【実施例1】
【0014】
[構成] 本実施例によるカテーテルを適用したアブレーションカテーテル2は、
図4に示すように、腎動脈RAの内部から腎交感神経RNをアブレーションする為のカテーテルであって、上腕動脈等から大動脈Aを介して腎動脈RAの内部に挿入され、アブレーションカテーテル2の先端に設けた刺激印加手段である電極に高周波等を供給するよって対象組織を焼灼するアブレーションを行うものである。
【0015】
アブレーションカテーテルシステム1は、
図1、2及び
図7に示すように、大別して、体内の組織に刺激を印加する刺激印加手段として対象組織を加熱する電極28を先端に配置した長尺状のアブレーションカテーテル2と、この長尺状のアブレーションカテーテル2を長尺状円筒内部に収納しアブレーションカテーテル2先端に取り付けられた電極28を対象組織までガイドする為のカテーテルガイド3を備える。
【0016】
[アブレーションカテーテル2の説明] アブレーションカテーテル2は、
図1及び
図7に示すように、生体管腔(本実施例においては、腎動脈RA)の内壁の複数箇所に接する接触部であるコイル状に巻成された螺旋部21aが先端側に形成された長尺筒状内部に電線を配線したカテーテル本体21と、カテーテル本体21を操作するためのカテーテル操作部23と、螺旋部21aの先端に取り付けられた保持手段である膨縮可能なバルーン24と、バルーン24に流体を供給し駆動するための中空のシャフト部27とを備える。なお、前記螺旋部21aは、螺旋状の接触部であることから「螺旋状の接触手段」とも呼ぶ。 このアブレーションカテーテル2は、流体供給装置40からシャフト部27を介してバルーン24に流体を供給して膨縮させ、エネルギー供給装置である高周波電源25から、カテーテル本体21の内部を通る電線を介して、螺旋部21aに設けられた電極28に高周波電流を供給する。 なお、本実施例においては、電極28に供給するエネルギーを高周波電流としたが、これに限られず、例えば、超音波、ラジオ波、レーザー光、赤外線等であっても良い。
【0017】
アブレーションカテーテル2のカテーテル本体21は、可撓性かつ中空の長尺状であって、先端にコイル状に巻成された螺旋部21aを形成している。螺旋部21aは、
図2に示すように、アブレーションを行う為の加熱部であって、螺旋状の外側に電極28が複数配置され、高周波電源25からカテーテル本体21の内部に配設される電線を介して高周波電流が供給される。電極28の数は、全体で20個程度、螺旋状の一周あたり5〜8個とすることが好ましく、電極28同士の間隔は、3mm程度が好ましい。
【0018】
また、螺旋部21aは、螺旋形状に予め形状記憶され、外力をかけられると変形し、その外力が除かれると予め記憶した形状に戻る。 さらに、螺旋部21aは、コイル形状のため、シース31内に縮径して収納可能であると共に、シースから出せば所定の径まで広がり、シース31内に引き込めば再び縮径してシース31に収納することができる。 また、螺旋部21aは、
図2に示すように、螺旋部分の基端側(カテーテル操作部23側)が螺旋の略中心軸上に来るように直線とした直線部21bと先端側(カテーテル本体21のバルーン24を取り付けた側)が螺旋の略中心軸上に直線的に延出する延出部21cを有する。 螺旋部21aは、外力をかけられない状態の外径L3が、腎動脈RAの内径L4よりもわずかに大きく成るように形状記憶成形することにより、腎動脈RAに配置してシース31から突出させた際に拡がって腎動脈RAの内壁に電極28を密着させることができる。また、カテーテルガイド3のシース31の内部に収納されているときは、シース31の内径L1以下になるようにシース31の内壁に押し潰されて細長い状態となる。
【0019】
なお、本実施例においては、カテーテル本体21の先端に螺旋部21aを成形する構成としたが、螺旋形状に限られず、少なくとも接触部が生体管腔の内壁の複数箇所に接するように構成すればよい。 また、本実施例においては、螺旋部21aのみに電極28を設ける構成としたが、これに限られず、例えば延出部21cの先端にも電極28を設ける構成としてもよい。
【0020】
螺旋部21aから先端側に延出する延出部21cには、筒状の生体管腔内(本実施例においては腎動脈RA)で膨らませることにより、生体管腔の内壁から離間する位置(螺旋部21aの螺旋の中心軸の略延長線上)にカテーテル本体21の先端である延出部21cを保持するためのバルーン24が取り付けられている。 バルーン24は、略袋状形状で膨縮可能であり、流体供給装置40から中空のシャフト部27を介してシャフト部27の先端から供給される空気等の流体により膨張され、流体を吸引することにより収縮する。 バルーン24の径は、供給する流体量によって任意とすることができるが、
