【実施例】
【0023】
以下、図面を参照して本発明の実施例を説明する。
図1は、実施例に係るX線CT装置の概略図およびブロック図である。本実施例では、断層撮影装置としてX線CT装置を例に採って説明する。
【0024】
図1に示すように、本実施例に係るX線CT装置1は、対象物Oを撮像する撮像部2と、対象物Oを載置するステージ3と、そのステージ3を駆動するステージ駆動部4と、撮像部2を駆動する撮像駆動部5と、撮像部2のX線管21に管電流や管電圧を与えるために高電圧を発生する高電圧発生部6と、撮像部2のX線検出器22によって得られた投影データに対して再構成処理を行う再構成処理部7とを備えている。再構成処理部7は、本発明における演算手段に相当する。
【0025】
撮像部2は、対象物OにX線を照射するX線管21と、X線管21から照射され対象物Oを透過したX線を検出するX線検出器22とを備えている。X線検出器22については、イメージインテンシファイア(I.I)やフラットパネル型X線検出器(FPD: Flat Panel Detector)などに例示されるように、特に限定されない。本実施例では、X線検出器22としてフラットパネル型X線検出器(FPD)を例に採って説明する。
【0026】
FPDは、画素に対応して縦横に並べられた複数の検出素子からなり、X線を検出素子が検出して、検出されたX線のデータ(電荷信号)をX線検出信号として出力する。このようにして、X線管21からX線を対象物Oに向けて照射し、FPDからなるX線検出器22がX線を検出してX線検出信号を出力する。そして、X線検出信号に基づく画素値を画素(検出素子)に対応付けて並べることで投影データを取得する。
【0027】
ステージ駆動部4は、図示を省略するモータや駆動軸などから構成され、ステージ3を図中のZ軸心周りに水平面内で回転させる。ステージ3の水平面内での回転によって対象物OもZ軸心周りに水平面内で回転し、複数の投影データを取得する。
【0028】
撮像駆動部5は、ステージ駆動部4と同様に、図示を省略するモータや駆動軸などから構成されている。X線検出器22にX線管21が対向するようにそれぞれを移動させてX線CT撮影を行う。また、X線管21またはX線検出器22を水平方向(図中のX方向)に移動させて、X線CT撮影における拡大率を変更することも可能である。また、X線管21またはX線検出器22をX軸に対して傾斜させて、対象物Oの斜め方向から撮像することも可能である。
【0029】
高電圧発生部6は、高電圧を発生させて管電流や管電圧をX線管21に与えることで、X線管21からX線が発生して、対象物Oに対してX線を照射する。再構成処理部7は、後述する画像再構成処理プログラム8Aを実行することで、対象物Oに関する再構成画像を取得する。再構成処理部7の具体的な機能については詳しく後述する。
【0030】
その他に、X線CT装置1は、メモリ部8と入力部9と出力部10とコントローラ11とを備えている。
【0031】
メモリ部8は、コントローラ11を介して、X線検出器22で得られた投影データや再構成処理部7で得られた再構成画像などのデータを書き込んで記憶し、適宜必要に応じて読み出して、コントローラ11を介して、投影データや再構成画像を出力部10に送り込んで出力する。メモリ部8は、ROM(Read-only Memory)やRAM(Random-Access Memory)やハードディスクなどに代表される記憶媒体で構成されている。
【0032】
本実施例では、投影データや更新された再構成画像(「推定画像」とも呼ばれる)のヒストグラムをメモリ部8から読み出して、コントローラ11を介して再構成処理部7に送り込んで、逐次近似法による画像更新や物質情報推定などの画像再構成処理(
図2のフローチャートを参照)を行う。また、画像再構成処理プログラム8Aがメモリ部8に記憶されており、コントローラ11を介して、画像再構成処理プログラム8Aをメモリ部8から再構成処理部7に読み出して、画像再構成処理プログラム8Aを再構成処理部7が実行することで、
図2のフローチャートに示す画像再構成処理を行う。画像再構成処理プログラム8Aは、本発明における画像再構成処理プログラムに相当する。
【0033】
入力部9は、オペレータが入力したデータや命令をコントローラ11に送り込む。入力部9は、キーボードと、マウスやジョイスティックやトラックボールやタッチパネルなどに代表されるポインティングデバイスで構成されている。
【0034】
出力部10は、モニタなどに代表される表示部やプリンタなどで構成されている。本実施例では、投影データや再構成画像を出力部10のモニタに表示する。
【0035】
