特許第6568596号(P6568596)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社テイエルブイの特許一覧

<>
  • 特許6568596-センサ装置及びセンサの補正方法 図000002
  • 特許6568596-センサ装置及びセンサの補正方法 図000003
  • 特許6568596-センサ装置及びセンサの補正方法 図000004
  • 特許6568596-センサ装置及びセンサの補正方法 図000005
  • 特許6568596-センサ装置及びセンサの補正方法 図000006
  • 特許6568596-センサ装置及びセンサの補正方法 図000007
  • 特許6568596-センサ装置及びセンサの補正方法 図000008
  • 特許6568596-センサ装置及びセンサの補正方法 図000009
  • 特許6568596-センサ装置及びセンサの補正方法 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6568596
(24)【登録日】2019年8月9日
(45)【発行日】2019年8月28日
(54)【発明の名称】センサ装置及びセンサの補正方法
(51)【国際特許分類】
   G01H 17/00 20060101AFI20190819BHJP
   G01P 15/09 20060101ALN20190819BHJP
【FI】
   G01H17/00 Z
   !G01P15/09 Z
【請求項の数】3
【全頁数】16
(21)【出願番号】特願2017-545981(P2017-545981)
(86)(22)【出願日】2017年4月14日
(86)【国際出願番号】JP2017015350
(87)【国際公開番号】WO2017212786
(87)【国際公開日】20171214
【審査請求日】2017年10月5日
(31)【優先権主張番号】特願2016-113369(P2016-113369)
(32)【優先日】2016年6月7日
(33)【優先権主張国】JP
【前置審査】
(73)【特許権者】
【識別番号】000133733
【氏名又は名称】株式会社テイエルブイ
(74)【代理人】
【識別番号】100170896
【弁理士】
【氏名又は名称】寺薗 健一
(74)【代理人】
【識別番号】100131200
【弁理士】
【氏名又は名称】河部 大輔
(72)【発明者】
【氏名】大泉 晶
【審査官】 本村 眞也
(56)【参考文献】
【文献】 特開2004−251845(JP,A)
【文献】 特開2004−125514(JP,A)
【文献】 特開2001−021412(JP,A)
【文献】 特開2007−292625(JP,A)
【文献】 特開平06−129892(JP,A)
【文献】 特開2000−329784(JP,A)
【文献】 特表2008−545137(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01H 1/00−17/00
G01P 15/09
(57)【特許請求の範囲】
【請求項1】
圧電素子を有し、測定対象物の振動を検出するセンサと、
前記センサの固有の、各周波数に対する感度の関係である周波数特性が他のセンサ装置と共通で設定された基準周波数特性に近づくように、前記センサの検出結果を補正する補正部と
前記センサの固有の周波数特性を記憶する記憶部とを備え、
前記記憶部は、前記センサの固有の周波数特性に近似する周波数特性を表す近似式を求めるための基本式及び前記基本式に代入される前記センサの固有のパラメータを前記センサの固有の周波数特性として記憶し、
前記補正部は、前記記憶部に記憶された前記基本式及び前記センサの固有のパラメータに基づいて前記近似式を求め、求めた前記近似式を用いて前記検出結果を補正することを特徴とするセンサ装置。
【請求項2】
請求項1に記載のセンサ装置において、
前記センサは、測定対象物の振動を前記圧電素子に伝える伝達部を有し、
前記固有の周波数特性は、少なくとも前記圧電素子及び前記伝達部を含む構造体の周波数特性であることを特徴とするセンサ装置。
【請求項3】
測定対象物の振動をセンサによって検出する工程と、
前記センサの固有の、各周波数に対する感度の関係である周波数特性が他のセンサ装置と共通で設定された基準周波数特性に近づくように前記センサの検出結果を補正する工程とを含み、
前記センサの検出結果を補正する工程では、前記センサの固有の周波数特性に近似する周波数特性を表す近似式を求めるための基本式及び前記基本式に代入される前記センサの固有のパラメータに基づいて前記近似式を求め、求めた前記近似式を用いて前記検出結果を補正することを特徴とするセンサの補正方法。
【発明の詳細な説明】
【技術分野】
【0001】
ここに開示された技術は、センサ装置及びセンサの補正方法に関する。
【背景技術】
【0002】
従来より、特許文献1に開示されているような圧電素子を有し、測定対象物の振動を検出するセンサが知られている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2007−057389号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
