特許第6571895号(P6571895)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ バナディス ダイアグノスティクスの特許一覧

<>
  • 特許6571895-核酸プローブ及びゲノム断片検出方法 図000002
  • 特許6571895-核酸プローブ及びゲノム断片検出方法 図000003
  • 特許6571895-核酸プローブ及びゲノム断片検出方法 図000004
  • 特許6571895-核酸プローブ及びゲノム断片検出方法 図000005
  • 特許6571895-核酸プローブ及びゲノム断片検出方法 図000006
  • 特許6571895-核酸プローブ及びゲノム断片検出方法 図000007
  • 特許6571895-核酸プローブ及びゲノム断片検出方法 図000008
  • 特許6571895-核酸プローブ及びゲノム断片検出方法 図000009
  • 特許6571895-核酸プローブ及びゲノム断片検出方法 図000010
  • 特許6571895-核酸プローブ及びゲノム断片検出方法 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】6571895
(24)【登録日】2019年8月16日
(45)【発行日】2019年9月4日
(54)【発明の名称】核酸プローブ及びゲノム断片検出方法
(51)【国際特許分類】
   C12Q 1/6813 20180101AFI20190826BHJP
   C12Q 1/6876 20180101ALI20190826BHJP
   C12N 15/09 20060101ALI20190826BHJP
【FI】
   C12Q1/6813 ZZNA
   C12Q1/6876 Z
   C12N15/09 Z
【請求項の数】17
【全頁数】44
(21)【出願番号】特願2019-110035(P2019-110035)
(22)【出願日】2019年6月13日
(62)【分割の表示】特願2016-535002(P2016-535002)の分割
【原出願日】2014年11月26日
【審査請求日】2019年6月21日
(31)【優先権主張番号】1321191.7
(32)【優先日】2013年12月2日
(33)【優先権主張国】GB
【早期審査対象出願】
(73)【特許権者】
【識別番号】516154026
【氏名又は名称】バナディス ダイアグノスティクス
(74)【代理人】
【識別番号】100149294
【弁理士】
【氏名又は名称】内田 直人
(72)【発明者】
【氏名】ダール,カール オスカー,フレドリク
(72)【発明者】
【氏名】エリクソン,ジョン,ウロフ
【審査官】 山本 匡子
(56)【参考文献】
【文献】 特表2003−535599(JP,A)
【文献】 国際公開第2012/168803(WO,A1)
【文献】 特表2008−527979(JP,A)
【文献】 特表2009−535050(JP,A)
【文献】 特表2008−518639(JP,A)
【文献】 特表2016−537989(JP,A)
【文献】 特表2007−537751(JP,A)
【文献】 国際公開第2007/083766(WO,A1)
【文献】 米国特許出願公開第2013/0224729(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C12Q 1/00−3/00
C12N 15/00−90
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS/WPIDS(
STN)
PubMed
(57)【特許請求の範囲】
【請求項1】
(a)以下の(i)〜(iii):
(i)10〜100ヌクレオチドの長さを有し、かつ、ヒトゲノムDNAの配列である一本鎖標的核酸断片に相補的である内在性標的相補配列、
(ii)ヒトゲノムDNAに相補的でない、少なくとも10ヌクレオチドの長さを有する上流フランキング配列、及び
(iii)ヒトゲノムDNAに相補的でない、少なくとも10ヌクレオチドの長さを有する下流フランキング配列
を含むターゲティングオリゴヌクレオチド、並びに、
(b)ヘッド配列及びテール配列であって、それぞれ遊離5’及び3’末端を有し、それぞれ上流フランキング配列及び下流フランキング配列に相補的である、ヘッド配列及びテール配列を有する第二のオリゴヌクレオチド
を含み、