コントローラ11は、X線CT装置1を構成する各部分を統括制御する。X線検出器22で得られた投影データや再構成処理部7で得られた再構成画像などのデータを、コントローラ11を介して、メモリ部8に書き込んで記憶、あるいは出力部10に送り込んで出力する。出力部10が表示部の場合には出力表示し、出力部10がプリンタの場合には出力印刷する。
【0036】
本実施例では、再構成処理部7やコントローラ11は、中央演算処理装置(CPU)などで構成されている。なお、再構成処理部7については、GPU(Graphics Processing Unit) などで構成されてもよい。
【0037】
次に、再構成処理部7(
図1を参照)の具体的な機能について、
図2〜
図5を参照して説明する。
図2は、実施例に係る画像再構成処理のフローチャートであり、
図3は、区分的ガウス関数を用いた目的関数の妥当性項に関する模式図であり、
図4は、ヒストグラムを用いた物質情報推定の説明に供する模式図であり、
図5は、強度係数e
−αdの説明に供する模式図である。
【0038】
(ステップS1)逐次近似法による画像更新
各種の逐次近似法により画像を更新する。なお、X線管21(
図1を参照)やX線検出器22(
図1を参照)の物理的特性(例えばビームハードニング・散乱等)を補正する処理を含んでいるのが好ましい。本実施例では当該処理を行っているが、これらの特性が無視できるような場合には、この処理を行わなくてもよい。その他、物理的特性の補正の有無や順序を適宜変更する場合も、本発明に含まれる。
【0039】
一般的に、目的関数最大化に基づく逐次近似法では、下記(1)式で表される目的関数Fを最大化する。なお、実際の計算では、関数の傾き(一階微分)のみから、関数の最小値を探索する勾配法のアルゴリズム(「最急降下法」とも呼ばれる)や、Newton法などの最適化アルゴリズムを使用する。また、局所解に陥ることを回避するために、遺伝的アルゴリズムや焼きなまし法などの、組み合わせ最適化法が組み込まれていてもよい。
【0040】
F(μ,y)=D(μ,y)+βR(μ) …(1)
ただし、上記(1)式中のμは再構成画像ベクトルであり、yは投影データである。Dは「データ項」と呼ばれ、実測データとの適合度を表し、実測投影(X線検出器22で得られた実測の投影データ)および推定パラメータ(上記(1)式で推定された推定画像)から算出される尤度などで定義される。なお、μ,yはベクトルであるので、実際には太字で表記されることに留意されたい。
【0041】
Rは一般的に「ペナルティ項」などと呼ばれ、推定パラメータ(推定画像)の妥当性を反映する。本明細書では、以降Rを便宜上「妥当性項」と呼ぶ。本発明で利用している、ステップS2以降で詳しく述べる物質情報(物質制約値m[1],…,m[N])は、この妥当性項に反映される。なお、βは妥当性項Rの強さをコントロールする係数である。
【0042】
妥当性項の具体例としては、
図3のような区分的ガウス関数などが挙げられる。この場合、推定された複数の物質制約値m[1],…,m[N]を中心としたガウス分布を連結して妥当性項とする。推定画素値がガウス分布の中心に近いほど目的関数は大きくなり、推定画素値は物質制約値に近い値を取る作用が働くことになる。
【0043】
なお、各分布の平均および分散がパラメータとなるので、与えられるパラメータの数は(物質の数)×2となるが、繰り返し毎に更新するのは平均値のみである。つまり、後述するステップS6の「物質制約値の更新」とは、繰り返し毎に再構成画像のヒストグラムを参照して、各ガウス分布の中心位置を適切な位置に補正する(ずらす)ことを意味する。
【0044】
各ガウス分布の高さや幅(分散)については経験則に基づいて設定する。また、各ガウス分布の高さや幅(分散)を個々に設定してもよいし、互いに隣接するガウス分布の切り換え位置を適宜に変更して設定してもよい。このステップS1は、本発明における画像更新工程に相当する。
【0045】
(ステップS2)ヒストグラム生成
ステップS1で更新された再構成画像(推定画像)からヒストグラムを生成する。具体的には、
図4に示すように、縦軸を画素数の最大値で正規化して、横軸を画素値相当のビン幅wとしたヒストグラムを生成する。上述したようにヒストグラムの横軸は右に向かうに従って画素値が高くなる。
【0046】
(ステップS3)ピーク検出
ステップS2で生成されたヒストグラムから極値をピークとして検出する。具体的には、
図4に示すように、ヒストグラムのk番目のビンの高さをh[k]とした時、h[k−1]<h[k]>h[k+1]を満たす全てのピークを極値とみなす(
図4では「●」で図示)。
【0047】
(ステップS4)ピーク評価
次に、ステップS3で検出された全てのピークについて、構成物質らしさを表す評価値を算出する。具体的には、