例えば、センサは、測定対象物に接触し、測定対象物の振動を圧電素子に伝達する伝達部を含む場合がある。この伝達部は、伝達部に固有の周波数特性(例えば、共振周波数)を有しており、固有の周波数特性は、伝達部の質量や寸法等に依存する。つまり、伝達部の質量や寸法等が異なれば、固有の周波数特性も異なる。
【0005】
さらには、センサが伝達部の他の要素を含む場合ある。例えば、センサにおいて、圧電素子を伝達部の方へ押さえつけるためのバネやウエイトが含まれる場合がある。
【0006】
これらの場合、センサ全体としての固有の周波数特性は、圧電素子の固有の周波数特定だけでなく、圧電素子以外の要素の質量やセンサの構造等に依存する。
【0007】
そのため、センサの固有の周波数特性には個体差が生じる場合があり、振動の検出精度がセンサごとに異なってしまう。
【0008】
ここに開示された技術は、かかる点に鑑みてなされたものであり、その目的とするところは、センサごとの周波数特性のバラツキに起因する検出精度のバラツキを低減することにある。
【課題を解決するための手段】
【0009】
ここに開示されたセンサ装置は、圧電素子を有し、測定対象物の振動を検出するセンサと、前記センサの検出結果を補正する補正部とを備え、前記補正部は、前記検出結果を前記センサの固有の周波数特性に基づいて補正するものとする。
【0010】
また、ここに開示されたセンサの補正方法は、測定対象物の振動をセンサによって検出する工程と、前記センサの検出結果を前記センサの固有の周波数特性に基づいて補正する工程とを含むことを特徴とするセンサものとする。
【0011】
ここで、「センサの検出結果」とは、センサから出力されたままの検出信号だけでなく、その後に処理が施された検出信号や検出信号から求められた値も含む。
【発明の効果】
【0012】
ここに開示されたセンサ装置によれば、センサごとの周波数特性のバラツキに起因する検出精度のバラツキを低減することができる。
【0013】
また、ここに開示されたセンサの補正方法によれば、センサごとの周波数特性のバラツキに起因する検出精度のバラツキを低減することができる。
【図面の簡単な説明】
【0014】
図1図1は、センサ装置の概略構成を示す正面図である。
図2図2は、センサの縦断面図である
図3図3は、測定対象物に取り付けられたセンサの一例を示す縦断面図である。
図4図4は、処理部のブロック図である
図5図5は、センサの固有の周波数特性を示す図である。
図6図6は、測定対象物の振動のパワースペクトルを表す図である。
図7図7は、センサの検出信号のパワースペクトルを表す図である。
図8図8は、実施形態2に係る周波数特性パターンを示す図である。
図9図9は、実施形態3において周波数特性の近似式を求める際に用いる3点を説明するための図である。
【発明を実施するための形態】
【0015】
以下、例示的な実施形態を図面に基づいて詳細に説明する。
<センサの構成>
図1は、センサ装置100の概略構成を示す正面図である。センサ装置100は、測定対象物に接触した状態で測定対象物の物理量を検出する、いわゆる接触タイプのセンサである。例えば、測定対象物は、スチームトラップであり、物理量は、スチームトラップの振動及び温度である。
【0016】
図1に示すように、センサ装置100は、センサ2と、処理部5と、センサ2と処理部5とを接続する接続管4とを備えている。センサ2、処理部5及び接続管4は、所定の軸Xに沿って配列されており、センサ装置100は、全体として棒状に形成されている。センサ2と接続管4とは、ユニオンナット42によって連結されている。処理部5と接続管4とは、ユニオンナット41によって連結されている。
【0017】
センサ装置100は、通常、軸Xが鉛直方向を向き且つ、センサ2が下方、処理部5が上方に位置するように設置される。以下では、処理部5の方を上方とし、センサ2の方を下方として、説明する。
【0018】
〈センサ本体の構成〉
図2は、センサ2の縦断面図である。センサ2は、ケーシング10と、測定対象物の振動を検出(測定)する振動検出機構20と、測定対象物の温度を検出(測定)する温度検出機構30とを備えている。振動検出機構20及び温度検出機構30は、ケーシング10に収容されている。
【0019】
ケーシング10は、略円筒状に形成され、軸心が軸Xに一致するように配置されている。ケーシング10の内部には段差10fが設けられており、ケーシング10の上部10aの内径は、下部10bの内径に比べて大きくなっている。ケーシング10の上部10aの外周面には、ユニオンナット42が螺合する雄ネジ10cが形成されている。ケーシング10の下部10bの外周面には、雄ネジ10eが形成されている。ケーシング10のうち軸X方向の一端である下端10gは、センサ装置100の設置時に測定対象物に接触する。
【0020】
振動検出機構20は、検出針21と、ホルダ22と、第1圧電素子25aと、第2圧電素子25bと、第1電極板26aと、第2電極板26bと、ウエイト27と、皿バネ28と、キャップ29とを備えている。
