特許第6571455号(P6571455)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱鉛筆株式会社の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6571455
(24)【登録日】2019年8月16日
(45)【発行日】2019年9月4日
(54)【発明の名称】筆記具用水性インク組成物
(51)【国際特許分類】
   C09D 11/16 20140101AFI20190826BHJP
   B43K 7/00 20060101ALN20190826BHJP
【FI】
   C09D11/16
   !B43K7/00
【請求項の数】3
【全頁数】12
(21)【出願番号】特願2015-170919(P2015-170919)
(22)【出願日】2015年8月31日
(65)【公開番号】特開2017-48275(P2017-48275A)
(43)【公開日】2017年3月9日
【審査請求日】2018年6月4日
(73)【特許権者】
【識別番号】000005957
【氏名又は名称】三菱鉛筆株式会社
(74)【代理人】
【識別番号】100112335
【弁理士】
【氏名又は名称】藤本 英介
(74)【代理人】
【識別番号】100101144
【弁理士】
【氏名又は名称】神田 正義
(74)【代理人】
【識別番号】100101694
【弁理士】
【氏名又は名称】宮尾 明茂
(74)【代理人】
【識別番号】100124774
【弁理士】
【氏名又は名称】馬場 信幸
(72)【発明者】
【氏名】西島 千裕
(72)【発明者】
【氏名】坂根 範子
(72)【発明者】
【氏名】中田 有亮
【審査官】 緒形 友美
(56)【参考文献】
【文献】 国際公開第2015/072344(WO,A1)
【文献】 特開2015−067722(JP,A)
【文献】 特開2006−274017(JP,A)
【文献】 特開2007−106810(JP,A)
【文献】 特開2009−161586(JP,A)
【文献】 特開2002−097399(JP,A)
【文献】 特開2004−051779(JP,A)
【文献】 特開2002−080770(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C09D 11/16
B43K 7/00
(57)【特許請求の範囲】
【請求項1】
酸化セルロースを0.05〜1.5質量%及び酸素吸収成分を少なくとも含有することを特徴とする筆記具用水性インク組成物。
【請求項2】
前記酸素吸収成分が、アスコルビン酸及びその誘導体、ポリフェノール類、構成単位として少なくともシステインを含むアミノ酸類及びその誘導体、コウジ酸、ビニルピロリドンのオリゴマー、亜硫酸塩から選ばれる少なくとも1種であることを特徴とする請求項1記載の筆記具用水性インク組成物。
【請求項3】
請求項1又は2に記載の筆記具用水性インク組成物を搭載したことを特徴とする筆記具。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、酸化セルロースを含有した筆記具用水性インク組成物に関する。
【背景技術】
【0002】
従来より、筆記具用インク組成物に用いられる剪断減粘性を示す増粘剤としては、天然系、天然物を化学修飾した半合成系、石油化学原料から化学合成される合成系のものが知られている。
【0003】
これらの中でセルロース由来の天然系増粘剤としては、セルロースそのものを物理的に微細に加工したもので知られており、粉末セルロース、発酵セルロース(バクテリアセルロース)、酸化セルロースなどが知られている。
これらのセルロースを利用した水性インク組成物としては、例えば、1)エーテル化度1.5以上のカルボキシルメチルセルロース(CMC)のアルカリ金属塩又はアンモニウム塩を含有することを特徴とする水性インク組成物(例えば、特許文献1参照)、2)少なくとも水、着色剤、発酵セルロースからなることを特徴とする水性ボールペン用インク組成物(例えば、特許文献2参照、3)特定物性となる酸化セルロース(セルロース繊維)と、着色剤及び隠蔽剤の少なくとも一つと、水とを含有することを特徴とする水性インク組成物(例えば、特許文献3参照)、4)酸化セルロースを0,05〜1.5質量%含有し、Cassonの式で導かれる極限粘度値が10mPa・s以下であることを特徴とする筆記具用水性インク組成物(例えば、特許文献4参照)などが知られている。
【0004】
