その後、140℃×10分間の後加熱を行なうことにより屈折率評価用サンプル(厚み:10μm)を作製した。作製したサンプルを用いて、SAIRON TECHNOLOGY社製プリズムカップラー(SPA−4000型番)により、波長850nmにおける屈折率を確認した。その結果、下記の基準に基づき評価した。
【0091】
○:波長850nmでの屈折率が1.590以上であった。
△:波長850nmでの屈折率が1.585以上1.590未満であった。
×:波長850nmでの屈折率が1.585未満であった。
【0092】
[光導波路の損失評価(直線損失)]
上記実施例および比較例にて作製された光導波路をサンプルとして用い、光源(850nmVCSEL光源OP250、三喜社製)から発振された光をマルチモードファイバー〔FFP−G120−0500、三喜社製(直径50μmMMF、NA=0.2)〕にて集光して、上記サンプルに入射した。そして、サンプルから出射された光をレンズ〔清和光学製作所社製、FH14−11(倍率20、NA=0.4)〕にて集光し、光計測システム(オプティカルマルチパワーメーターQ8221、アドバンテスト社製)にて6チャンネルを評価した。その平均全損失から直線損失を算出した。そして、このようにして求めた直線損失から、カットバック法により単位長当りの損失値を算出した。その値を基に、下記の基準に基づき評価した。
○:直線損失値が0.05dB/cm未満であった。
△:直線損失値が0.05dB/cm以上0.06dB/cm以下であった。
×:直線損失値が0.06dB/cmを超える値であった。
【0093】
[ワニス安定性]
作製したコア層形成材料(感光性ワニス)を一定の環境下(5℃冷蔵保管)にて静置した後、ワニスにおける白濁の発生の有無を確認した。その結果、下記の基準に基づき評価した。
【0094】
○:5℃冷蔵保管条件下にて1週間を超えて静置したが、白濁は発生しなかった。
△:5℃冷蔵保管条件下、1週間以内に白濁は発生しなかった。
×:ワニス作製時に加熱状態で解放した後、放冷の際に白濁が発生した。
【0095】
[総合評価]
上記各評価結果を基に、下記の基準に従い総合的に評価した。
○:すべての評価項目において○であった。
△:評価項目中1つ以上△の項目があった。
×:評価項目中1つ以上×の項目があった。
【0096】
【表1】
【0097】
【表2】
【0098】
上記結果から、樹脂成分として固体を示すエポキシ樹脂成分のみを用いてなる感光性エポキシ樹脂組成物(実施例品)に関して、R−to−R適合性およびワニス安定性に優れ、また高い屈折率を有するものが得られた。そして、上記感光性エポキシ樹脂組成物(実施例品)を用いて形成されたコア層を備えた光導波路は、光導波路の損失評価(直線損失)において良好な評価結果が得られた。中でも、軟化点が65℃以下の固形クレゾールノボラック型エポキシ樹脂(YDCN−700−3、新日鐵化学社製)、軟化点が80℃以下の固形ビスフェノールA型エポキシ樹脂(JER1002、三菱化学社製)、および固形フルオレン骨格含有二官能エポキシ樹脂(オグソールPG−100、大阪ガスケミカル社製)を所定の配合割合にて用いてなる実施例1〜4品は、全ての評価項目において良好な結果が得られており、特に優れたものであるといえる。
【0099】
これに対して、樹脂成分として固体を示すエポキシ樹脂とともに液状を示すエポキシ樹脂を併用してなる感光性エポキシ樹脂組成物(比較例品)は、いずれもR−to−R適合性に劣る結果となり、比較例2品においては、さらに屈折率に関しても劣る結果となった。