標的核酸断片が存在しない場合に、ターゲティングオリゴヌクレオチドと第二のオリゴヌクレオチドのハイブリダイゼーションにより、内在性標的相補配列が一本鎖である環状核酸を形成する、核酸プローブ。
【請求項2】
標的相補配列がヒト21番染色体の配列である、請求項1に記載のプローブ。
【請求項3】
ヘッド配列又はテール配列の少なくとも一方がカスタム配列に結合しており、カスタム配列がプローブの他の領域又は標的断片に相補的でない、請求項1に記載のプローブ。
【請求項4】
標的相補配列が10〜40ヌクレオチドの長さを有する、請求項1に記載のプローブ。
【請求項5】
フランキング配列がそれぞれ10〜40ヌクレオチドの長さを有する、請求項1に記載のプローブ。
【請求項6】
ヘッド配列の5’末端と標的断片の3’末端がターゲティングオリゴヌクレオチドの隣接するヌクレオチドにハイブリダイズし、かつ、テール配列の3’末端及び標的断片の5’末端がターゲティングオリゴヌクレオチドの隣接するヌクレオチドにハイブリダイズする、請求項1に記載のプローブ。
【請求項7】
ヘッド配列の5’末端と標的断片の3’末端がターゲティングオリゴヌクレオチドの隣接するヌクレオチドにハイブリダイズしない、及び/又は、テール配列の3’末端及び標的断片の5’末端がターゲティングオリゴヌクレオチドの隣接するヌクレオチドにハイブリダイズしない、請求項1に記載のプローブ。
【請求項8】
上流フランキング配列が介在ヌクレオチドなしで標的相補配列に直接隣接している、及び/又は、下流フランキング配列が介在ヌクレオチドなしで標的相補配列に直接隣接している、請求項1に記載のプローブ。
【請求項9】
上流フランキング配列が標的相補配列に直接隣接していない、及び/又は、下流フランキング配列が標的相補配列に直接隣接していない、請求項1に記載のプローブ。
【請求項10】
異なる標的断片にハイブリダイズする異なる標的相補配列を有する、請求項1に記載のプローブを複数含むプローブのセット。
【請求項11】
異なる標的相補配列がヒト21番染色体のそれぞれ異なる配列にハイブリダイズする、請求項10に記載のプローブのセット。
【請求項12】
少なくとも500のプローブを含む、請求項10に記載のプローブのセット。
【請求項13】
a)請求項1に記載のプローブ;及び
b)標的断片を含む変性したヒト核酸試料
を含む組成物。
【請求項14】
試料が制限エンドヌクレアーゼで消化された変性した無細胞DNAである、請求項13に記載の組成物。
【請求項15】
無細胞DNAが妊婦の血液に由来するものである、請求項14に記載の組成物。
【請求項16】
DNAリガーゼをさらに含む、請求項13に記載の組成物。
【請求項17】
ターゲティングオリゴヌクレオチドの内在性標的相補配列が変異を含む配列に相補的である、請求項1に記載のプローブ。
【発明の詳細な説明】
【技術分野】
【0001】
相互参照
本出願は、2013年12月2日に出願された英国特許出願第1321191.7号の利益を主張するものであり、該出願は参照により本明細書に組み込まれる。
【0002】
本発明の開示は生物学的試料中の特異的核酸配列を検出するためのプローブ、特に多重特異的配列の同時多重検出方法に使用するプローブ、及び当該プローブを核酸断片の検出に使用する方法に関する。本発明の開示は特に下流解析における特異的染色体からのDNA断片ターゲティングに関する。
【背景技術】
【0003】
ヒト一倍体ゲノムは、23本の染色体中に30億の塩基対を有し、ヒト二倍体ゲノムは23対の染色体中に60億の塩基対を有する。現代のシークエンシング技術の迅速性及び簡便性により、試料中の個人の全ゲノムまたはDNA全量のハイスループットシークエンシングを用いて、多くの診断的課題に対するアプローチが可能である。しかしながら、多くのDNA診断用途では、検査対象の特定の障害に関連することが知られている一つまたは複数の領域に着目してゲノムのサブセットを検査すればよい。
【0004】
解析前のゲノムの複雑さを低減する数多くの手技が記述されている。ゲノムの短い領域を一つだけ解析する必要がある場合、両サイドの既知の領域に対するプライマーを使って該領域の配列を直接PCRで増幅してもよい。しかし、ゲノム試料の多くの領域を増幅して解析することが望ましい場合、同一の反応混合物で複数の異なる増幅を同時に行うことで増幅アーチファクトが生じることがある。
【0005】