【0021】
検出針21は、細長い棒状の部材である。検出針21は、軸心が軸Xと一致するように配置されている。検出針21の先端(下端)は、ケーシング10の下端10gから下方に突出している。センサ装置100が測定対象物に取り付けられたときに、検出針21は、測定対象物に接触する。検出針21は、測定対象物の振動を第1圧電素子25a及び第2圧電素子25に伝える。検出針21は、伝達部の一例である。
【0022】
ホルダ22は、内側の金属製ホルダ23と、該金属製ホルダ23を収容する外側の樹脂製ホルダ24とを含んでいる。金属製ホルダ23および樹脂製ホルダ24は、何れも、略円筒状に形成され、軸心が軸Xと一致するように配置されている。
【0023】
金属製ホルダ23は、上方に開放されている一方、金属製ホルダ23の下部には底壁23aが設けられている。底壁23aには、挿入孔23bが形成されている。挿入孔23bには検出針21が挿入され、金属製ホルダ23から下方に検出針21が突出している。検出針21の上端部は、底壁23aに係止しており、検出針21が金属製ホルダ23から抜け落ちないようになっている。
【0024】
金属製ホルダ23内においては、下方から順に、第1圧電素子25a、第1電極板26a、第2圧電素子25b、第2電極板26b、ウエイト27、皿バネ28及びキャップ29が互いに接した状態で配置されている。第1圧電素子25aは、検出針21の上端に接している。
【0025】
尚、第1電極板26a及び第2電極板26bには、2本の信号線(図示省略)が接続されている。2本の信号線は、センサ2から接続管4内を通って処理部5内まで配線されている。
【0026】
キャップ29は、皿バネ28の上に2つ配置されている。キャップ29は、外周面に雄ネジが形成された円板状の部材である。金属製ホルダ23の上端部の内周面には、雌ネジが形成されている。キャップ29は、金属製ホルダ23の上端部に螺合される。キャップ29は、その締め付け力によって皿バネ28を下方に押圧し、皿バネ28は、その付勢力によってウエイト27を介して第1圧電素子25a及び第2圧電素子25b等を検出針21に押し付ける。
【0027】
こうして、第1圧電素子25a及び第2圧電素子25bがウエイト27及び皿バネ28等によって検出針21に所定の力(初期押付け力)で押し付けられる。これにより、測定対象物以外の振動や力が外乱として第1圧電素子25a及び第2圧電素子25bに作用しても、その外乱を吸収することができ、外乱による影響を低減することができる。
【0028】
樹脂製ホルダ24は、上方に開放されている一方、樹脂製ホルダ24の下部には底壁24aが設けられている。底壁24aには、挿入孔24bが形成されている。樹脂製ホルダ24には、金属製ホルダ23が圧入されている。挿入孔24bには検出針21が挿入され、樹脂製ホルダ24から下方に検出針21が突出している。
【0029】
ホルダ22は、ケーシング10の上部10aに収容され、ホルダ22から下方に突出する検出針21は、ケーシング10の下部10bに収容される。
【0030】
ケーシング10内において、ホルダ22の上方にはコイルバネ11が配置されている。ホルダ22は、コイルバネ11によって下方に付勢されている。ケーシング10の上端部の内周面には、溝10dが形成され、該溝10dにスナップリング12がはめ込まれている。コイルバネ11の一端は、スナップリング12に支持されている。コイルバネ11の他端は、樹脂製ホルダ24の上端面に接している。コイルバネ11は、樹脂製ホルダ24(ホルダ22)を下方へ付勢し、樹脂製ホルダ24をケーシング10内の段差10fに押しつけている。この状態において、検出針21の先端は、ケーシング10の下端10gから少し突出している。
【0031】
温度検出機構30は、接触板31(伝熱板)と、保持部材32とを備えている。接触板31は、中央に開口を有する略環状の板部材である。保持部材32は、中央に貫通孔33を有する略円筒状に形成され、ケーシング10の下端部に挿入されている。接触板31は、保持部材32の先端に保持されている。
【0032】
保持部材32には、貫通孔33以外に、熱電対を配置するための2つの配置孔34,35がそれぞれ軸方向に延びるように形成されている。配置孔34,35のそれぞれに、熱電対(図示省略)が配置される。各熱電対の一端は、接触板31に接続され、他端は、接続管4を通って処理部5に接続されている。
【0033】
ケーシング10内において、保持部材32の上方には、コイルバネ13が配置されている。コイルバネ13の一端は、ホルダ22(樹脂製ホルダ24)に保持されている。コイルバネ13の他端は、保持部材32に接している。コイルバネ13は、保持部材32を下方へ付勢しており、これにより、接触板31は、ケーシング10の下端10gよりも下方に少し突出している。つまり、ケーシング10の下端10gからは、接触板31が突出しており、接触板31から検出針21がさらに突出している。センサ装置100が測定対象物に取り付けられたときに、接触板31は、測定対象物に接触する。
【0034】