しかしながら、上記特許文献1のCMCのアルカリ金属塩又はアンモニウム塩は、粘性が高く、顔料などの経時的な分散安定性を良好とするものでなかった。また、上記特許文献2の水性ボールペン用インク組成物における発酵セルロースは、繊細な繊維性粒子からなるものであり、チップ先端に柔らかい樹脂皮膜(セルロース繊維の皮膜)を形成せしめることによりドライアップ性能を向上させるものであり、インク粘度の調整などは、従来の剪断減粘性付与剤(キサンタンガム等)を併用するものであり、顔料などの経時的な分散安定性を向上させるものでなかった。
上記特許文献3の酸化セルロースを含有する水性インク組成物は、従来の増粘・ゲル化剤よりも優れたものであり、気温や着色剤、隠蔽剤の特性等に左右されず、着色剤や隠蔽剤の分散性に優れ、保存時の沈降分離が防止されたものであるが、経時的には粘度分布の不均一性(粘度の上下差)が発生しやすい性質を有しており、未だ十分な経時的な粘度分布安定性、ひいては経時的な分散安定性を達成できない点に課題があるのが現状である。
また、上記特許文献4の筆記具用水性インク組成物は、酸化セルロースを特定範囲で含有した上で、更に、極限粘度値を限定したものであり、今までにない保存安定性、経時安定性、描線品位に優れるものであるが、更なるインク品質等の向上が切望されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開昭62−124170号公報(特許請求の範囲、実施例等)
【特許文献2】特開2013−91730号公報(特許請求の範囲、実施例等)
【特許文献3】特開2013−181167号公報(特許請求の範囲、実施例等)
【特許文献4】特開2015−67722号公報(特許請求の範囲、実施例等)
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、上記従来技術の課題及び現状に鑑み、これを解消しようとするものであり、酸化セルロースを用いた場合の筆記具用水性インク組成物の課題である経時の粘度分布の不均一性(粘度の上下差)を抑制し、経時的な粘度分布安定性に優れた筆記具用水性インク組成物を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明者らは、上記従来の課題等に鑑み、鋭意研究を行った結果、酸化セルロースと共に、特定物性の成分を含有することにより、上記目的の筆記具用水性インク組成物が得られることを見出し、本発明を完成するに至ったのである。
【0008】
すなわち、本発明は、次の(1)〜(3)に存する。
(1) 酸化セルロースを0.05〜1.5質量%及び酸素吸収成分を少なくとも含有することを特徴とする筆記具用水性インク組成物。
(2) 前記酸素吸収成分が、アスコルビン酸及びその誘導体、ポリフェノール類、構成単位として少なくともシステインを含むアミノ酸類及びその誘導体、コウジ酸、ビニルピロリドンのオリゴマー、亜硫酸塩から選ばれる少なくとも1種であることを特徴とする上記(1)記載の筆記具用水性インク組成物。
(3) 上記(1)又は(2)に記載の筆記具用水性インク組成物を搭載したことを特徴とする筆記具。
【発明の効果】
【0009】
本発明によれば、酸化セルロース含有水性インク組成物の課題である経時的な粘度分布の不均一性(粘度の上下差)を抑制して、経時的な粘度分布安定性に優れた筆記具用水性インク組成物が提供される。
【発明を実施するための形態】
【0010】
以下に、本発明の実施形態を詳しく説明する。
本発明の筆記具用水性インク組成物は、酸化セルロースを0.05〜1.5質量%及び酸素吸収成分を少なくとも含有することを特徴とするものである。
【0011】
<酸化セルロース>
本発明に用いる酸化セルロースは、セルロースI型結晶構造を有すると共に、セルロース〔(C10)n:多数のβグルコース分子がグリコシド結合により直鎖状に重合した天然高分子〕を構成するβグルコースの水酸基(−OH基)の一部がアルデヒド基(−CHO)およびカルボキシル基(−COOH基)の少なくとも一つの官能基で変性したものであれば特に限定されず、例えば、上記βグルコースの少なくともC6位の水酸基(−OH基)を酸化しアルデヒド基(−CHO)およびカルボキシル基(−COOH基)に変性したものが挙げられる。
【0012】