WO2003/044216(Parallele Bioscience,Inc.)及びUS20090004701A1(Malek Faham)では、共通のオリゴヌクレオチドプライマーが一本鎖核酸断片内部のサイトに連結された標的核酸の多重増幅方法が開示された。共通のプライミングサイトが複数の異なる標的配列にそれぞれ付加されることにより化学量論的増幅を可能にした。
【0006】
WO2005/111236(Olink AB)にも特異的標的配列の増幅によるヒトゲノム配列の特定方法が開示された。該方法は、ゲノム試料を少なくとも一つの規定される末端配列を有する断片に断片化することを含んでいた。該断片にプライマーペアモチーフをそれぞれ含むセレクターコンストラクトを接触させ、ライゲーション後に、選択された標的配列は、該セレクターに共通する該プライマーペアモチーフに特異的なプライマーペアを用いて同時に増幅された。WO2005/111236に記載の上記セレクターコンストラクトは、短いオリゴヌクレオチドにハイブリダイズする長いオリゴヌクレオチドを有しており、各セレクターコンストラクトは、上記標的配列を含有する断片の規定される末端配列に相補的な一つのまたは二つの突出末端を有していた。前記セレクターを前記標的断片に接触させることにより、一つまたは複数のセレクターの突出末端間に該標的断片がハイブリダイゼーションされた。二つの突出末端を有するシングルセレクターの場合、このハイブリダイゼーションにより環状コンストラクトが生成した。一つの突出末端をそれぞれ有する一対のセレクターの場合、ハイブリダイゼーションにより直鎖状コンストラクトが生成した。該標的断片を含有する前記セレクターコンストラクトのライゲーション及びシークエンシングにより前記標的配列が決定された。該セレクターコンストラクトは、該標的配列(または一つの末端部分及び一つの内在性部分)を含有する前記断片の末端部分にのみハイブリダイズするため、上記方法では、各セレクター分子が異なる種類の様々な標的配列にハイブリダイズするように、ハイブリダイズしていない部分が異なる標的配列が選択された。その後、一致する標的の識別は前記コンストラクトの増幅及びシークエンシングにより決定された。WO2005/111236では、上記セレクターを遺伝的変異性の解析方法またはDNAコピー数測定方法に使用することが提案された。
【0007】
GB2492042では、断片をセレクターオリゴヌクレオチド及び少なくとも一つのベクターオリゴヌクレオチドを含む部分的二本鎖プローブに接触させる、上記セレクター方法の改変法が開示された。前記セレクターオリゴヌクレオチドは、上記標的断片に特異的な二つの非隣接領域及び該ベクターオリゴヌクレオチドに対する少なくとも二つの結合部位を含む非標的特異的領域を含有していた。上記ベクターオリゴヌクレオチドは上記標的配列に相補的ではなく、上記セレクターオリゴヌクレオチド上のベクター結合部位に相補的なヌクレオチド配列を含んでいた。該ベクターオリゴヌクレオチドは検出/濃縮のためのエレメントも含有していた。上記方法では、プローブオリゴヌクレオチドの相補的部分が標的断片にハイブリダイズされ、ベクターオリゴヌクレオチド及び標的の連結により、プローブ−標的断片ハイブリッドが生成した後、検出された。
【0008】
WO2011/009941(Olink Genomics AB)はセレクター技術の開発について、消化されたゲノムDNAの断片の一つの末端とプローブのライゲーションを開示した。標的断片の二つの領域に結合され、単離される配列が既知の配列の二つの領域に境界されることが一般的な上述のセレクタープローブと比較して、WO2011/009941に記載のプローブは、既知の配列領域がたった一つの場合に使用することが開示された。WO2011/009941に記載のプローブのいくつかの実施形態には、固相に固定化するためのエレメントが含まれた。標的核酸断片のプローブへのライゲーションにより、標的断片が安定的に捕捉され、非連結断片を除去する高ストリンジェントな洗浄工程が使用可能となり、高い特異性が得られた。
【0009】
パドロックプローブについても知られている。パドロックプローブは直鎖オリゴヌクレオチドであり、標的相補配列を両末端に有し、非標的相補配列をその間に有する。正しい標的DNA配列にハイブリダイズされると、プローブの二つの末端はDNAリガーゼによって頭−尾連結される。ライゲーションは、ライゲーション接合部におけるミスマッチにより阻害されるため、パドロックプローブのライゲーションの成功は、パドロックプローブにより非常に類似した標的配列を区別し、正確な標的を選択的にロック可能にする点で、標的配列に対する高特異的ハイブリダイゼーションに依存する。二本鎖DNAのらせん構造により、環状プローブ分子は標的DNA鎖に連結される。