図3は、測定対象物90に取り付けられたセンサ2の一例を示す縦断面図である。例えば、センサ2は、測定対象物90の取付座91に取り付けられる。取付座91は、例えば、スチームトラップのケーシングに形成されている。取付座91は、ボス状に形成され、有底の設置孔92を有している。設置孔92の内周面には、雌ネジが形成されている。
【0035】
センサ2は、ケーシング10の下部10bを設置孔92に螺合させることによって測定対象物90にネジ締結される。このとき、ケーシング10は、トルクレンチ等によって所定の締め付けトルクで締め付けられる。
【0036】
センサ2の通常状態においては、検出針21の先端及び接触板31が下端10gよりも下方に突出している。しかし、検出針21は、コイルバネ11の付勢力に抗してケーシング10に対して上方へ移動可能であり、接触板31は、コイルバネ13の付勢力に抗してケーシング10に対して上方へ移動可能である。そのため、ケーシング10の下端10gが設置孔92の底に接触するときには、検出針21の先端及び接触板31は、ケーシング10の下端10gと面一になって、設置孔92の底に接触している。
【0037】
こうして、センサ2が測定対象物90に取り付けられた状態においては、検出針21及び接触板31が設置孔92の底に接触しており、それぞれ測定対象物90の振動及び温度を検出する。
【0038】
<処理部の構成>
図4は、処理部5のブロック図である。処理部5は、センサ2からの検出信号を処理すると共に、外部機器と信号の送受信を行う。処理部5は、振動検出機構20からの検出信号を処理する振動処理部51と、温度検出機構30からの検出信号を処理する温度処理部52と、メモリ53と、測定対象物の状態を判定する判定部54と、外部機器と通信する通信部55とを有している。
【0039】
振動処理部51は、フィルタ56と、増幅器57と、A/D変換部58と、FFT部59と、補正部510とを有している。
【0040】
フィルタ56は、バンドパスフィルタであって、振動検出機構20からの出力信号のうち、所定の周波数帯域以外の周波数成分をカットする。所定の周波数帯域は、測定対象物に生じ得る振動に応じて設定されている。
【0041】
増幅器57は、フィルタ56により処理された信号を増幅する。A/D変換部58は、増幅器57により増幅された信号をデジタル信号に変換する。
【0042】
FFT部59は、A/D変換部58からのデジタル信号をFFT(Fast Fourier Transform)、即ち、高速フーリエ変換する。つまり、FFT部59は、検出信号に含まれる各周波数成分のパワースペクトル(又は振幅スペクトル)を求める。
【0043】
補正部510は、FFT部59により求められたパワースペクトルをセンサ2の固有の周波数特性に基づいて補正する。補正部510による補正の詳細については後述する。
【0044】
温度処理部52は、温度検出機構30からの検出信号を、判定部54で処理できるように適宜処理する。本開示では、その詳細については割愛する。
【0045】
メモリ53は、処理部5での処理に必要なプログラム及びデータ等を記憶している。例えば、メモリ53は、センサ2の固有の周波数特性を記憶している。メモリ53は、記憶部の一例である。
【0046】
判定部54は、振動処理部51により処理された信号及び/又は温度処理部52により処理された信号に基づいて測定対象物の状態を判定する。
【0047】
例えば、判定部54は、振動処理部51により処理された信号に基づいて、測定対象物であるスチームトラップの状態を判定する。具体的には、判定部54は、振動処理部51により処理された信号に基づいて、スチームトラップの振動の大きさを示す指標(以下、「振動レベル」と称する)を求める。スチームトラップの蒸気漏れが発生していない場合には、振動レベルが低く、スチームトラップの蒸気漏れが発生すると、振動レベルは高くなる。そこで、判定部54は、振動レベルが所定の判定レベル以下の場合にはスチームトラップの蒸気漏れ無しと判定し、振動レベルが前記判定レベルより大きい場合にはスチームトラップの蒸気漏れ有りと判定する。
【0048】
また、判定部54は、温度処理部52により処理された信号に基づいて、スチームトラップの状態を判定する。具体的には、スチームトラップの温度は、ドレンが適切に流通している場合には、蒸気圧力の飽和温度に近い値となる一方、ドレンが滞留していると低下してしまう。判定部54は、スチームトラップの温度が所定の判定温度以上の場合にはドレンの滞留無しと判定し、スチームトラップの温度が前記判定温度未満の場合にはドレンの滞留有りと判定する。
【0049】
通信部55は、外部機器と無線通信により信号の送受信を行う。例えば、通信部55は、判定部54による判定結果を外部機器に送信する。
<センサの補正方法>
以下、センサ2の補正について詳述する。
【0050】
センサ2は、固有の周波数特性として、図5の実線に示すような周波数に対する感度の関係を有している。センサ2の周波数特性は、検出針21の質量、第1圧電素子25aの固有の周波数特性、第2圧電素子25bの固有の周波数特性、ウエイト27の質量、皿バネ28の弾性定数、及び、センサ2の組立誤差等に依存している。これらの因子にバラツキが有ると、図5の二点鎖線で示すように、センサ2の周波数特性にバラツキが生じる場合がある。