本発明に用いる酸化セルロースは、I型結晶構造を有する天然物由来のセルロース固体原料を表面酸化し、ナノサイズにまで微細化した繊維である。一般に、原料となる、天然物由来のセルロースは、ほぼ例外なくミクロフィブリルと呼ばれるナノファイバーが多束化して高次構造を取っているため、そのままでは容易にはナノサイズにまで微細化して分散させることができないものである。本発明の酸化セルロースでは、セルロース繊維の水酸基の一部を酸化しアルデヒド基およびカルボキシル基を導入し、ミクロフィブリル間の強い凝集力の原動力となっている表面間の水素結合を弱めて、分散処理し、ナノサイズにまで微細化したものである。
【0013】
本発明では、上記物性の酸化セルロースと後述する特定の糖類を用いることで、本発明の効果を発揮できるものであり、好ましくは、酸化セルロースの数平均繊維径が2〜150nmとなるものが望ましい。
分散安定性の点から、更に好ましくは、数平均繊維径が3〜80nmとなるものが望ましい。この酸化セルロースの数平均繊維径を2nm以上とすることにより、分散媒体としての機能を発揮せしめ、逆に数平均繊維径を150nm以下とすることにより、セルロース繊維そのものの分散安定性を更に向上させることができる。
本発明において、上記数平均繊維径は、例えば、次のようにして測定することができる。すなわち、セルロース繊維に水を加え希釈した試料を分散処理し、親水化処理済みのカーボン膜被覆グリッド上にキャストして、これを透過型電子顕微鏡(TEM)で観察し、得られた画像から、数平均繊維径を測定算出することができる。
また、上記特定のセルロース繊維を構成するセルロースが、天然物由来のI型結晶構造を有することは、例えば、広角X線回折像測定により得られる回折プロファイルにおいて、2シータ=14〜17°付近と、2シータ=22〜23°付近の2つの位置に典型的なピークを持つことから同定することができる。
【0014】
本発明に用いる酸化セルロースの製造は、例えば、天然セルロースを原料とし、水中においてN−オキシル化合物を酸化触媒とし、共酸化剤を作用させることにより該天然セルロースを酸化して反応物繊維を得る酸化反応工程、不純物を除去して水を含浸させた反応物繊維を得る精製工程、および水を含浸させた反応物繊維を溶媒に分散させる分散工程の少なくとも3つの工程により得ることができる。
【0015】
上記酸化反応工程では、水中に天然セルロースを分散させた分散液を調製する。ここで、天然セルロースは、植物,動物,バクテリア産生ゲル等のセルロースの生合成系から単離した精製セルロースを意味する。より具体的には、針葉樹系パルプ、広葉樹系パルプ、コットンリンターやコットンリントのような綿系パルプ、麦わらパルプやバガスパルプ等の非木材系パルプ、BC、ホヤから単離されるセルロース、海草から単離されるセルロ
ースなどを挙げることができるが、これに限定されるものではない。天然セルロースは好ましくは、叩解等の表面積を高める処理を施すと、反応効率を高めることができ、生産性を高めることができる。さらに、天然セルロースとして、単離、精製の後、ネバードライで保存していたものを使用するとミクロフィブリルの集束体が膨潤し易い状態であるため、やはり反応効率を高め、微細化処理後の数平均繊維径を小さくすることができ、好ましい。
反応における天然セルロースの分散媒は水であり、反応水溶液中の天然セルロース濃度は、試薬の十分な拡散が可能な濃度であれば任意であるが、通常、反応水溶液の重量に対して約5%以下である。
【0016】
また、セルロースの酸化触媒として使用可能なN−オキシル化合物は数多く報告されている(「Cellulose」Vol.10、2003年、第335〜341ページにおけるI. Shibata及びA. Isogaiによる「TEMPO誘導体を用いたセルロースの触媒酸化:酸化生成物のHPSEC及びNMR分析」と題する記事)が、特にTEMPO(2,2,6,6−テトラメチル−1−ピペリジン−N−オキシル)、4−アセトアミド−TEMPO、4−カルボキシ−TEMPO、及び4−フォスフォノオキシ−TEMPOは水中常温での反応速度において好ましい。これらN−オキシル化合物の添加は触媒量で十分であり、好ましくは0.1〜4mmol/l、さらに好ましくは0.2〜2mmol/lの範囲で反応水溶液に添加する。
【0017】
共酸化剤として、次亜ハロゲン酸またはその塩、亜ハロゲン酸またはその塩、過ハロゲン酸またはその塩、過酸化水素、および過有機酸などが本発明において使用可能であるが、好ましくはアルカリ金属次亜ハロゲン酸塩、例えば、次亜塩素酸ナトリウムや次亜臭素酸ナトリウムである。次亜塩素酸ナトリウムを使用する場合、臭化アルカリ金属、たとえば臭化ナトリウムの存在下で反応を進めることが反応速度において好ましい。この臭化アルカリ金属の添加量は、N−オキシル化合物に対して約1〜40倍モル量、好ましくは約10〜20倍モル量である。一般に共酸化剤の添加量は、天然セルロース1gに対して約0.5〜8mmolの範囲で選択することが好ましく、反応は約5〜120分、長くとも240分以内に完了する。
