(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0022】
以下、本発明の一実施形態について図面を参照しつつ説明する。
図1(a)に示す探傷システム10は、赤外線カメラ11と、ハロゲンライト12と、制御装置13とを有している。
【0023】
赤外線カメラ11は、探傷対象物Z等の被写体を撮影し、この被写体の表面から発せられる赤外線エネルギーを検出し、熱画像FL(
図3,
図4等参照)として視覚化するための装置である。この赤外線カメラ11から出力された熱画像FLのデータは制御装置13に入力され、制御部16で熱量が求められ、表面温度に変換される。熱画像FLのデータは、探傷対象物Zから発せられる熱量に相当する。このため、赤外線カメラ11は、制御装置13の制御部16と共に熱量取得部を構成する。また、制御部16は、詳細は後述するが、探傷対象物Z上に任意に設定される抽出点P1(
図7,
図8等参照)の当該探傷対象物Zの相対移動に伴う位相を解析する位相解析部位相解析部としても機能する。
【0024】
例示した赤外線カメラ11では、視野(撮影範囲)内の赤外線エネルギーを光学系によって集め、赤外線検出素子に入力する。赤外線検出素子では、入力された赤外線エネルギーをその強度に応じた電気信号に変換して出力する。すなわち、赤外線検出素子は、視野内をマトリクス状(行列状)に分割し、分割単位(セル)毎の電気信号を、熱画像FLのデータとして出力する。ここで、被写体から放出される熱量が多いほど、被写体の表面から発せられる赤外放射が大きくなり、赤外線検出素子から出力される電気信号の値(例えば電圧値)が大きくなる。
【0025】
ここで、
図2及び
図4に示すように、探傷対象物Zの移動速度をV、赤外線カメラ11から探傷対象物Zまでの距離をL、赤外線カメラ11の撮影周波数をF、赤外線カメラ11における探傷対象物Zの移動方向(視野におけるX方向)の画角をθ、赤外線カメラ11におけるX方向の視野をA
0、視野A
0におけるX方向の画素数をN、X方向と直交するY方向の視野をB
0、視野B
0におけるX方向のセル数(画素数)をN、Y方向のセル数(画素数)をMとする。
【0026】
この場合、X方向の視野A
0は2×L×tan(θ/2)で表すことができる。そして、セルCが正方形であることから、Y方向の視野B
0はA
0/N×Mで表すことができる。また、1つのセルCあたりの視野(検出幅)△はA
0/Nで表すことができる。そして、この赤外線カメラ11では、
図3に示すような時系列の熱画像FLを、例えば1秒あたり50枚(撮影周波数F=50Hz;0.02秒間隔)の速度で取得できる。
【0027】
図4に示すように、熱画像FLでは、セルCがマトリクス状に配置され、かつ、温度(熱量)に応じた色がセルC毎に設定されている。そして、赤外線カメラ11や表示部18における熱画像FLの表示は、熱量に応じた値を示すセルCの出力に応じ、各セルCに色を付すことで行われる。本実施形態の赤外線カメラ11では、X方向にN個(例えば320個)であってY方向にM個(例えば240個)のセルCが配置された熱画像FLが撮影される。なお、熱画像FLを構成するセル数(画素数)や赤外線カメラ11の撮影周波数Fは適宜設定できる。
【0028】
図1(a)に示すように、ハロゲンライト12は加熱部に相当し、例えば連続的な発光によって探傷対象物Zの表面を加熱する。具体的に、本実施形態では、定格出力が1kwのハロゲンライト12を用いる場合について説明するが、本発明はこれに限ることはない。ハロゲンライト12による発光は、探傷対象物Zを表面から加熱するものであるため、加熱部としては、ハロゲンライト12以外の光源(キセノンランプ、レーザ光等)を用いても良い。そして、ハロゲンライト12や他の種類の光源の発光制御は、制御装置13によって行っても良いし、手動で行っても良い。連続発光のキセノンランプも、パルスの間隔が狭いもの等が使用できる。
【0029】