【0051】
センサ2の周波数特性にバラツキが生じると、同じ振動をセンサ2で検出しても、センサ2の出力(検出信号)にバラツキが生じる。例えば、図6に示すようなパワースペクトルを有する振動をセンサ2で検出する。図5の実線で示す周波数に対する感度の関係R1(f)を有するセンサ2の場合、検出信号のパワースペクトルS1(f)は、図7の実線のようになる。一方、図5の二点鎖線で示す周波数に対する感度の関係R2(f)を有するセンサ2の場合、検出信号のパワースペクトルS2(f)は、図7の二点鎖線のようになる。つまり、測定対象物の振動が同じであっても、センサ2の周波数特性にバラツキがあれば、その検出結果にもバラツキが生じる。以下、説明の便宜上、周波数に対する感度の関係R(f)を周波数特性R(f)と称する。ただし、「周波数特性」という文言は、周波数に関連する特性を広く意味し、周波数に対する感度の関係に限定されるものではない。
【0052】
そこで、センサ装置100は、センサ2の周波数特性に基づいてセンサ2の検出信号を補正する。固有の周波数特性は、加振器によって単一の周波数の振動をセンサ2に与えたときのセンサ2の出力を検出し、周波数を所定の周波数帯域の範囲で掃引しながらこの検出を繰り返すことによって測定される。センサ2の固有の周波数特性を測定する工程は、事前に行われ、センサ2の周波数特性は、メモリ53に記憶される。
【0053】
まず、処理部5は、センサ2からの検出信号を読み込む。この工程が測定対象物の振動をセンサによって検出する工程に相当する。そして、処理部5は、前述の如く、センサ2からの検出信号に、フィルタ処理、増幅処理、A/D変換及びFFT処理を施す。FFT処理によりパワースペクトルに形を変えたセンサ2からの検出信号に対して補正部510が補正を行う。この補正が、センサ2の検出結果を固有の周波数特性に基づいて補正する工程に相当する。
【0054】
詳しくは、補正部510は、センサ2の検出信号を、センサ2が所定の基準周波数特性を有する場合の検出信号となるように補正する。基準周波数特性は、他のセンサ装置100と共通で設定されている。例えば、図5の破線で示すような基準周波数特性Rref(f)が設定される。基準周波数特性Rref(f)は、所定の周波数帯域では感度がr1で一律であり、該周波数帯域外では感度が0である。基準周波数特性Rref(f)は、メモリ53に記憶されている。
【0055】
具体的には、補正部510は、FFT部59により求められたパワースペクトルS(f)を、式(1)に基づいて補正する。
【0056】
S’(f)=A(f)×S(f) ・・・(1)
ここで、S’(f)は、補正されたパワースペクトルであり、以下、「補正パワースペクトル」と称する。A(f)は、周波数fを変数とする関数であり、以下、「補正関数」と称する。補正関数A(f)は、式(2)で表される。
【0057】
A(f)=Rref(f)/R(f) ・・・(2)
ここで、R(f)は、前述のセンサ2の固有の周波数特性であり、周波数に対する感度の関係である。Rref(f)は、周波数に対する感度の基準となる関係であり、基準周波数特性と称する。補正関数A(f)は、固有の周波数特性R(f)に対する基準周波数特性Rref(f)の比率である。センサ2の固有の周波数特性において、感度が基準周波数特性の感度に対して小さい周波数成分ほど、補正関数A(f)の値が大きくなる。
【0058】
このように、補正部510は、パワースペクトルの各周波数成分を、固有の周波数特性の感度に対する基準周波数特性の感度の比率に応じて増減する。こうして求められる補正パワースペクトルS’(f)は、基準周波数特性Rref(f)を有するセンサ2によって検出されたパワースペクトルに相当する。
【0059】
例えば、図5の実線で示す周波数特性R1(f)を有するセンサ2の場合は、式(2)においてR(f)=R1(f)となる。パワースペクトルS(f)は、周波数特性R1(f)に対する基準周波数特性Rref(f)の比率に応じて補正される。その結果、補正パワースペクトルS1’(f)は、図7の破線のようになる。
【0060】
一方、図5の二点鎖線で示す周波数特性R2(f)を有するセンサ2の場合は、式(2)においてR(f)=R2(f)となる。パワースペクトルS(f)は、周波数特性R2(f)に対する基準周波数特性Rref(f)の比率に応じて補正される。その結果、補正パワースペクトルS2’(f)は、図7の破線のようになる。つまり、補正パワースペクトルS1’(f)と補正パワースペクトルS2’(f)とは、略同じになる。
【0061】
このように、2つのセンサ2の固有の周波数特性R1(f),R2(f)はそれぞれ異なるものの、何れのパワースペクトルS1(f),S2(f)も、同じ基準周波数特性Rref(f)を有するセンサ2によって検出されたパワースペクトルに補正される。その結果、測定対象物の振動が同じであれば、補正パワースペクトルS1’(f),S2’(f)も略同じになる。つまり、センサ2の周波数特性にバラツキがあっても、その検出精度のバラツキが低減される。
【0062】