反応水溶液のpHは約8〜11の範囲で維持されることが好ましい。水溶液の温度は約4〜40℃において任意であるが、反応は室温で行うことが可能であり、特に温度の制御は必要としない。
【0018】
精製工程においては、未反応の次亜塩素酸や各種副生成物等の反応スラリー中に含まれる反応物繊維と水以外の化合物を系外へ除去するが、反応物繊維は通常、この段階ではナノファイバー単位までばらばらに分散しているわけではないため、通常の精製法、すなわち水洗とろ過を繰り返すことで高純度(99質量%以上)の反応物繊維と水の分散体とする。該精製工程における精製方法は遠心脱水を利用する方法(例えば、連続式デカンダー)のように、上述した目的を達成できる装置であればどんな装置を利用しても構わない。
こうして得られる反応物繊維の水分散体は絞った状態で固形分(セルロース)濃度としておよそ10質量%〜50質量%の範囲にある。この後の工程で、ナノファイバーへ分散させる場合は、50質量%よりも高い固形分濃度とすると、分散に極めて高いエネルギーが必要となることから好ましくない。
【0019】
さらに、本発明では、上述した精製工程にて得られる水を含浸した反応物繊維(水分散体)を溶媒中に分散させ分散処理を施すことにより、酸化セルロースの分散体を得ることができ、この分散体を乾燥させて用いる酸化セルロースとすることができる。
ここで、分散媒としての溶媒は通常は水が好ましいが、水以外にも目的に応じて水に可溶するアルコール類(メタノール、エタノール、イソプロパノール、イソブタノール、sec−ブタノール、tert−ブタノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール、グリセリン等)、エーテル類(エチレングリコールジメチルエーテル、1,4−ジオキサン、テトラヒドロフラン等)、ケトン類(アセトン、メチルエチルケトン)やN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキサイド等を使用してもよい。また、これらの混合物も好適に使用できる。さらに、上述した反応物繊維の分散体を溶媒によって希釈、分散する際には、少しずつ溶媒を加えて分散していく、段階的な分散を試みると効率的にナノファイバーレベルの繊維の分散体を得ることができることがある。操作上の問題から、分散工程後の状態は粘性のある分散液あるいはゲル状の状態となるように分散条件を選択することができる。用いる酸化セルロースは、上記酸化セルロースの分散体でもよいものである。
なお、本発明で用いることができる酸化セルロースは、上記製造法などに限定されるものでなく、上記セルロースの水酸基(−OH基)の一部がアルデヒド基(−CHO)およびカルボキシル基(−COOH基)の少なくとも一つの官能基で変性したものであればその製造法は特に限定されるものではない。
【0020】
<筆記具用水性インク組成物>
本発明の筆記具用水性インク組成物は、少なくとも上記酸化セルローを0.05〜1.5質量%及び酸素吸収成分を含有することを特徴とするものであり、例えば、水性のボールペンなどの筆記具用インク組成物として使用に供される。
本発明において、上記酸化セルロースの含有量(固形分量)は、筆記具用水性インク組成物中(全量)に対して、0.05〜1.5質量%(以下、単に「%」という)、好ましくは、0.1〜1.0%とすることが望ましい。
この酸化セルロースの含有量が0.05%未満では、充分な増粘作用が得られず、顔料などの固形分の経時的な沈降が発生することがあり、一方、1.5%を超えると、粘度が高くなるため、筆記描線の線割れ現象やインクの吐出不良が発生することがあるので好ましくない。
【0021】
本発明で用いる酸素吸収成分は、酸化セルロースを用いた場合のインクの経時的な粘度分布の不均一性(粘度の上下差)を抑制する成分となるものであり、インク組成物中の溶存酸素濃度を減じる効果を有する成分(物質)であれば、特に限定されず、各種の酸素吸収成分を用いることができる。なお、酸素吸収性能の測定にあたっては、市販されている溶存酸素測定器、例えば、DO402G(横河電機社製)を利用して、通常の手法に従い、酸素吸収成分添加前後におけるインク中の溶存酸素濃度を測定することで確認することができる。
好ましい酸素吸収成分としては、アスコルビン酸及びその誘導体、ポリフェノール類、構成単位として少なくともシステインを含むアミノ酸類及びその誘導体、コウジ酸、ビニルピロリドンのオリゴマー、亜硫酸塩から選ばれる少なくとも1種(各単独又は2種以上の混合物)が挙げられる。