【0010】
ローリングサークル増幅としても知られる、環状パドロックプローブのローリングサークル複製による増幅も知られていた。ローリングサークル複製はUS5,854,033(Lizardi)に開示された。ローリングサークル複製は、鎖置換型DNAポリメラーゼを使用した環状核酸分子の増幅であり、増幅された配列のタンデムリピートを含有する大きなDNA分子が得られる。上記DNAポリメラーゼは、所望時間進行する進行性ローリングサークルポリメライゼーション反応におけるプライマー伸長及び鎖置換を触媒する。それにより、標的配列のコピー数の倍化に各サイクルが限定されるPCR複製の単サイクル及び他の増幅手技よりも、はるかに高度な環状プローブ配列の増幅となる。鎖置換反応のカスケードを用いて追加的増幅が可能である。
【0011】
Fredrikssonら(Nucleic Acids Res.35(7):e47 2007)は、所望のPCR産物の同種のプライマー末端配列に相補的な隣接配列を含有するコレクタープローブを使用した核酸の多重増幅方法である「Gene−Collector」について記述した。コレクタープローブがPCR産物に結合しPCR産物の末端が結合することによりDNA環が形成され、ローリングサークル増幅によりユニバーサル増幅が行われ標的配列のコンカテマーである最終産物が生成する。この方法により多重PCR反応で正しいアンプリコンが選択的に検出される。これは正しいアンプリコンの末端配列が同種のプライマーペアであって、コレクタープローブにより環状化されている一方で、一つのペアの一つのプライマーと別のペアの一つのプライマーを結合するPCRアーチファクトが環状化していないことによる。
【発明の概要】
【0012】
本発明の開示は断片化ゲノムDNA等の核酸断片を解析する改良方法及びプローブを提供する。本発明のいくつかの実施形態は、標的一本鎖核酸断片の存在のために試料を試験する方法におけるプローブ及びその使用に関する。本発明のいくつかの実施形態は、
標的断片の相補体である標的相補配列及び該標的相補配列に隣接するフランキング配列を含有するターゲティングオリゴヌクレオチドと、
遊離5’または3’末端を有するオリゴヌクレオチド配列を含むプローブであって、
該標的断片及び該プローブとのハイブリダイゼーションにより、該断片を該オリゴヌクレオチド配列の遊離5’または3’末端へのライゲーションの鋳型とする、前記プローブに関する。
【0013】
本発明のいくつかの実施形態はさらに、一本鎖核酸断片の長さ方向に沿ってハイブリダイズし該断片の各末端に連結するプローブに関する。このようなプローブは、該標的断片の各末端へのライゲーションのための遊離5’末端を有するオリゴヌクレオチド配列及び遊離3’末端を有するオリゴヌクレオチド配列を含む。そして、ライゲーション産物を検出することにより、上記規定される核酸断片の高特異的ターゲティング及び検出が可能となる。
【0014】
本発明のいくつかの実施形態における方法では、本明細書に記載の通り、規定される配列を含む断片にDNAを消化し、得られたDNA断片を一本鎖断片(標的)に変性し、標的をプローブと混合することが含まれる。標的をプローブにハイブリダイゼーションすることによりライゲーションの鋳型を生成し、標的を対応するプローブに特異的に結合して環状または直鎖状ライゲーション産物を生成する。ライゲーション産物はその後、例えばエキソヌクレアーゼまたは固相化学により濃縮されてもよく、必要に応じてローリングサークル増幅、PCR、または他のDNA増幅方法により増幅してもよい。
【0015】
本発明のいくつかの実施形態における重要な利点は、多数のDNA断片の同時解析である。多数のDNA断片は下流解析のために特異的に標的化及び選択してもよい。この点は、数千もの染色体特異的DNA断片のカウントにより非常に正確な定量化が行われる母体血流中の無細胞胎児DNAの非侵襲的出生前遺伝学的検査(NIPT)に特に有用である。
【0016】
一つの態様では、標的核酸の存在のために試料を試験する方法が提供される。本方法は、典型的には、規定される標的核酸断片を生成すること、該標的断片の長さ方向に沿ってハイブリダイズし連結可能な接合部を該断片の3’及び5’末端に付与するプローブと該試料を接触させること、該標的断片を前記3’及び5’末端で該プローブに連結すること、その後二つの連結(二重連結)事象により形成された新しい核酸分子を検出することを含む。