尚、この例の基準周波数特性Rref(f)では所定の周波数帯域で感度が一律なので、パワースペクトルの全体的な形状は、振動のパワースペクトルと補正パワースペクトルS2’(f)とで略同じになる。その結果、振動のパワースペクトルにおける各周波数成分の配分を、センサ2の検出信号においてより正確に再現することができる。
【0063】
以上のように、センサ装置100は、第1圧電素子25a及び第2圧電素子25bを有し、測定対象物の振動を検出するセンサ2と、センサ2からの検出結果を補正する補正部510とを備え、補正部510は、検出結果をセンサ2の固有の周波数特性に基づいて補正する。
【0064】
換言すると、センサ2の補正方法は、測定対象物90の振動をセンサ2によって検出する工程と、センサ2の検出結果をセンサ2の固有の周波数特性に基づいて補正する工程とを含む。
【0065】
この構成によれば、センサ2の出力信号がセンサ2の固有の周波数特性に基づいて補正されるので、センサ2ごとの周波数特性のバラツキに起因するセンサ2の検出信号のバラツキを低減することができる。
【0066】
また、センサ装置100は、センサ2の固有の周波数特性を記憶するメモリ53をさらに備える。
【0067】
この構成によれば、センサ2の固有の周波数特性を予め取得し、メモリ53に記憶しておくことができる。
【0068】
センサ2は、測定対象物の振動を第1圧電素子25a及び第2圧電素子25に伝える検出針21(伝達部)を有し、固有の周波数特性は、少なくとも第1圧電素子25a、第2圧電素子25b及び検出針21を含む構造体の周波数特性である。
【0069】
この構成によれば、第1圧電素子25a及び第2圧電素子25のそれぞれの固有の周波数特性だけでなく、検出針21の弾性定数及び質量もセンサ2の固有の周波数特性に影響を与え得る。そのため、処理部5は、少なくとも第1圧電素子25a、第2圧電素子25b及び検出針21を含む構造体の周波数特性に基づいて、センサ2の出力信号を補正する。これにより、センサ2のうち第1圧電素子25a及び第2圧電素子25bに加えて、周波数特性に影響を与え得る要素に起因する周波数特性のバラツキを考慮して、センサ2の出力信号を補正することができる。
【0070】
《実施形態2》
続いて、実施形態2に係るセンサの補正方法について説明する。
【0071】
センサ装置100の構成は、実施形態1と実施形態2とで共通である。実施形態2に係るセンサの補正方法では、センサ2の検出信号のパワースペクトルS(f)を補正する補正関数が実施形態1と異なる。
【0072】
詳しくは、実施形態2に係る補正部510は、FFT部59により求められたパワースペクトルS(f)を、式(3)に基づいて補正する。
【0073】
S’(f)=B(f)×S(f) ・・・(3)
ここで、B(f)は、パワースペクトルS(f)を補正するための補正関数である。補正関数B(f)は、センサ2の固有の周波数特性に応じて設定されている。
【0074】
詳しくは、補正関数B(f)は、式(4)で表される。
【0075】
B(f)=Rref(f)/{Rb(f)×(rp/r2)} ・・・(4)
ここで、Rb(f)は、予め用意された複数の周波数特性パターンの中から選択された周波数特性パターンである。例えば、図8に示すように、3つの周波数特性パターンRb1(f),Rb2(f),Rb3(f)が用意されている。3つの周波数特性パターンRb1(f),Rb2(f),Rb3(f)は、同じグラフ形状であって、センサ2の固有の周波数特性の代表的なグラフ形状をしている。3つの周波数特性パターンRb1(f),Rb2(f),Rb3(f)は、共振周波数だけ、即ち、周波数帯域だけが異なる。
【0076】
第1周波数特性パターンRb1(f)は、比較的低い共振周波数を有する周波数特性である。第3周波数特性パターンRb3(f)は、比較的高い共振周波数を有する周波数特性である。第2周波数特性パターンRb2(f)は、中間の共振周波数を有する周波数特性である。3つの周波数特性パターンRb1(f),Rb2(f),Rb3(f)の感度の最大値は、r2で同じである。
【0077】
3つの周波数特性パターンのうち、センサ2の固有の周波数特性に最も近似したパターンが選択され、且つ、選択された周波数特性パターンの感度の大きさが、センサ2の固有の周波数特性の感度の大きさに近づくように調整される。
【0078】
具体的には、センサ2の固有の共振周波数frが第1周波数fa未満の場合には、第1周波数特性パターンRb1(f)が選択される。センサ2の固有の共振周波数frが第1周波数fa以上で第2周波数fb未満の場合には、第2周波数特性パターンRb2(f)が選択される。センサ2の固有の共振周波数frが第2周波数fb以上の場合には、第3周波数特性パターン(f)が選択される。つまり、3つの周波数特性パターンのうち、周波数帯域がセンサ2の固有の周波数特性の周波数帯域に最も近いパターンが選択される。図8の例では、第2周波数特性パターンRb2(f)が選択される。
【0079】
rp/r2は、周波数特性パターンの感度の最大値に対するセンサ2の感度の最大値の比である。つまり、周波数特性パターンRb(f)に感度の最大値の比rp/r2を掛け合わせることによって、周波数特性パターンRb(f)の感度の大きさがセンサ2の固有の周波数特性の感度の大きさに近づくように調整される。図8の例では、第2周波数特性パターンRb2(f)の感度の大きさが全体的に拡大される。