【0022】
用いることができるアスコルビン酸としては、L体、D体、及びDL体のいずれであってもよいが、入手性等の点からL体が好ましい。
アスコルビン酸の誘導体としては、例えば、アスコルビン酸ナトリウム、アスコルビン酸カリウム、アスコルビン酸カルシウム、アスコルビン酸リン酸エステル、アスコルビン酸リン酸エステルのマグネシウム塩、アスコルビン酸硫酸エステル、アスコルビン酸硫酸エステル2ナトリウム塩、アスコルビン酸ステアリン酸エステル、アスコルビン酸2−グルコシド、アスコルビル酸パルミチン酸エステル、テトライソパルミチン酸アスコルビル等;ステアリン酸アスコルビルエステル、テトライソパルミチン酸アスコルビルエステル、パルミチン酸アスコルビルエステル等のアスコルビン酸の脂肪酸エステル類等を挙げることができる。
【0023】
用いることができるポリフェノール類としては、例えば、カテキン、没食子酸類(没食子酸、没食子酸プロピル)、カテコール、ピロガロール、ハイドロキノンなどが挙げられる。また、これらの化合物は、天然物由来の抽出物中に多く含まれるため、抽出物という状態で利用することができ、例えば、ローズマリー抽出物、月見草抽出物などが挙げられる。
用いることができる構成単位として少なくともシステインを含むアミノ酸類及びその誘導体としては、例えば、(L−)システイン、N−アセチル−L−システイン、(L−)システイン塩酸塩、(L−)システインエチルエステル塩酸塩、(L−)システインメチルエステル塩酸塩、グルタチオン(グルタミン酸・システイン・グリシンのトリペプチド)、酸化型グルタチオン、γ−L−グルタミル−L−システイン(グルタミン酸・システインのジペプチド)などが挙げられる。
用いることができるビニルピロリドン(N−ビニル−2−ピロリドン)のオリゴマーは、−〔CNO〕n−の直鎖重合物(平均重合度n)であり、多種の機能を有するものであるが、本発明では酸素吸収能を発現するものである。このビニルピロリドンのオリゴマーは、その平均重合度nはインク粘度、酸素吸収性能等の点から、好ましくは2〜20のものが用いられ、また、インク中に重合度の異なるオリゴマーを2種以上併用してもよいものである。
用いることができる亜硫酸塩としては、例えば、亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸カルシウムなどが挙げられる。
これらの酸素吸収成分の中でも、少量でも十分な効果が得られる点、価格の点から、L−アスコルビン酸、L−アスコルビン酸ナトリウム、カテキン、コウジ酸、N−アセチル−L−システイン、亜硫酸ナトリウム、亜硫酸カリウムが好ましい。
【0024】
上記酸素吸収成分の含有量は、筆記具用水性インク組成物中(全量)に対して、0.01〜5%とすることが好ましく、より好ましくは、0.1〜3%とすることが望ましい。
この酸素吸収成分の含有量が0.01%未満では、本発明の効果の発揮することができず、一方、5%を超えると、インクの安定性が損なわれることがある。
【0025】
本発明の筆記具用水性インク組成物には、上記酸化セルロース、酸素吸収成分の他、少なくとも着色剤、水溶性溶剤が含有される。
用いることができる着色剤としては、顔料及び/又は水溶性染料が挙げられる。顔料の種類については特に制限はなく、従来水性ボールペンなどの筆記具用に慣用されている無機系及び有機系顔料の中から任意のものを使用することができる。
【0026】
無機系顔料としては、例えば、カーボンブラックや、金属粉等が挙げられる。
また、有機系顔料としては、例えば、アゾレーキ、不溶性アゾ顔料、キレートアゾ顔料、フタロシアニン顔料、ペリレン及びペリノン顔料、アントラキノン顔料、キナクリドン顔料、染料レーキ、ニトロ顔料、ニトロソ顔料などが挙げられる。具体的には、フタロシアニンブルー(C.I.74160)、フタロシアニングリーン(C.I.74260)、ハンザイエロー3G(C.I.11670)、ジスアゾイエローGR(C.I.21100)、パーマネントレッド4R(C.I.12335)、ブリリアントカーミン6B(C.I.15850)、キナクリドンレッド(C.I.46500)などが使用できる。
また、スチレンやアクリル樹脂の粒子から構成されているプラスチックピグメントも使用できる。さらに、粒子内部に空隙のある中空樹脂粒子は白色顔料として、または、発色性、分散性に優れる後述する塩基性染料で染色した樹脂粒子(擬似顔料)等も使用できる。
【0027】
水溶性染料としては、直接染料、酸性染料、食用染料、塩基性染料のいずれも用いることができる。