制御装置13は、赤外線カメラ11やハロゲンライト12の動作を制御すると共に、赤外線カメラ11からの熱画像FLのデータを加工して表示するものである。この制御装置13は、例えばパーソナルコンピュータによって構成されるものであり、CPU(Central Processing Unit)14や、記憶部15を有する制御部16と、マウス・タッチパネル・キーボード等によって構成される入力部17と、各種ディスプレイによって構成される表示部18とを有している。
【0030】
CPU14は、記憶部15に記憶されたコンピュータプログラムを読み込み、このコンピュータプログラムや入力部17からの操作信号に従って動作する。CPU14の動作により、制御部16は、赤外線カメラ11の動作を制御したり、熱画像FLのデータに基づく各種の演算を行って演算結果を表示部18に表示させたりする。
【0031】
記憶部15は、コンピュータプログラムや各種のデータを記憶する部分であり、HDD(ハードディスクドライブ)、ソリッドステートドライブ、RAM(Random Access Memory)、及びフラッシュメモリ等の書き込み及び読み出しが可能な記憶素子が用いられる。
【0032】
図1(b)に示すように、記憶部15の一部領域は、プログラム記憶領域15a、探傷プログラム記憶領域15b、パラメータ記憶領域15c、熱画像記憶領域15d、重ね合わせ画像記憶領域15e、時間−温度データ記憶領域15f、周波数−位相データ記憶領域15g、及び位相画像記憶領域15hとして用いられている。
【0033】
プログラム記憶領域15aには、赤外線カメラ11、ハロゲンライト12、及び制御装置13の組を、探傷システム10として機能させるためのコンピュータプログラムが記憶されている。探傷プログラム記憶領域15bには、後述する熱画像FLに基づき、判定条件を参照するなどして制御部16に自動的な検査及び判定を行わせる場合に、必要とされるコンピュータプログラムが記憶されている。
【0034】
パラメータ記憶領域15cには、探傷処理において必要とされる各種パラメータが記憶される。例えば、被写体までの距離L、X方向の視野A
0、Y方向の視野B
0、探傷対象物Zの移動速度V、X方向のセル数N、Y方向のセル数M、撮影周波数F、1セルあたりの視野△が記憶される。このとき、移動速度Vは、赤外線カメラ11による撮影時におけるカメラ軸とのなす角度なども含んでいる。また、赤外線カメラ11による撮影時の解像度(N、M)やハロゲンライト12の動作内容(発光時間や強度,探傷対象物Zの加熱条件)も記憶される。熱画像記憶領域15dには、赤外線カメラ11から出力された時系列の熱画像FLが記憶される。さらに、任意に設定される抽出点のカメラ視野内の移動軌跡も予め分かっている場合には記憶される(抽出点P1の移動軌跡を画像解析により求めることも可能である)。
【0035】
また、詳細は後述するが、重ね合わせ画像記憶領域15eには、時系列の熱画像FLを順次重ね合わせた重ね合わせ画像が記憶される。時間−温度データ記憶領域15fには、重ね合わせ画像について取得したセルC毎の時間と温度の関係を示すデータが記憶される。周波数−位相データ記憶領域15gには、時間−温度データをフーリエ変換することで取得される、周波数と位相の関係を示す周波数−位相データが記憶される。位相画像記憶領域15hには、周波数−位相データに基づいて生成された位相画像(設定された周波数における等位相画像による位相画像)が記憶される。
【0036】
ここで、熱量取得部である赤外線カメラ11及び制御部16は、設定された撮影周波数Fに基づいて、熱量取得位置を含む撮影範囲MVを所定時間間隔で撮影することで、撮影範囲MV内を移動する加熱後の探傷対象物Zにおける撮影範囲MV全体の熱量を時系列で示す複数の熱画像FLとして取得する。また、位相解析部としての制御部16は、複数の熱画像FLに基づいて得られ、探傷対象物Z上に任意に設定される抽出点P1が撮影範囲MV内を移動する軌跡を示す座標データと、抽出点P1の軌跡における各地点での温度データと、から求められる抽出点P1の移動に伴う時系列の温度変化データをフーリエ変換し、探傷対象物Z上における抽出点P1の温度および時間の変化を示す周波数−位相データを取得する。そして、表示部18は、その周波数−位相データに基づく、抽出点P1の軌跡における等温度値の画像または等位相値の画像によって、探傷対象物Zの内部に存在する欠陥を表示する。