【0017】
一つの態様において、標的核酸の存在のための試料試験方法であって、
(i) 断片化した核酸の試料を供すること、
(ii) 前記標的断片が一本鎖となる変性条件を付与すること、
(iii) 前記標的断片よりも長い、内在性標的相補配列を含有するターゲティングオリゴヌクレオチドであって、該ターゲティングオリゴヌクレオチド及び該標的断片間のハイブリダイゼーションにより該ターゲティングオリゴヌクレオチドの上流及び下流フランキング配列間に位置する二本鎖配列が形成される、前記ターゲティングオリゴヌクレオチド、及び
遊離5’及び3’末端をそれぞれ有する、前記上流及び下流フランキング配列にそれぞれ相補的である、ヘッド配列及びテール配列を含む核酸プローブに、前記試料を接触させること、
(iv) 前記ヘッド配列及び前記テール配列が前記フランキング配列にハイブリダイズし、前記標的断片が、存在していれば、前記標的相補配列にハイブリダイズし、それにより該標的断片の末端が該ヘッド配列の5’末端及び該テール配列の3’末端と並んで配置されるアニーリング条件を付与すること、
(v) 前記標的断片が存在する場合、前記標的断片の3’末端が前記ヘッド配列の5’末端に連結されて第一のライゲーション接合部を形成し、該標的断片の5’末端が前記テール配列の3’末端に連結されて第二のライゲーション接合部を形成し、該ヘッド配列及び該テール配列並びに該標的断片を含む核酸連続鎖を含む二重連結産物を生成するライゲーション条件を付与すること、及び
(vi) 前記二重連結産物が存在するかを検出すること、を含み
前記二重連結産物の検出が前記試料中の前記標的断片の存在を示す、前記方法が提供される。
【0018】
ほとんどの他のDNA選択及び検出アプローチとは対照的に、本発明の方法は、核酸断片全体が予め規定または予め決定される場合、すなわち標的断片の配列が既知である場合に特に有用であり得る。本発明の方法を実施する場合において、前記標的断片は、核酸のランダムな断片化というよりも特異的断片化による産物であり、せん断または超音波処理といった物理的手段により生成してもよい。核酸の特異的断片化は制限酵素、PCR、または他の断片末端の配列指向性決定により可能となる。
【0019】
前記ターゲティングオリゴヌクレオチドは標的断片全体と接触し、正確な標的配列の特異的結合を確実にすることが望ましい。これはプローブが、結合する標的断片の長さ方向に沿ってではなく、断片の末端または両末端及び/または内在性領域にハイブリダイズするようにデザインされている従来のアプローチと対照的である。実際に、標的断片に限定される結合は、従来の多くのプローブにおける意図的な設計であり、配列の一部のみが既知の断片の標的化及び検出を可能にした。既知の配列断片の特異的ターゲティング(一つの集団の異なるアレルに起因するわずかな配列変異性の可能性によっては該当する)により、本発明のプローブ及び方法では、偽陽性結果のリスクが非常に低い所望の標的断片の正確な結合及び検出が可能となる。
【0020】
さらに、前記標的断片の二重連結は、前記方法の高い特異性に寄与する。前記プローブは、核酸の一本鎖断片の各末端すなわち5’及び3’末端で標的配列に連結される。したがって、断片化によって特異的に生成した標的の両末端は、そのヘッド及びテール配列への配列特異的ライゲーションによって検出できる。ライゲーションの配列特異的な性質は、標的断片並びにヘッド及びテール配列と標的オリゴヌクレオチドとのハイブリダイゼーションのための要件や、塩基対ミスマッチによって阻害されるDNAリガーゼの感度によって達成される。標的オリゴヌクレオチドに対する標的断片のハイブリダイゼーションは、結合の特異性に寄与するが、標的断片の5’及び3’末端におけるミスマッチに対する最も高い選択性を付与するライゲーション反応とは対照的に、前記ハイブリダイゼーションは標的中央部のミスマッチにより最も不安定化する。
【0021】
前記標的オリゴヌクレオチドは、標的断片にヘッド及びテール配列をライゲーションする鋳型として作用する。ヘッド及びテール配列はフランキング配列にハイブリダイズし、該ヘッド配列の5’末端及び該テール配列の3’末端間のギャップが画定される。該ギャップにおいて標的断片が標的相補配列にハイブリダイズすることにより、該標的断片の末端が該ヘッド配列の5’末端及び該テール配列の3’末端と並んで配置される。好ましくは、前記プローブへの該標的断片及び該ヘッド及びテール配列のアニーリングにより、完全に一致した連結可能な接合部を生成する。二重連結産物はヘッド及びテール配列と標的フラグメントを含む核酸の連続鎖となる。