直接染料としては、例えば、C.I.ダイレクトブラック17、同19、同22、同32、同38、同51、同71、C.I.ダイレクトエロー4、同26、同44、同50、C.I.ダイレクトレッド1、同4、同23、同31、同37、同39、同75、同80、同81、同83、同225、同226、同227、C.I.ダイレクトブルー1、同15、同71、同86、同106、同119などが挙げられる。
酸性染料としては、例えば、C.I.アシッドブラック1、同2、同24、同26、同31、同52、同107、同109、同110、同119、同154、C.I.アシッドエロー7、同17、同19、同23、同25、同29、同38、同42、同49、同61、同72、同78、同110、同127、同135、同141、同142、C.I.アシッドレッド8、同9、同14、同18、同26、同27、同35、同37、同51、同52、同57、同82、同87、同92、同94、同115、同129、同131、同186、同249、同254、同265、同276、C.I.アシッドバイオレット18、同17、C.I.アシッドブルー1、同7、同9、同22、同23、同25、同40、同41、同43、同62、同78、同83、同90、同93、同103、同112、同113、同158、C.I.アシッドグリーン3、同9、同16、同25、同27などが挙げられる。
食用染料としては、その大部分が直接染料又は酸性染料に含まれるが、含まれないものの一例としては、C.I.フードエロー3が挙げられる。
塩基性染料としては、例えば、C.I.ベーシックエロー1、同2、同21、C.I.ベーシックオレンジ2、同14、同32、C.I.ベーシックレッド1、同2、同9、同14、C.I.ベーシックブラウン12、ベーシックブラック2、同8などが挙げられる。
また、塩基性染料で染色した樹脂粒子としては、アクリロニトリル系共重合体の樹脂粒子を塩基性蛍光染料で染色した蛍光顔料などが挙げられる。具体的な商品名として、シンロイヒカラーSFシリーズ(シンロイヒ株式会社)、NKW及びNKPシリーズ(日本蛍光化学株式会社)などが挙げられる。
【0028】
これらの着色剤は、それぞれ単独で用いてもよいし、2種類以上を組み合わせてもよく、筆記具用水性インク組成物全量中の含有量は、通常、0.5〜30%、好ましくは、1〜15%の範囲である。
この着色剤の含有量が、0.5%未満では、着色が弱くなったり、筆跡の色相がわからなくなってしまうことがあり、一方、30%を超えて含有した場合に、筆記不良を生じることがあるので好ましくない。
【0029】
用いることができる水溶性溶剤としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ポリエチレングリコール、3−ブチレングリコール、チオジエチレングリコール、グリセリン等のグリコール類や、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、単独或いは混合して使用することができる。この水溶性溶剤の含有量は、筆記具用水性インク組成物全量中、5〜40%とすることが望ましい。
【0030】
本発明の筆記具用水性インク組成物には、上記酸化セルロース、酸素吸収成分、着色剤、水溶性溶剤の他、残部として溶媒である水(水道水、精製水、蒸留水、イオン交換水、純水等)の他、本発明の効果を損なわない範囲で、分散剤、潤滑剤、pH調整剤、防錆剤、防腐剤もしくは防菌剤などを適宜含有することができる。
【0031】
着色剤として顔料を用いた場合には、分散剤を使用することが好ましい。この分散剤は、顔料表面に吸着して、水との親和性を向上させ、水中に顔料を安定に分散させる作用をするものであり、ノニオン、アニオン界面活性剤や水溶性樹脂が用いられる。好ましくは水溶性高分子が用いられる。
潤滑剤としては、顔料の表面処理剤にも用いられる多価アルコールの脂肪酸エステル、糖の高級脂肪酸エステル、ポリオキシアルキレン高級脂肪酸エステル、アルキル燐酸エステルなどのノニオン系や、高級脂肪酸アミドのアルキルスルホン酸塩、アルキルアリルスルホン酸塩などのアニオン系、ポリアルキレングリコールの誘導体やフッ素系界面活性剤、ポリエーテル変性シリコーンなどが挙げられる。
【0032】
pH調整剤としては、アンモニア、尿素、モノエタノーアミン、ジエタノールアミン、トリエタノールアミンや、トリポリリン酸ナトリウム、炭酸ナトリウムなとの炭酸やリン酸のアルカリ金属塩、水酸化ナトリウムなどのアルカリ金属の水和物などが挙げられる。また、防錆剤としては、ベンゾトリアゾール、トリルトリアゾール、ジシクロへキシルアンモニウムナイトライト、サポニン類など、防腐剤もしくは防菌剤としては、フェノール、ナトリウムオマジン、安息香酸ナトリウム、ベンズイミダゾール系化合物などが挙げられる。