【0037】
次に、
図5のフローチャートを参照し、前述した構成を有する探傷システム10での探傷処理について説明する。なお、以下の探傷処理では、探傷対象物Z上に熱量測定のための抽出点P1を任意に設定し、この抽出点P1について赤外線カメラ11で撮影した熱画像FLに基づいて位相解析する等して、熱量を継続的に監視する。これにより、相対移動する探傷対象物Zについて、内部に存在する欠陥を表示可能とするが、一例であってこれに限るものではない。例えば、抽出点P1は複数(抽出点P1,P2)であっても良い。また、抽出点P1の替わりに、後述のラインセンサを用いて相対移動方向(
図6等のX方向)と直交する鉛直方向(
図6等のY方向)に延在するライン状に熱量を測定するようにしても良い。
【0038】
まず、探傷システム10では、最初にパラメータが設定される(S1)。この設定処理では、赤外線カメラ11による撮影時の解像度、撮影周波数F、ハロゲンライト12の出力等が操作者によって設定される。例えば、これらのパラメータの入力を促す画面が表示部18に表示され、入力部17の操作によって必要なパラメータが入力される。設定されたパラメータについては、記憶部15のパラメータ記憶領域15cに記憶される。なお、探傷対象物Zの移動方向,速度などが不明の場合は、移動の初期にその速度,方向を画像内の動きから認識するか、赤外線カメラ11とは別の検出器で読み込むこととする。
【0039】
必要なパラメータが設定されると、探傷対象物Zの表面が加熱される(S2)。この場合、ハロゲンライト12の発光によって放出された熱により、移動中の探傷対象物Zが連続的に加熱される。具体的には
図6に示すように、ハロゲンライト12からの連続光を所定の加熱範囲HTに照射させることで、速度Vで移動中の探傷対象物Zの表面が加熱される。同図に示すように、この加熱範囲HTは、赤外線カメラ11による撮影範囲MVから、探傷対象物Zの移動方向の上流側へ所定間隔空けた場所に定められている。
【0040】
探傷対象物Zが移動していることから、
図7に示すように、時刻T0で加熱された抽出点P1は、時刻T1にて間隔W1だけ下流側に移動し、赤外線カメラ11におけるX方向の視野A
0の上流端の位置に達する。また、この抽出点P1は、時刻T2にて間隔W2だけ下流側に移動し、赤外線カメラ11におけるX方向における視野A
0の中央の位置(A
0/2)に達する。さらに、この抽出点P1は、時刻T3にて間隔W3だけ下流側に移動し、赤外線カメラ11における視野A
0の下流端の位置に達する。
【0041】
探傷対象物Zが加熱されると、熱画像FLの取得・記憶処理が行われる(S3)。この処理において、赤外線カメラ11は、撮影周波数Fで撮影を行うことにより、撮影範囲MVの熱画像FLを時系列で生成する。これにより、
図3及び
図10に示すように、撮影周波数Fで決まる時系列の熱画像FL(t1)〜FL(tn)が取得される。これらの熱画像FL(t1)〜FL(tn)では、熱画像FLが取得される毎に、探傷対象物Zにおける抽出点P1が所定の移動ピッチでX方向へ移動していることがわかる。また、制御部16は、赤外線カメラ11から順次送信されてくる熱画像FLを受信し、記憶部15の熱画像記憶領域15dに記憶させる。この熱画像FLの取得・記憶処理は、
図8(a)に示すように、探傷対象物Zの検査対象部分である抽出点P1が、撮影範囲MV(赤外線カメラ11の視野A
0)を通過するまで継続して行われる。
【0042】
探傷対象物Zの抽出点P1,P2について熱画像FLを取得して記憶すると、制御部16は、記憶された複数の熱画像FLを撮影された時系列に準じて重ね合わせることで、
図8(c)及び