【0022】
多数の可能な前記プローブの設計が考えられる。例えば、前記標的断片に対するライゲーションのための5’及び3’末端は、二つの別々の骨格オリゴヌクレオチド上のヘッド及びテール配列またはループを形成して5’末端及び3’末端の間に標的断片を配置する一つの骨格オリゴヌクレオチドの各末端におけるヘッド及びテール配列により付与される。
【0023】
第一の場合(二つの別々の骨格オリゴヌクレオチド)、二つの骨格オリゴヌクレオチドへ標的断片をライゲーションすることによりヘッド及びテール配列間に該標的断片を含む直鎖状核酸を生成する。
【0024】
第二の場合(一つのループ状骨格オリゴヌクレオチド)、標的断片のライゲーションによりヘッド及びテール配列間に標的配列を含む環状核酸を生成する。
【0025】
さらに別の場合では、アニーリング条件下でターゲティングオリゴヌクレオチドがループ構造を形成するように、一方または両方のヘッド及びテール配列が該ターゲティングオリゴヌクレオチド上に付与されてもよい。そのような場合、二重連結産物は、設計に応じて直鎖状または環状核酸分子であってもよい。
【0026】
生成物の検出は、核酸の連続鎖を形成するためのヘッド及びテール配列と標的断片間のライゲーションの成功に影響される。通常、二重連結産物は、シグナル生成のために両方のライゲーション事象を発生させるアプローチを用いて検出する。例えば、検出には両ライゲーション接合部全域の増幅(例えば、PCRによって、またはプローブ環状化の実施形態の場合はローリングサークル複製によって)や、連続核酸鎖を一方の末端で捕捉し他方の末端で検出することが含まれる。ライゲーションによる標的断片とプローブの共有結合により強い結合が形成されるため、ストリンジェントな洗浄を用いて、ヘッド及びテール配列とターゲティングオリゴヌクレオチドの相互ハイブリダイゼーションを阻害し、該ヘッド及びテール配列が共有結合していない非連結核酸を除去できる。
【0027】
本発明の方法及びプローブのこれらの特徴により、標的断片の高特異的選択が可能になる。該方法を複数の標的断片の同時多重検出に適用する場合、標的核酸の非常に正確な検出及び定量化が可能となる。その高い特異性から、本発明の方法は、少量の試料の診断的用途及び/または異なる標的核酸の相対量のわずかな差の検出、例えば母体の血液試料由来の胎児染色体の異数性の診断または患者の正常組織試料中の微量な腫瘍DNAの存在の検出、または感染性因子由来の核酸断片の検出に特に適している。
【0028】
標的断片の高度に特異的な認識により、偽陽性シグナルを生成せずに比較的高いプローブ濃度を採用できることから、反応収率及び効率が向上する。これは、低変異性が重要であり標的の存在数が低い診断的用途、例えば無細胞DNAの解析によるNIPT、無細胞循環腫瘍DNAの検出、及び感染性因子由来のDNAの検出等において非常に重要である。本発明の方法のいくつかの実施形態においては、血液中の無細胞DNAまたはホルマリン固定パラフィン包埋DNAのような断片化したDNAの解析用途において重要である、短いDNA断片の高特異的解析が可能である。
【0029】
図3及び図4を参照し、ここでは特に核酸試料を処理する方法について述べる。いくつかの実施形態において、該方法は:a)標的断片(「DNA標的」)を含む試料(例えば、制限酵素により消化された試料)を核酸プローブにハイブリダイズすることを含み、該核酸プローブは:i.第一のオリゴヌクレオチド分子の両末端に位置するヘッド配列及びテール配列;及びii.該ヘッド配列に相補的な上流フランキング配列、該標的断片に相補的な標的相補配列、及び該テール配列に相補的な下流フランキング配列をその順序で含むスプリント配列を含む(図3及び4に図示されるように、「スプリント配列」とはオリゴヌクレオチド中の配列を意味し、二つ以上の他のポリヌクレオチドにハイブリダイズされると「スプリント」として作用しそれらポリヌクレオチドを隣接するように配置して連結されるようにする配列である)。図3及び4に示すように、本方法で使用される前記スプリント配列(「ターゲティングオリゴヌクレオチド」と称する場合もある)は、前記ヘッド配列に相補的な上流フランキング配列、前記標的断片に相補的な標的相補配列、及び前記テール配列に相補的な下流フランキング配列を含有する。