図3に示す如く、腎動脈RA内でのアブレーション時の径L2を腎動脈RAの径L4よりもわずかに大きく膨張させることにより、螺旋部21aが腎動脈RAによって過剰に圧縮されて変形されないようにすると共に、腎動脈RAにバルーン24を固定して螺旋部21aに設けられた電極28の接触位置をずれにくくする。
【0021】
シャフト部27は、
図8に示すように、カテーテル操作部23に形成された孔23e内に固定されない状態で挿通されることによりカテーテル操作部23内を軸方向にスライド可能となっており、カテーテル操作部23の孔23f内で固定されたカテーテル本体21の螺旋部21aの形状の変化に合わせてカテーテル操作部23からの突出量を調節することができる構成となっている。 この突出量の調節は、好ましくは、シャフト部27に固定されるピン23bと、ピン23bを移動させることができるようにカテーテル操作部23の長手方向に切り欠かれた横溝23cと、ピン23bの位置を固定することができるように短手方向に切り欠かれたロック溝23aとを備えるロック機構52により行い、例えば、螺旋部21aがシース31内にあるときはピン23bを先端側のロック溝23aに位置させ、螺旋部21aをシース31の先端から突出させるときには、ピン23bのロックを解除して横溝23cに沿って移動させ、螺旋部21aが最大径となるときには、ピン23bを基端側のロック溝23aに位置させる等、螺旋部21aの径に合わせてロック溝23aを選択することにより行う。
【0022】
また、シャフト部27には、バルーン24の膨縮に連動して膨縮するパイロットバルーン50及び流体の供給量を調節するバルブ51が設けられており、流体を供給したときにパイロットバルーン50がバルーン24と連動して膨縮するためバルーン24がどの程度膨縮したかが判断し易くなっている。 なお、本実施例においては、カテーテル操作部23にカテーテル本体21を固定し、シャフト部27を固定しない構成としたが、逆にカテーテル本体21を固定せず、シャフト部27を固定する構成としても良い。 また、シャフト部27は、上記に限られず、例えば螺旋部21aの形状変化を許容させる程度に撓みを持たせた状態でカテーテル本体21と隣接して接着する構成としても良く、またシャフト部を設けず、カテーテル本体内に流体供給路を設けてバルーンに流体を供給する構成としても良い。
【0023】
なお、本実施例においては、保持手段として流体供給により膨縮するバルーン24を設ける例を説明したが、これに限られず、延出部21cを螺旋部21aの略中心軸上に保持し且つ径を膨縮できるものであれば良く、例えば膨縮可能なワイヤを収縮・拡張自在に箱形に形成して組み込んだ籠状に形成してもよい。 また、寸法L1〜L5は、適用する体内管のサイズにより異なるが、例えば本実施例の腎動脈RAの場合であれば、L1は3〜4mm、L2は6〜10mm、L3は6〜10mm、L4は5〜10mm、L5は6〜12mmとすることができる。
【0024】
[カテーテルガイド3の説明] カテーテルガイド3は、
図1及び
図7に示すように、ガイド操作部34と、中心軸に沿って延びる中空状のシース31とを備え、ガイド操作部34に設けられたガイド湾曲ダイヤル33を回すことによって、シース31の先端側の可撓部分である湾曲部31aを湾曲させることができる。 また、ガイド操作部34には、シース31と連通するように長手方向に孔34aが形成され、アブレーションカテーテル2のカテーテル本体21を挿通させることができ、シース31の先端側からアブレーションカテーテル2の先端側を突没させることが可能となっている。
【0025】
カテーテルガイド3の湾曲部31aを湾曲させる構造は、図示しないが、例えば、シース31の長手方向に孔を形成し、その孔内にワイヤーを配設し、ワイヤー先端をシース31の先端に固定し、ワイヤーの基端を湾曲ダイヤル33と同軸に固定されたプーリに巻き付け、ガイド湾曲ダイヤル33を回動操作させてワイヤーを牽引することにより、牽引されたワイヤーが配設された側に湾曲部31aを湾曲させることができる。
【0026】
なお、本実施例においては、アブレーションカテーテル2とカテーテルガイド3を組み合わせる例を示したが、螺旋部21aを覆った状態で患部まで到達させることができれば良い為、これに限られず、例えば、カテーテルガイド3を使用せずにアブレーションカテーテルに直接、カテーテル本体を覆うように中空長尺状のシースを設け、操作部の操作によりシースとカテーテル本体との長手方向の相対位置を変化させることにより、シースからカテーテル本体の先端側が突没できるようにしても良い。
【0027】
[アブレーションカテーテルシステム1の使用及び収納の説明] 次に、
図4、
図6を参照して本実施例によるアブレーションカテーテル及びアブレーションカテーテルシステムの使用方法の一例を説明する。 まず、
図4に示す如く、バルーン24を収縮した状態としたアブレーションカテーテル2をカテーテルガイド3の内部に収納した状態で、上腕動脈等からカテーテルガイド3を挿入し、大動脈Aを通ってカ