図10に示すような重ね合わせ画像を取得し、記憶部15の重ね合わせ画像記憶領域15eに記憶させる(S4)。この処理は、制御部16によって行われる。このため、制御部16は、重ね合わせ画像を取得する重ね合わせ画像取得部に相当する。
【0043】
重ね合わせ画像が記憶されると、制御部16は、この重ね合わせ画像(熱画像FL(t1)〜FL(tn))を表示部18に表示させる。これにより、探傷システム10の操作者等は、探傷対象物Zの蓄熱状態を表示部18で視認できる。そして、探傷対象物Zの内部に欠陥が存在してれば、その部分の色が他の部分の色よりも異なって表示されるため、操作者等は欠陥の有無を判定できる。具体的に、探傷対象物Zの内部に欠損が存在する場合、ハロゲンライト12から放出された熱が欠損の位置で蓄積される。このため、欠損部分では、欠損が存在しない部分に比べて熱量が上昇する。従って、熱量の変化に基づき、探傷対象物Zの内部における欠損を表示できる。また、欠損の有無を判定できる。
【0044】
次に、重ね合わせ画像に基づいて、探傷対象物Zの内部に存在する欠陥を検出するための一連の処理(探傷処理)が行われる。この探傷処理は、次に説明するS5〜S10の処理からなっている。この探傷処理では、まず移動軌跡の算出処理を行う(S5)。この処理において制御部16は、重ね合わせ画像記憶領域15eから重ね合わせ画像を読み出し、この重ね合わせ画像に基づいて抽出点P1が探傷対象物Z上の撮影範囲MV(赤外線カメラ11の視野A
0)内を移動した軌跡を示す座標データを求める。このとき、座標データは、
図10に示すような撮影範囲MVとしての視野A
0,B
0全体を表す重ね合わせ画像から求められ、当該画像内に抽出点P1の軌跡を示す位置データおよび時間データから構成される。
【0045】
次に、制御部16は、抽出点P1の移動に伴う時間−温度データの取得・記憶処理を行う(S6)。この処理において制御部16は、算出した座標データと、抽出点P1の軌跡における各地点での温度データとに基づき、重ね合わせ画像を構成するセルC(
図4参照)のそれぞれについて、時間と温度の関係を時系列の温度変化データとして取得する。この温度変化データは、探傷対象物Z上の任意の抽出点P1における熱量の時間的変化を含んでいる。そして、全てのセルCに対する時間と温度の関係を示す温度変化データを、時間−温度データとして記憶部15の時間−温度データ記憶領域15fに記憶させる。
【0046】
ここで、この時間−温度データに基づいて、探傷対象物Zの熱量が
図10に示すようなアナログの連続曲線で示される。この曲線は、抽出点P1の軌跡における各地点について生成される。このとき、抽出点P1が探傷対象物Zの表面化に欠陥を有する位置に設定され、抽出点P2が欠陥のない位置に設定されていたとする。この場合、時間−温度データに基づくグラフにおいて、欠陥がある抽出点P1の曲線には変動が現れ、欠陥のない抽出点P2の曲線には変動が現れずなめらかな減衰カーブとして示される。そして、生成された曲線におけるX方向の座標値から対応する位置の熱量を算出することができる。ここで、X方向の座標値は、表示部18の表示メッシュにあわせた値に選択される。さらに、制御部16は、以上の処理を全ての曲線に対して行う。その結果、表示部18で表示可能な熱画像FLが得られ、表示部18にて表示される。このようにして、探傷対象物Zが移動している場合においても、当該探傷対象物Zの内部欠陥を検出できる。
【0047】
時間−温度データが記憶されると、時間−温度データに対してフーリエ変換が行われる(S7)。このフーリエ変換により、時間−温度データが、周波数と位相との関係を示す周波数−位相データに変換される。このフーリエ変換は、制御部16によって行われる。従って、制御部16は、データ変換部として機能する。なお、フーリエ変換をサブルーティーンとして用意しておき、時系列から必要な要求があった場合に、時間−温度データをサブルーティーンに送ってフーリエ変換し、周波数―位相のデータを提供するようにしても良い。ここで、本実施形態における時間−温度データは離散的であるため、離散フーリエ変換を行っている。
【0048】
離散フーリエ変換は、次式(1),(2)に従って行われる。