このハイブリダイゼーション工程では、第一オリゴヌクレオチド分子のヘッド及びテール配列の末端に標的断片の両末端が連結可能に隣接しているハイブリダイゼーション産物を生成する。連結可能に隣接する二つの配列という意味における「連結可能に隣接」という表現は、二つのオリゴヌクレオチド間に介在するヌクレオチドが存在しないためリガーゼにより互いに連結可能であることを意味する。前記方法の次の工程は:b)上記標的断片の両末端を第一オリゴヌクレオチド分子の上記ヘッド及びテール配列の末端に連結することにより、上記標的断片並びに上記ヘッド及びテール配列を含む環状産物を生成することを含む。このライゲーション工程を図1に示す(図3及び4に示すように、前記方法は異なる様式で実施してもよく、第一工程で使用される核酸プローブは一つのまたは二つのオリゴヌクレオチドから構成できる)。
【0030】
環状産物はローリングサークル増幅(RCA)で増幅可能なため、検出に非常に有利である。RCAにより数百または数千コピーの環状産物が単分子中に生成し、それにより該環状産物を効率よく増幅し比較的簡単に、例えば該産物中のモチーフにハイブリダイズする標識オリゴヌクレオチドを使用して検出できる。
【0031】
図1に示すように、本方法はさらに、核酸プローブ中の配列(例えば、ヘッド配列、テール配列、またはそれらの間の配列)にハイブリダイズするプライマーを用いたローリングサークル増幅によって環状産物を増幅することを含んでいてもよい。これらの実施形態では、本方法はさらに、生成したローリングサークル増幅産物の数を定量化し、それにより試料中の前記標的断片の量の推定値を求めることを含んでいてもよい。これらの実施形態では、それら産物を、環状産物中のいずれかの配列に相補的なプライマーを使用したローリングサークル増幅により増幅して複数のRCA産物、例えば単一の「クローン化」断片に対応する産物を生成してもよい。ローリングサークル増幅産物の数は、例えばRCA産物を支持体(スライド)の表面に広げ、該RCA産物を標識化オリゴヌクレオチド(例えば、蛍光標識されたオリゴヌクレオチド)を使ってハイブリダイズし、該支持体の一領域における離散シグナル数を顕微鏡検査、例えば蛍光顕微鏡検査によってカウントすることにより推定可能である。ラベリングは、該産物を該支持体上に広げる前後に実施可能であり、各RCA産物は数千コピーの同一配列を含有しているため、標識化オリゴヌクレオチドに対して存在する数千の結合部位によりシグナルを増加させる。多重増幅の実施形態(例えば、二つの異なる染色体に対応するRCA産物がカウントされる)では、1つの染色体に対応するRCA産物は1つのフルオロフォアで標識することができ、別の染色体に対応するRCA産物は異なるフルオロフォアで標識することができるため、異なるRCA産物を別々にカウントできる。
【0032】
多くの用途(例えば、無細胞DNAの解析による非侵襲的出生前診断)で、特定の染色体(例えば、21番染色体)に対応する断片の数をバイアスなく極めて正確に決定する必要があるので、個々のRCA産物からのシグナルを定量化する意義は大きい。代表的な解析方法では、ある配列が他の配列よりも非常に高い効率で増幅されるという点で非常にバイアスの高い手技としてもよく知られているPCRが使用される。このためPCRに基づく戦略は多くの診断的試みにおいて非現実的である。
【0033】
図1に示すように他の実施形態では、前記標的断片をPCRで増幅し定量化してもよい。明らかなように、該標的断片に付加されるフランキング配列及び/またPCRプライマーは、例えば以下の用途において互換性がある:Illuminaの可逆的ターミネーター方法、Rocheのパイロシークエンシング法(454)、Life Technologiesのライゲーションによるシークエンシング(SOLiDプラットフォーム)、またはLife TechnologiesのIon Torrentプラットフォーム。これらの方法の実施例が以下の文献に記載されている:Marguliesら(Nature 2005 437: 376−80);Ronaghiら(Analytical Biochemistry 1996 242: 84−9);Shendure(Science 2005 309: 1728);Imelfortら(Brief Bioinform. 2009 10:609−18);Fox ら(Methods Mol Biol. 2009;553:79−108);Applebyら(Methods Mol Biol. 2009;513:19−39);及びMorozova(Genomics. 2008 92:255−64)。これらの文献は参照により、方法及び該方法の特定の工程、該工程の全ての出発物質、試薬、及び最終産物について本開示に含まれる。これらの実施形態において、環状産物を増幅及び配列決定可能であり、試料中の断片の存在量を該断片に対応する読み出された配列の数をカウントすることにより推定可能である。