図4に示すように、ピークとして検出されたk番目のビンの高さh[k](「ヒストグラム値」または「ピーク」とも呼ばれる)に対して、評価値e[k]を与える。この評価値e[k]が大きいほど、そのピークが撮影サンプルの構成物質を表していると考える。例えば、ピークとして検出されたヒストグラム値h[k]そのものを評価値e[k]とする方法が考えられる。
【0048】
その他に、例えば、撮影サンプルの構成物質の一部が既知の場合、その物質制約値を基準物質制約値とする。あるいは、(c)のように物質制約値がパラメータとして与えられている場合、その物質制約値を基準物質制約値とする。
図5に示すように、評価値e[k]の対象となる画素値と、基準物質制約値との間の距離(
図5では「基準物質制約値からの距離」で表記)をd(ただしdは非負)とすると、基準物質制約値からの距離dおよびヒストグラム値h[k]に基づいて評価値e[k]を定義する方法も考えられる。
【0049】
これは、推定される物質制約値は、既知またはパラメータとして与えられた物質制約値に近い値を取る、との考えに基づいている。つまり、基準物質制約値(
図5を参照)から遠ざかれば評価値e[k]が小さくなると考えられる。そこで、自然対数の底(ネイピア数)eおよび基準物質制約値からの距離dを用いて、評価値eに関する強度係数をe
−αd(αは定数)とする。これにより基準物質制約値での画素値から遠ざかれば基準物質制約値からの距離dが大きくなる(長くなる)ので、強度係数、さらには評価値e[k]が小さく定義される。
【0050】
なお、基準物質制約値は不変である必要はない。このパラメータとして与えられた物質制約値や既知である物質制約値も更新対象としてもよい。
【0051】
以上により、評価値e[k]は下記(2)式で表される。
e[k]=h[k]×e
−αd …(2)
以上のように、ピークとして検出されたヒストグラム値h[k]そのものを評価値e[k]としてもよいし、上記(2)式のように基準物質制約値からの距離dおよびヒストグラム値h[k]に基づいて評価値e[k]を定義してもよい。
【0052】
(ステップS5)ピーク選定
次に、ステップS4で与えられた評価値e[k]、および必要であれば与えられたパラメータに基づいて、構成物質と思われるピークを選定する。例えば、撮影サンプルがN種類の物質で構成されているとすると、評価値が大きい順にN個のピークを抽出し、これらを選定されたピーク(選定ピーク)とする。構成物質の数が未知の場合(例えば御影石や自然鉱物(天然鉱物)の場合や、合金が完全に混じり合わない場合)には、一定の評価値以上のピークを選定ピークとする。
【0053】
その他に、撮影サンプルを構成する実際の物質数(例えばN個)に関わらず構成物質の数がパラメータ(N個と異なる数)として指定された場合、このパラメータに基づいて評価値が大きい順にピークを抽出し、これらを選定ピークとしてもよい。なお、選定されたピークがどの物質に対応するのかが判っている必要はない。また、選定されなかったピークは、この時点で破棄される。
【0054】
これにより、N個の物質情報を示すピーク(ピーク番号:k
1,…,k
N)が、
図4に示すように選定されたことになる。選定されたピーク番号k
1,…,k
Nは連続番号となっていないので、選定されたピーク番号が、1,…,Nと連続番号になるように、k
1=1,…,k
N=Nと並び替える。そして、n番目のヒストグラムのビンと対応する画素値をv[k
n]=w×(k
n−0.5)とすると、物質情報の具体的な値である物質制約値は、v[k
1]=m[1],…,v[k
N]=m[N]として求まる。
【0055】
上記式(v[k
n]=w×(k
n−0.5))では、ピーク番号k
nからビン幅wの中央にずらすためにピーク番号k
nから0.5を減算したが、物質制約値を求める式については上記式に限定されない。ピーク番号k
nを変数とした線形関数により物質制約値を求めてもよい。
【0056】
(ステップS6)物質制約値の更新
以上の処理により、N個の物質情報(物質制約値=各物質のX線吸収係数を表す画素値)であるm[1],…,m[N]が推定されて更新されたことになる。つまり、ステップS5で選定されたピーク(選定ピーク)に対応する画素値を、次のステップS1に戻る際のステップS1の逐次近似計算で使用する物質制約値として設定する。以上のように、ステップS2〜S6は、本発明における物質情報推定工程に相当する。
【0057】
(ステップS7)反復回数のカウンタ変数のインクリメント
逐次近似式での繰り返し回数(反復回数)のカウンタ変数をインクリメントする。
【0058】
(ステップS8)画像更新の終了?