【0080】
尚、センサ2の固有の共振周波数fr及びセンサ2の感度の最大値rpは、前述の如く、センサ2の固有の周波数特性を測定することによって求められる。
【0081】
このように、センサ2の固有の周波数特性の周波数帯域に近い周波数帯域を有する周波数特性パターンが選択され、その周波数特性パターンの感度の最大値がセンサ2の感度の最大値に一致するように調整される。こうして求められた、センサ2の固有の周波数特性に近似する周波数特性が式(4)の分母である。つまり、実施形態1の式(2)の分母は、センサ2の固有の周波数特性であるのに対し、実施形態2の式(4)の分母は、センサ2の固有の周波数特性に近似する周波数特性である。
【0082】
パワースペクトルS(f)は、近似する周波数特性に対する基準周波数特性Rref(f)の比率に応じて補正され、補正パワースペクトルS’(f)が求められる。これにより、パワースペクトルS(f)は、基準周波数特性Rref(f)を有するセンサ2によって検出されたパワースペクトルに近いパワースペクトルに補正される。こうして、センサ2の周波数特性にバラツキがあっても、その検出精度のバラツキが低減される。
【0083】
メモリ53には、3つの周波数特性パターンRb1(f),Rb2(f),Rb3(f)、周波数特性パターンの感度の最大値r2、並びにセンサ2の周波数特性としてのセンサ2の固有の共振周波数fr及びセンサ2の感度の最大値rpが記憶されている。
【0084】
補正部510は、3つの周波数特性パターンRb1(f),Rb2(f),Rb3(f)の中から最適な周波数特性パターンをセンサ2の固有の共振周波数frに基づいて選択する。そして、補正部510は、式(3),(4)に基づいて補正パワースペクトルS’(f)を求める。
【0085】
実施形態1では、センサ装置100ごとにセンサ2の周波数に対する感度の関係(即ち、R(f))を測定し、センサ装置100ごとに個別のセンサ2の周波数に対する感度の関係をメモリ53に記憶させる必要がある。それに対し、実施形態2では、センサ装置100ごとにセンサ2の固有の共振周波数fr及び感度の最大値rpのみを測定すればよく、センサ装置100ごとに個別に記憶させるものも、センサ2の固有の共振周波数fr及び感度の最大値rpである。そのため、センサ装置100の製造に要する手間及び時間を低減することができる。
【0086】
尚、周波数特性パターンの選択及び感度の大きさの調整を予め行って、式(4)の分母を予め求め、式(4)の分母をメモリ53に記憶しておいてもよい。
【0087】
《実施形態3》
続いて、実施形態3に係るセンサの補正方法について説明する。
【0088】
実施形態3に係るセンサ装置100の構成は、実施形態1と同じである。実施形態3に係るセンサの補正方法では、センサ2の検出信号のパワースペクトルS(f)を補正する補正関数が実施形態1及び2と異なる。
【0089】
詳しくは、実施形態2に係る補正部510は、FFT部59により求められたパワースペクトルS(f)を、式(5)に基づいて補正する。
【0090】
S’(f)=C(f)×S(f) ・・・(5)
ここで、C(f)は、パワースペクトルS(f)を補正するための補正関数である。補正関数C(f)は、センサ2の固有の周波数特性に応じて設定されている。
【0091】
詳しくは、補正関数C(f)は、式(6)で表される。
【0092】
C(f)=Rref(f)/R’(f) ・・・(6)
ここで、R’(f)は、センサ2の固有の周波数特性の近似式である。近似式R’(f)は、図9に示すように、周波数及び感度に関する3組の値(fr,rp)、(fh1,rp/√2)、(fh2,rp/√2)を用いて求められる近似式である。ここで、frは、センサ2の固有の共振周波数であり、rpは、センサ2の感度の最大値rpであり、fh1は、センサ2の感度がrp/√2のときの低い方の周波数であり、fh2は、センサ2の感度がrp/√2のときの高い方の周波数である。これらの値は、実測値である。センサ2の固有の周波数特性(周波数と感度との関係)のグラフ形状は、概ね決まっているため、これら3組の値を用いて、近似式R’(f)を求めることができる。
【0093】
パワースペクトルS(f)は、周波数特性の近似式R’(f)に対する基準周波数特性Rref(f)の比率に応じて補正され、補正パワースペクトルS’(f)が求められる。これにより、パワースペクトルS(f)は、基準周波数特性Rref(f)を有するセンサ2によって検出されたパワースペクトルに近いパワースペクトルに補正される。こうして、センサ2の周波数特性にバラツキがあっても、その検出精度のバラツキが低減される。
【0094】
メモリ53には、センサ2の周波数特性として、前述の3組の値、即ち、センサ2の感度の最大値rp及びrp/√2と、それぞれに対応する周波数fr,fh1,fh2が記憶されている。これらの値は、予め測定される。また、メモリ53には、近似式R’(f)を求める際の基本式も記憶されている。基本式は、全てのセンサ装置100で共通である。