【数1】
【0049】
ここで、F
nは、サンプリング周波数f
sを取得データ数DNの2倍で割った値のn倍の周波数における変換結果(周波数成分、複素強度)を表す。Re
nは、変換結果の実部を表し、Im
nは、変換結果の虚部を表す。Tは、k番目のサンプリングの温度である。A
nは、変換結果の周波数Kの位相値を表す。離散フーリエ変換では、サンプリング周波数と取得データ数(時間)によって、変換後の周波数の範囲が決まる。変換後の周波数の最小値f
minと、最大値f
maxは、サンプリング周波数f
sと、取得データ数DNを用いて、次式(3),(4)のように表される。
【数2】
【0050】
以上のフーリエ変換によって得られた位相−周波数データ、変換後の周波数の最小値f
min及び最大値f
maxの各データは、記憶部15の周波数−位相データ記憶領域15gに記憶される。その後、位相画像の生成及び記憶が行われる(S9)。位相画像の生成処理では、検査周波数が、前述の最小値f
min以上であって最大値f
max以下である、離散的な任意の周波数に定められ、定められた検査周波数の位相値を用いて位相画像が生成される。
【0051】
位相画像の生成処理において、f
min=1/T、2/T、3/T・・・fs/2(=N/2T)の間の1/T毎の周波数で計算されるデータ数DNとすると、f
max=f/2(=(N/2)/Tとなり、取得した熱画像FLを構成するセルCの数Nの半数の位相画像が生成される。
【0052】
なお、検査周波数は、最小値f
min以上であって最大値f
max以下の範囲であれば、1/Tの間隔で任意に定めることができる。例えば、熱画像FLの取り込み時間と取り込みの時間間隔から決まる周波数に定めることができる。
【0053】
また、位相画像の生成は、制御部16によって行われる。このため、制御部16は、位相画像生成部としても機能する。そして、生成された位相画像については、記憶部15の位相画像記憶領域15hに記憶される。また、検査周波数を変化させることで、表面からの深さが異なる内部の状態が確認できる。この検査周波数の設定は、入力部17を介して操作者によって行うことができる。
【0054】
位相画像が生成され記憶されると、位相画像及び検査結果が表示される(S10)。この表示処理では、位相画像記憶領域15hに記憶された位相画像が制御部16に読み出され、映像信号に変換されて表示部18に表示される。そして、表示部18には、検査結果もあわせて表示される。
【0055】
このように、本実施形態の探傷システム10によれば、加熱範囲から所定間隔空いた熱量取得位置において、赤外線カメラ11と制御部16の組(熱量取得部)が、加熱後の探傷対象物Zの熱量を時系列で取得する。探傷対象物Zの内部では、欠陥がある部位の熱量は、欠陥のない部位の熱量から有意に変化するため、熱量取得位置において熱量を継続的に取得することにより、相対移動する探傷対象物Zについて、内部欠陥を表示できる。
【0056】
かかる探傷システム10では、探傷対象物Z上に任意に設定された抽出点P1が同じ撮影範囲MV内において移動した軌跡を示す重ね合わせ画像が取得できるので、視野A
0,B
0内で探傷対象物Zが移動する場合においても、探傷対象物Zの熱画像FLを表示部18で表示でき、探傷対象物Zの内部に存在する欠陥を認識できる。この探傷方法は、量産品の移動しつつある物体の個別検査に対して適しており、視野A
0,B
0内を移動する時間で、熱画像FLを取り込み、検査することができる。また、大きな欠陥を速やかに検出する際に有用である。
【0057】
また、この探傷システム10では、重ね合わせ画像における時間と温度の関係を示す時間−温度データをフーリエ変換することで周波数と位相の関係を示す周波数−位相データを取得し、周波数−位相データから得られた位相画像に基づいて、前記探傷対象物Zの内部に存在する欠陥を検出している。この探傷システム10では、周波数−位相データから得られた位相画像に基づいて探傷対象物Zの内部に存在する欠陥を検出するので、表面から深い場所での欠陥も検出できる(S5〜S10)。