【0033】
本発明の筆記具用水性インク組成物は、上記酸化セルロース、酸素吸収成分、着色剤、水溶性溶剤、その他の各成分を筆記具用(ボールペン用、マーキングペン用等)インクの用途に応じて適宜組み合わせて、ホモミキサー、ホモジナイザーもしくはディスパー等の攪拌機により攪拌混合することにより、更に必要に応じて、ろ過や遠心分離によってインク組成物中の粗大粒子を除去すること等によって筆記具用水性インク組成物を調製することができる。
水性ボールペン用では、該筆記具用水性インク組成物を、直径が0.18〜2.0mmのボールを備えた水性ボールペン体に充填することにより作製することができる。
用いる水性ボールペン体として、直径が上記範囲のボールを備えたものであれば、特に限定されず、特に、上記水性インク組成物をポリプロピレンチューブのインク収容管に充填し、先端のステンレスチップ(ボールは超鋼合金)を有するリフィールの水性ボールペンに仕上げたものが望ましい。
【0034】
本発明の筆記具用水性インク組成物の製造方法は、他の水性インク組成物の製造方法と比べて特に変わるところはなく製造することができる。
すなわち、本発明の筆記具用水性インク組成物は、上述した酸化セルロース、酸素吸収成分を含む各成分をミキサー等、更に、例えば、強力な剪断を加えることができるビーズミル、ホモミキサー、ホモジナイザー、高圧ホモジナイザー、超音波ホモジナイザー、高圧湿式メディアレス微粒化装置等を用いて撹拌条件を好適な条件に設定等して混合攪拌することによって、チキソトロピー性インク(例えば、ゲルインク水性ボールペン用インク)を製造することができる。
また、本発明の筆記具用水性インク組成物のpH(25℃)は、使用性、安全性、インク自身の安定性、インク収容体とのマッチング性の点からpH調整剤などにより5〜10に調整されることが好ましく、更に好ましくは、6〜9.5とすることが望ましい。
【0035】
本発明の筆記具用水性インク組成物は、ボールペンチップ、繊維チップ、フェルトチップ、プラスクチップなどのペン先部を備えたボールペン、マーキングペン等に搭載される。
本発明におけるボールペンとしては、上記組成の筆記具用水性インク組成物をボールペン用インク収容体(リフィール)に収容すると共に、該インク収容体内に収容された水性インク組成物とは相溶性がなく、かつ、該水性インク組成物に対して比重が小さい物質、例えば、ポリブテン、シリコーンオイル、鉱油等がインク追従体として収容されるものが挙げられる。
なお、ボールペン、マーキングペンの構造は、特に限定されず、例えば、軸筒自体をインク収容体として該軸筒内に上記構成の筆記具用水性インク組成物を充填したコレクター構造(インク保持機構)を備えた直液式のボールペン、マーキングペンであってもよいものである。
【0036】
このように構成される本発明の筆記具用水性インク組成物にあっては、用いる酸化セルロースが筆記具用水性インク組成物中に0.05〜1.5%の低粘度であっても高い粘性を示し、かつ、セルロースに固有の高いチキソトロピーインデックスを示すため、筆記具用水性インク組成物の増粘・ゲル化剤として、従来の微細セルロースや、キサンタンガムより少量でレオロジーコントロール効果を発揮すると共に、該酸化セルロースを用いた場合における経時的な粘度分布の不均一性(粘度の上下差)を、酸素吸収成分を含有せしめることにより抑制して、経時的な粘度分布安定性に優れた筆記具用水性インク組成物が得られることとなる。
【実施例】
【0037】
次に、実施例及び比較例により本発明を更に詳細に説明するが、本発明は下記実施例等に限定されるものではない。
【0038】
〔実施例1〜6及び比較例1〕
下記物性となる酸化セルロースを用いて、下記表1に示す配合組成、具体的には、各種酸素吸収成分、着色剤などの配合組成により各筆記具用水性インク組成物の所定量を高圧湿式メディアレス微粒化装置(吉田機械興業社製、ナノヴェイタ)を用いて撹拌条件(剪断力、圧力、撹拌時間)を適宜変動させて湿式法で混合撹拌し、10μmのバッグフィルターで濾過することにより調製した。各筆記具用水性インク組成物の室温(25℃)下のpHをpH測定計(HORIBA社製)で測定したところ、7.9〜8.2の範囲内であった。
【0039】
上記実施例1〜6及び比較例1で得られた筆記具用水性インク組成物について、下記方法で粘度値を測定した。