テーテルガイド3の先端を腎動脈RA内部の任意の位置(例えば患部の手前の位置)に到達させる。 つぎに、
図6(a)に示す如く、アブレーションカテーテル3の先端側がシース31に収納されていた状態から、
図6(b)に示すように、バルーン24のみを腎動脈RA内に突出させる。このとき、バルーン24は、腎動脈RA内に引っ掛からない程度に膨張させておいても良い。
【0028】
そして、
図6(c)に示すようにバルーン24にシャフト部27を介して流体を供給することにより、腎動脈RAの径L4よりバルーン24の径L2を大きく膨張させ、バルーン24の位置を固定してから、シース31を牽引し、
図6(d)に示すように螺旋部21aを突出させる。このとき、螺旋部21aは、シース31の内壁による径方向の圧縮力から解放される為、予め記憶された形状に戻り、螺旋部21aの外径L3は、腎動脈RAの径L4よりもわずかに大きい為、腎動脈RAに密着し、電極28を確実に腎動脈に接触させることができる。
【0029】
そして、高周波電源25からカテーテル本体21の内部に配設される電線を介して電流を電極28に供給して電極28近傍の生体組織を加熱する。これにより、電極28の近傍に位置する腎交感神経RNの繊維に、例えば、壊死や熱変質を生じさせることができる。このとき、バルーン24を腎動脈RAの径L4と同程度若しくは少し小さくなる様に収縮させてカテーテル本体21を長手方向前後に動かすと、バルーンを適度に滑らせることができ、電極28の配置されていない螺旋部21aの螺旋の間も加熱することができる。 なお、本実施例においては、電極28全てに通電する構成とし、患部の範囲が短い場合は、螺旋部21aのシース31からの突出量を短くするなどして調節するが、これに限られず、例えば、複数ある電極28の先端側2分の1のみや4分の1のみなど、選択的に通電する構成としても良い。
【0030】
アブレーション後には、
図6(e)に示すように、バルーン24の外径をアブレーション時の径L4及び、螺旋部21aの径L3よりも大きくな径L5まで膨張させ、さらに強固に腎動脈RAに固定し、その状態で、カテーテル本体21を操作部23側に牽引すると共に、シース31を押し出す。 そうすることにより、腎動脈RAと螺旋部21aとの間に隙間が生じると共に、螺旋部21aは引き伸ばされて径が小さくなり、シース31に容易に収納することができる。その後、バルーン24内の流体を、シャフト部27を介して吸引し、シース31内に収納して、体外へアブレーションカテーテル2及びカテーテルガイド3を排出する。
【0031】
上記のように、螺旋部21aの先端にバルーン24を配置し膨張させることにより、螺旋部21aを目的の位置に容易に維持することができると共に、腎動脈RAによる圧縮力を受けにくくなる為、螺旋の形状が崩れにくく、内壁面に電極28を確実に当てる事ができる。また、バルーン24をある程度膨張させておくことにより、シース31からの突出、腎動脈RA内での移動の際に、先端が上下左右に振れたり、内壁面に引っ掛かることが無く安全である。 また、螺旋部21aをシース31に収納した状態で患部まで到達させることができるため、体内管内を傷つけることなく移動させることができ安全である。
【0032】
なお、腎動脈RA内の患部の範囲が広い場合や複数箇所に亘る場合には、一箇所施術が終わる毎に螺旋部21a及びバルーン24をシース31に収納した状態で移動させ、再度
図6(a)〜(e)の工程を繰り返すことにより、安全な施術を行うことができる。なお、電極28への通電をしない状態であれば、バルーン24を腎動脈RAにわずかに接触する程度に収縮させた状態で螺旋部21aを他の箇所に移動させても良い。
【0033】
[アブレーションカテーテルシステム1に適用する電極の説明] 本実施例によるアブレーションカテーテル2に設ける電極28は、
図5(a)に示すように、一つの電極内に、対となるように正極90と負極91を配置し、それらの間に絶縁材93を介装して通電するバイポーラ方式により患部をアブレーションすることもでき、
図5(b)に示すように、電極を正極94のみとして、対極板を患者の対表面に張り付けて通電するモノポーラ方式により患部をアブレーションすることもできる。なお、本実施例においては、高周波を使用した電極について説明するが、これに限られず、例えばマイクロ波等であっても良い。
【0034】
本実施例においては、電極28を複数設ける構成としており、モノポーラ方式であれば電極と対をなすのは患者の対表面に張り付けられた対極板である為電極28同士が接触しても問題ないが、バイポーラ方式を用いた場合には、電極28同士が接触してしまうとショートしてしまう為、接触させることはできない。 この点、本実施例によれば、螺旋部21aより先端側にバルーン24を設け、膨張させておくことにより、螺旋部21aの形状が腎動脈RAによる圧縮力により押し潰された形状となって電極28同士が接触することがなく、安全である。