【0058】
さらに、この探傷システム10において、制御部16(位相解析部)は、設定された周波数における等位相画像による位相画像に基づいて、探傷対象物Zの内部に存在する欠陥を検出する。この探傷システム10では、周波数の設定により表面からの深さの異なる場所での欠陥を検出できる。この周波数は、任意に定めることができる。例えば、熱画像FLの取り込み時間と取り込みの時間間隔から決まる周波数に定めることができるので、高い周波数は熱画像FLの取込周波数の1/2から、低い周波数は1/T(取込時間をTとする)までの間の1/Tの周波数間隔の任意の周波数を選択することができる。
【0059】
以上の実施形態の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれる。例えば、次のように構成してもよい。
【0060】
前述の実施形態では、赤外線カメラ11が固定されており、探傷対象物Zが赤外線カメラ11の視野A
0,B
0内をX方向へ移動する場合を例に挙げて説明したが、この構成に限定されるものではない。固定された探傷対象物Zに対して、ハロゲンライト12及び赤外線カメラ11を移動させてもよい。
【0061】
前述の実施形態では、探傷対象物ZがX方向(熱画像FLの横方向)に移動する場合について説明したが、探傷対象物ZがY方向(熱画像FLの縦方向)に移動する場合についても同様に適用できる。加えて、探傷対象物ZがX方向とY方向のそれぞれ(熱画像FLの斜め方向)に移動する場合についても同様に適用できる。
【0062】
このとき、移動方向は、探傷対象物Z上の任意の抽出点P1の軌跡が赤外線カメラ11の視野内で求められるのであれば、抽出点P1の時間−温度データが得られるので、赤外線カメラ11から離れたり、近づいたりするものであっても、同様に検査が可能となる。
【0063】
前述の実施形態では、1つのセルCに対して、時間−温度データや周波数−位相データを取得していたが、この構成に限らない。例えば、複数セルCの平均値で時間−温度データや周波数−位相データを取得してもよい。
【0064】
また、前述の実施形態では、赤外線カメラ11が探傷対象物Zに対してカメラ軸を垂直に設置される場合について述べたが、これに限ることはない。例えば
図9(c)に示すように、赤外線カメラ11が探傷対象物Zに対してカメラ軸を傾斜させた状態で設置された場合、探傷対象物Zは遠近法により、
図9(a)に示すように、撮影範囲MVに対して紙面右側に位置する移動方向側が狭い状態となる。このとき、抽出点P1が探傷対象物Zの表面化に欠陥を有する位置に設定され、抽出点P2が欠陥のない位置に設定されていたとする。この場合、
図9(b)に示すように、時間−温度データに基づくグラフにおいて、欠陥がある抽出点P1の曲線には変動が現れ、欠陥のない抽出点P2の曲線には変動が現れずなめらかな減衰カーブとして示される。このため、前述の実施形態と同様に、探傷対象物Zが移動している場合においても、当該探傷対象物Zの内部欠陥を検出できる。
【0065】
なお、前述の実施形態では、探傷対象物Zの熱量を曲線で近似したが、隣接する測定点同士の熱量を線形補間するなど、細かい直線で近似してもよい。また、各測定点で取得した熱量をそのまま表示部18で表示できるのであれば、近似を行わなくてもよい。
【0066】
また、この探傷システム10では、赤外線カメラ11からの映像を用いて探傷対象物Zの熱量を取得したが、熱量取得位置におけるY方向の熱量を時系列で取得できればよい。このため、赤外線カメラ11に代えて、熱量取得位置での熱量を取得するラインセンサを用いてもよい。
【0067】
すなわち、赤外線カメラ11及び制御部16は、設定された撮影周波数Fに基づき、熱量取得位置にて相対移動する探傷対象物Zに対し、相対移動方向(X方向)と略直交する鉛直方向(Y方向)に延在するライン状に所定時間間隔で撮影することで、加熱後の探傷対象物Zの熱量を時系列で示す複数の熱画像FLとして取得するようにしても良い。このとき、個々の熱画像FLには、それぞれ熱量取得位置で取得されるライン状の熱量群として示されている。