逐次近似法による画像更新を終了する反復回数をN
iterとし、カウンタ変数が反復回数N
iterに達したか?否かを判断する。なお、反復回数N
iterについてはオペレータが予め設定すればよい。カウンタ変数がN
iter以下の場合にはステップS1〜S6を継続するために、ステップS1に戻る。カウンタ変数がN
iterを超えた場合には一連の計算を終了する。
【0059】
このようにして得られた推定画像を再構成画像として取得する。また、反復回数N
iterを設定せずに、更新の度に得られた推定画像をオペレータが観察して、観察結果に基づいて一連の計算をオペレータが中断して、そのときに得られた推定画像を再構成画像として取得してもよい。または、何らかの収束評価値(目的関数の値など)が判定基準値を上回った、あるいは下回ったかによって判定してもよい。
【0060】
本実施例に係る画像再構成処理方法によれば、物質情報推定工程(
図2ではステップS2〜S6)では、画像更新工程(
図2ではステップS1)での画像更新毎に再構成画像から物質情報(本実施例では物質制約値m[1],…,m[N])を推定し、物質情報推定工程(ステップS2〜S6)で推定された物質情報(物質制約値m[1],…,m[N])を用いて、以降の逐次近似法での逐次近似式による計算において画像を更新する。このように、再構成画像から物質情報(物質制約値m[1],…,m[N])を推定することにより、本発明は、撮影サンプルの構成物質が既知・未知に関わらず適用可能である。
【0061】
また、「課題を解決するための手段」の欄でも述べたように、特許文献1:米国特許第8,175,361号公報では推定された物質情報が固定であるのに対して、本実施例では画像更新工程(ステップS1)での画像更新毎に再構成画像から物質情報(物質制約値m[1],…,m[N])を推定(更新)するので、例えば逐次近似式での繰り返し回数(反復回数)が少ない時点で推定された物質情報を、繰り返し回数が多い時点でも使い続けるというような問題を回避して、信頼度が高い物質情報(物質制約値m[1],…,m[N])を推定することができる。したがって、信頼度が高い物質情報(物質制約値m[1],…,m[N])を用いてアーティファクトを低減することができる。
【0062】
また、(a)既知の構成物質の数に基づいて、推定すべき物質情報を推定してもよいし、(b)パラメータとして与えられた構成物質の数に基づいて、推定すべき物質情報を推定してもよいし、(c)パラメータとして与えられた物質制約値に基づいて、推定すべき物質情報を推定してもよい。上記(a)の場合には、既知の構成物質の数(例えばN個)に基づいて、例えば、ステップS5でも述べたように評価値が大きい順にN個のピークを抽出し、これらを選定ピークとして、物質情報(物質制約値m[1],…,m[N])を推定する。
【0063】
また、上記(b)の場合には、撮影サンプルを構成する実際の物質数(例えばN個)に関わらず構成物質の数(N個と異なる数)がパラメータとして指定された場合、このパラメータに基づき物質情報を推定する。例えば、ステップS5でも述べたように実際の物質数であるN個と異なる数がパラメータとして指定された場合、このパラメータに基づいて評価値が大きい順にピークを抽出し、これらを選定ピークとして、物質制約値を推定する。
【0064】
また、上記(c)の場合には、構成物質が既知・未知に関わらず物質制約値がパラメータとして与えられた場合、このパラメータに基づき物質情報を推定する。例えば、ステップS4でも述べたように物質制約値がパラメータとして与えられた場合、その物質制約値を基準物質制約値とする。そして、基準物質制約値に基づいて評価値e[k]を求めて、ステップS5でも述べたように評価値e[k]に基づいてピークを選定して、物質制約値を推定する。
【0065】
上記(a)〜上記(c)によって、誤った物質情報が推定される可能性が抑えられる。「課題を解決するための手段」の欄でも述べたように、上記(a)〜上記(c)のいずれかで物質情報を推定してもよいし、上記(a)〜上記(c)を複数組み合わせて物質情報を推定してもよい。例えば、上記(a)および上記(c)を組み合わせて物質情報を推定してもよいし、上記(b)および上記(c)を組み合わせて物質情報を推定してもよい。
【0066】
本実施例では、
図2のフローチャートに示すように、ステップS2の再構成画像のヒストグラムに基づいて、推定すべき物質情報(物質制約値m[1],…,m[N])を推定している。