【0095】
補正部510は、基本式と3組の値に基づいて近似式R’(f)を求める。補正部510は、求めた近似式R’(f)及び式(5),(6)に基づいて補正パワースペクトルS’(f)を求める。
【0096】
実施形態1では、センサ装置100ごとにセンサ2の周波数に対する感度の関係(即ち、R(f))を測定し、センサ装置100ごとに個別のセンサ2の周波数に対する感度の関係をメモリ53に記憶させる必要がある。それに対し、実施形態3では、センサ装置100ごとにセンサ2の周波数に対する感度の関係における3点(即ち、共振周波数fr及び感度の最大値rp、並びに、感度がrp/√2のときの周波数fh1,fh2)のみを測定すればよく、センサ装置100ごとに個別に記憶させるものも、3点の値である。そのため、センサ装置100の製造に要する手間及び時間を低減することができると共に、メモリ53に保持するデータ量を少なくすることができる。
【0097】
尚、近似式R’(f)は、周波数及び感度に関する3組の値に基づいて求められるものに限定されず、2組又は4組以上の値に基づいて求められてもよい。さらに、3組の値は、共振周波数fr及び感度の最大値rp、並びに、感度がrp/√2のときの周波数fh1,fh2に限られず、任意に設定することができる。
【0098】
《その他の実施形態》
以上のように、本出願において開示する技術の例示として、前記実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、前記実施形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。また、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、前記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
【0099】
前記実施形態について、以下のような構成としてもよい。
【0100】
例えば、測定対象物90は、スチームトラップに限られない。
【0101】
センサ装置100の構成は、前述の構成に限られない。例えば、センサ装置100では、センサ2と処理部5とが接続管4を介さずに連結されていてもよい。センサ装置100は、温度及び振動を検出しているが、温度検出機構30を有さず、振動のみを検出してもよい。センサ装置100の測定対象物への取付は、ネジ締結でなくてもよい。例えば、センサ装置100は、測定対象物へ取り付けるためのクランプ部材等をさらに備え、クランプ部材によって測定対象物に取り付けられる構成であってもよい。
【0102】
センサ2の構成は、前述の構成に限られない。例えば、圧電素子の個数は、2つである必要はなく、1つ、又は3つ以上であってもよい。また、センサ2において検出針21、ウエイト27及び皿バネ28等は必須ではなく、測定対象物の振動が圧電素子に入力される構成であれば、任意の構成を採用し得る。ただし、検出針21、ウエイト27及び皿バネ28等を設けることによってセンサ2の固有の周波数特性(例えば、共振周波数等)を調整することができる。
【0103】
処理部5は、判定部54を有し、測定対象物の状態を判定しているが、これに限られるものではない。また、処理部5は、補正部510によって補正された検出信号を出力してもよい。処理部5は、外部機器と無線ではなく、有線で接続されてもよい。
【0104】
さらに、補正部510は、処理部5に含まれているが、これに限られるものではない。例えば、補正部510は、サーバ等に含まれていてもよい。つまり、補正部510は、センサ2及び処理部5とは物理的に分離(一体的にパッケージされていない)されていてもよい。
【0105】
また、前記実施形態では、検出針21、第1圧電素子25a、第2圧電素子25b、ウエイト27、及び皿バネ28を含むセンサ2の全構造体の周波数特性をセンサ2の固有の周波数特性として扱っているが、これに限られるものではない。センサ2の固有の周波数特性に与える影響が大きな要素のみを考慮してもよい。例えば、圧電素子がセンサ2の固有の周波数特性に与える影響が大きく、他の要素がセンサ2の固有の周波数特性に与える影響が軽微である場合には、圧電素子の固有の周波数特性をセンサ2の固有の周波数特性として扱ってもよい。
【0106】
基準周波数特性Rref(f)は、前述の周波数特性に限られない。例えば、基準周波数特性Rref(f)は、所定の周波数帯域において感度が一律ではなく、正規分布のようなグラフ形状を有していてもよい。つまり、全てのセンサ装置100のセンサ2が共通の基準周波数特性Rref(f)を有するようにセンサ2の検出結果が補正される限り、基準周波数特性Rref(f)のグラフ形状は、任意の形状とすることができる。
【産業上の利用可能性】
【0107】
以上説明したように、ここに開示された技術は、センサ装置及びセンサの補正方法について有用である。
【符号の説明】
【0108】
100 センサ装置
2 センサ
21 検出針(伝達部)
25a 第1圧電素子
25b 第2圧電素子
53 メモリ(記憶部)
510 補正部
図1
図2
図3
図4
図5
図6
図7
図8
図9