【0068】
具体的には、例えば
図11(a)に示すように、時刻T1(すなわち、
図6におけるX方向の視野A
0の中央の位置(A
0/2))を熱量取得位置として熱量群を取得するようにしても良い。同図において、撮影範囲MVにおける縦軸は熱量取得位置における各セルの位置(Y方向の測定点)を示し、横軸はX方向の測定タイミングを示す。この図に示すように、前述の熱画像の取得処理(S3)では、Y方向においてセルCあたりの視野△の間隔で熱量が取得される。一方、X方向においては、赤外線カメラ11の撮影周波数Fと探傷対象物Zの移動速度Vで決まる移動ピッチp、すなわち移動速度V/撮影周波数Fで定まる間隔毎に熱量が取得される。
【0069】
そして、
図11(a)に斜線を付した枠で示すように、X方向の或るセルC(測定点)に属するY方向の熱量群を抽出し、縦軸に熱量、横軸にX方向の移動量をプロットすると、例えば
図11(b)に示すような連続等温線のパノラマ画像が得られる。すなわち、大きさが△であって移動ピッチp毎の熱量群が得られる。そして、
図11(b)に示される熱量とX方向の測定点の組み合わせは、Y方向の各セルC(測定点)のそれぞれについて取得される。
【0070】
ここで、探傷対象物Zの内部に欠損が存在する場合、加熱部から放出された熱が欠損の位置で蓄積される。このため、欠損部分では、欠損が存在しない部分に比べて熱量が上昇する。従って、熱量の変化に基づき、探傷対象物Zの内部における欠損を表示できる。また、欠損の有無を判定できる。
【0071】
ところで、この場合、X方向の視野A
0における中央の位置(A
0/2)で加熱後の探傷対象物Zの熱量を時系列で取得していた。ここで、視野A
0におけるX方向の位置は、前述したように加熱からの経過時間を規定する。そして、探傷対象物Zの表面からは、探傷対象物Zの内部に吸収された熱が徐々に放出されるので、加熱からの経過時間は、探傷対象物Zにおける欠損の検出深さを規定する。従って、
図12(a)に示すように、熱量取得位置をX方向に移動させ、加熱位置との間隔が異なる複数の熱量取得位置にて、加熱後の探傷対象物Zの熱量を時系列で取得する。これにより、時刻T1での熱量群から
図12(b)に示すような連続等温線のパノラマ画像が得られ、時刻T2での熱量群から
図12(c)に示すような連続等温線のパノラマ画像が得られることで、表面からの深さが異なる欠陥の有無を検出できる。
【0072】
すなわち、この探傷システム10では、
図7に示すように、X方向の視野A
0における上流端から下流端までの範囲で熱量取得位置を選択できる。そして、加熱範囲から間隔W1だけ下流側に移動した視野A
0の上流端を熱量取得位置に選択すると、加熱部による加熱から所定時間(T1−T0)経過時点における探傷対象物Zの熱量を取得できる。また、加熱範囲から間隔W3だけ下流側に移動した視野A
0の下流端を熱量取得位置に選択すると、加熱部による加熱から所定時間(T3−T0)経過時点における探傷対象物Zの熱量を取得できる。このように、熱量取得位置の選択によって、表面からの深さが異なる探傷対象物Zの内部に存在する欠陥を表示部18に表示させることができる。
【0073】
なお、探傷対象物Zの移動速度Vは、種々の方法で取得できる。例えば、制御部16に、撮影タイミングの異なる複数枚の熱画像FLを参照させ、探傷対象物Zの表面に描かれた模様の特徴点について、その移動量を算出させることでも取得できる。また、探傷対象物Zの移動速度Vが予め判っている場合には、パラメータの設定処理(S1)で、操作者に移動速度Vを入力させてもよい。そして、取得した移動速度Vについては、記憶部15のパラメータ記憶領域15cに記憶される。
【0074】
また、前述の実施形態では、周波数−位相データから位相画像を取得し、位相画像によって探傷対象物Zの内部に存在する傷を探していたが、この構成に限らない。例えば、重ね合わせ画像における時間−温度データから直接、探傷対象物Zの内部に存在する欠損を検出してもよい。