【0067】
本実施例に係る画像再構成処理プログラム8A(
図1を参照)によれば、本実施例に係る画像再構成処理方法(
図2のフローチャートを参照)をコンピュータ(本実施例では
図1に示す再構成処理部7を構成するCPUまたはGPU)に実行させることによって、撮影サンプルの構成物質が既知・未知に関わらず適用可能で、信頼度が高い物質情報(物質制約値m[1],…,m[N])を推定して、それを用いてアーティファクトを低減することができる。
【0068】
本実施例に係る断層撮影装置(本実施例ではX線CT装置)によれば、画像再構成処理プログラム8Aを実行する演算手段(本実施例では
図1に示す再構成処理部7を構成するCPUまたはGPU)を備えることによって、撮影サンプルの構成物質が既知・未知に関わらず適用可能で、信頼度が高い物質情報(物質制約値m[1],…,m[N])を推定して、それを用いてアーティファクトを低減することができる。
【0069】
[再構成結果]
再構成結果について、
図6〜
図8を参照して説明する。
図6は、物質情報がないときの再構成結果であり、
図7は、物質情報を更新しないときの再構成結果であり、
図8は、物質情報を更新したときの再構成結果である。
図6や
図7では、斜め方向のスジ状アーティファクト(ストリークアーティファクト)が観察される。これらに対して本発明のように物質情報を更新した場合には、
図8ではアーティファクトがなくなり画質が改善したのが確認された。
【0070】
本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
【0071】
(1)上述した実施例では、断層撮影装置としてX線CT装置を例に採って説明したが、逐次近似法による再構成処理を行う断層撮影装置であれば、特に限定されない。磁気共鳴診断装置(MRI: Magnetic Resonance Imaging) や光CT装置やX線以外の放射線(α線、β線、γ線など)断層撮影装置などに適用してもよい。
【0072】
(2)上述した実施例では、
図1に示すような工業用や産業用の検査装置に適用したが、被検体を人体または小動物とした医用装置に適用してもよい。
【0073】
(3)単一波長X線(単色X線)や複数の波長からなるX線(多色X線)などに例示されるように、適用するX線の種類については特に限定されない。
【0074】
(4)上述した実施例では、
図1に示す撮影態様であったが、トモシンセシス(tomosynthesis) などに例示されるように、断層撮影に関する撮影態様については特に限定されない。
【0075】
(5)上述した実施例では、画像更新工程(
図2ではステップS1)での画像更新毎に再構成画像から物質情報(実施例では物質制約値m[1],…,m[N])を推定したが、一定間隔毎,一定の基準を満たすタイミングあるいは任意のタイミングに再構成画像から物質情報(物質制約値m[1],…,m[N])を推定してもよい。
【0076】
(6)上述した実施例でのヒストグラムについては、再構成画像の全画素から生成する場合に限らず、任意の画素集合、あるいはサンプリング周波数を下げる変換処理であるダウンサンプリング処理などの何らかの画像処理を適用した画像から生成することも可能である。
【0077】
(7)上述した実施例でのピーク検出(
図2のフローチャートのステップS3を参照)については、極値周辺の面積を考慮して検出することも可能である。
【0078】
(8)上述した実施例では、
図2のフローチャートに示すように、ステップS2の再構成画像のヒストグラムに基づいて、推定すべき物質情報(実施例では物質制約値m[1],…,m[N])を推定したが、
図9のフローチャートに示すように、再構成画像のクラスタリング結果に基づいて、推定すべき物質情報(物質制約値m[1],…,m[N])を推定してもよい。具体的には、クラスタの平均を用い、与えられたクラスタ数k個に分類するk-means法(「k平均法」とも呼ばれる)などに例示されるクラスタリング処理を再構成画素に対して適用し(ステップT2)、ステップT3で算出されたクラスタ重心を選定し(ステップT4)、選定されたクラスタ重心の位置の画素値を物質制約値とする(ステップT5)。
図9のフローチャートを実行することで、実施例に係る
図2のフローチャートと同等の効果が得られる。ここでのkは、実施例でのヒストグラムのビン番号を表すkと意味が相違することに留意されたい。