粘度値の測定に際しては、ガラス瓶2.5×2.5×5cm〔インク充填高さ(ガラス瓶内の底部からインクが充填された上面の高さ):4cm〕にて室温下で一ヶ月間保管した後、シリンジを用いてガラス瓶上部付近(インク充填高さ上部より0.5cm付近)のインクをとり、また、上記と同様にガラス瓶下部付近(インク充填高さ底部より0.5cm付近)のインクをとり、EMD型粘度計(東京計器社製)により、25℃における剪断速度38.3−1の粘度値を測定した。なお、本発明において、良好な粘度分布としては、上記条件下では、粘度の上下比(上/下)が0.9〜2の範囲となるものが好ましいものとなる。
【0040】
次に、上記実施例1〜6及び比較例1で得られた筆記具用水性インク組成物について、下記方法により水性ボールペンを作製して、下記評価方法で筆記性(上下描線濃度差)の評価を行った。
これらの結果を下記表1に示す。
【0041】
〔用いた酸化セルロース〕
乾燥重量で2g相当分の未乾燥の亜硫酸漂白針葉樹パルプ(主に1000nmを超える繊維径の繊維から成る)、0.025gのTEMPOおよび0.25gの臭化ナトリウムを水150mlに分散させた後、13重量%次亜塩素酸ナトリウム水溶液を、1gのパルプに対して次亜塩素酸ナトリウムの量が2.5mmolとなるように次亜塩素酸ナトリウムを加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10.5に保った。pHに変化が見られなくなった時点で反応終了と見なし、反応物をガラスフィルターにてろ過した後、十分な量の水による水洗、ろ過を5回繰り返し、固形分量25質量%の水を含浸させた反応物繊維を得た。
次に、該反応物繊維に水を加え、2質量%スラリーとし、回転刃式ミキサーで約5分間の処理を行った。処理に伴って著しくスラリーの粘度が上昇したため、少しずつ水を加えていき固形分濃度が0.15質量%となるまでミキサーによる分散処理を続けた。こうして得られたセルロース濃度が0.15質量%の酸化セルロースの分散体に対して、遠心分離により浮遊物の除去を行った後、水による濃度調製を行ってセルロース濃度が0.1質量%の透明かつやや粘調な酸化セルロースの分散体を得た。この分散体を乾燥させて得られた酸化セルロースを用いた。なお、表1の各実施例等に示した酸化セルロースは、上記で製造したものを各実施例等の固形分濃度で表示したものである。
【0042】
上記で得た酸化セルロースの数平均繊維径は、下記方法により、確認、測定した。
<数平均繊維径>
酸化セルロースの数平均繊維径を、次のようにして測定した。
すなわち、酸化セルロースに水を加え希釈した試料をホモミキサーを用いて12000rpmで15分間分散した後、親水化処理済みのカーボン膜被覆グリッド上にキャストして、これを透過型電子顕微鏡(TEM)で観察し、得られた画像から、数平均繊維径を測定算出した。その結果、数平均繊維径は約140nmであった。
【0043】
<セルロースI型結晶構造の確認>
用いる酸化セルロースがI型結晶構造を有することの確認を次のようにして行った。
すなわち、広角X線回折像測定により得られた回折プロファイルにおいて、2シータ=14〜17°付近と、2シータ=22〜23°付近の2つの位置に典型的なピークを持つことからI型結晶構造を有することを確認した。
【0044】
(水性ボールペンの作製)
上記で得られた各インク組成物を用いて水性ボールペンを作製した。具体的には、ボールペン〔三菱鉛筆株式会社製、商品名:シグノUM−100〕の軸を使用し、内径4.0mm、長さ113mmポリプロピレン製インク収容管とステンレス製チップ(超硬合金ボール、ボール径0.7mm)及び該収容管と該チップを連結する継手からなるリフィールに上記各水性インクを充填し、インク後端に鉱油を主成分とするインク追従体を装填し、水性ボールペンを作製した。
【0045】
〔筆記性(上下描線濃度差)の評価方法〕
得られた各水性ボールペンを、室温下で、1ヶ月放置後、終筆まで筆記をし、書き始めと描き終わりの描線の濃度差を比較し、下記評価基準で評価した。
評価基準:
○:濃度差がない。
△:やや濃度差が認められる。
×:濃度差がはっきりと認められる。
【0046】
【表1】
【0047】
上記表1の結果から明らかなように、本発明となる実施例1〜6の筆記具用水性インク組成物は、本発明の範囲外となる比較例1に較べ、満足のいく経時的な粘度分布の均一性が保たれ、上下描線濃度差もなく筆記性にも優れることが判明した。
【産業上の利用可能性】
【0048】
水性のボールペン、マーキングペンなどの筆記具に好適な筆記具用水性インク組成物が得られる。