【0034】
図3に示すように特定の実施形態では、前記スプリント配列は前記ヘッド及びテール配列と異なる分子、つまり「第二の」オリゴヌクレオチド分子に含まれていてもよい。このように、本方法の開始時に使用する核酸プローブは二つのオリゴヌクレオチド(図3に示す「骨格」オリゴヌクレオチド及び「ターゲティング」オリゴヌクレオチド)から構成されていてもよい。
【0035】
図4に示すように他の実施形態では、前記スプリント配列は前記ヘッド及びテール配列と同じ分子、すなわち「第一の」オリゴヌクレオチド分子に含まれていてもよい。このように、本方法の開始時に使用する核酸プローブは、単一のオリゴヌクレオチドから構成されてもよい。
【0036】
前記標的相補配列は核酸プローブ中の標的相補配列の長さに応じて任意の長さであってもよい。いくつかの実施形態では、標的相補的配列の長さは、10〜100、例えば10〜50または10〜30ヌクレオチドである。以下に述べるように、標的相補的配列は、標的断片に対して一つまたは複数のミスマッチ(例えば、1、2、3、4、5、6以上、10以下またはそれ以上)を含有し、ある場合では、標的相補配列の逆相補鎖と標的断片との同一性が少なくとも80%、少なくとも90%、または少なくとも95%であってもよい。
【0037】
該フランキング配列は設計に応じて任意の長さであってもよい。いくつかの実施形態では、該フランキング配列の長さが10〜40ヌクレオチド、例えば、10〜30ヌクレオチドである。
【0038】
いくつかの実施形態では、試料はゲノムDNA、例えば実質的に任意の生物からのゲノムDNAの断片を含んでいてもよく、任意の生物は限定されないが、植物、動物(例えば、爬虫類、哺乳類、昆虫類、蠕虫類、魚等)、組織試料、細菌、真菌(例えば、酵母)、ファージ、ウイルス、死体組織、考古学的/古代試料等が挙げられる。特定の実施形態において、前記方法に使用されるゲノムDNAは哺乳類由来でもよく、哺乳類としてヒトが挙げられる。例示的な実施形態では、ゲノム試料は、ヒト、マウス、ラット、またはサル細胞等の哺乳類細胞由来のゲノムDNAを含んでもよい。該試料は、培養細胞または臨床試料の細胞、例えば組織診、掻爬物、洗浄液や法医学試料の細胞(すなわち、犯罪現場で採取された試料の細胞)から作製してもよい。特定の実施形態において、核酸試料は、細胞、組織、体液、糞便等の生体試料から得られる。対象となる体液は、限定されないが、血液、血清、血漿、唾液、粘液、痰、脳脊髄液、胸膜液、涙液、乳糜管液、リンパ液、喀痰、髄液、滑液、尿、羊水、精液が挙げられる。特定の実施形態において、試料は、ヒト等の対象から得られる。いくつかの実施形態では、分析試料は血液、例えば妊婦の血液から得られた無細胞DNAの試料であってもよい。特定の実施形態において、ゲノムDNAは、例えば全ゲノム増幅方法を用いて、断片化の前に増幅してもよい。
【0039】
前記スプリント配列が第二のオリゴヌクレオチド分子内にある実施形態(図3に示す)では、第二のオリゴヌクレオチドは、環状産物を濃縮するために使用される捕捉部分をさらに含んでいてもよい。これらの実施形態では、前記方法は:c)捕捉部分を固相に結合することにより環状産物を固定化すること;及びd)該固相を洗浄して連結されていない核酸及び他の反応成分を除去することにより、該環状産物を濃縮することを含んでいてもよい。第二のオリゴヌクレオチドは、例えば、−LC−ビオチン、−LC−LC−ビオチン、−SLC−ビオチンまたは−PEGn−ビオチン(nは3〜12)といったリンカーの有無にかかわらず、ビオチン部分、例えばビオチンまたは、デスチオビオチン、オキシビオチン、2’−イミノビオチン、ジアミノビオチン、ビオチンスルホキシド、ビオシチン等のビオチン類似体を含有してもよく、環状産物はストレプトアビジンが結合した基質を使用して濃縮できる。ビオチンは少なくとも10−8Mの親和性でストレプトアビジンに結合する。
【0040】
非侵襲的な出生前検査の実施形態では、前記標的断片は、ヒト21、13、または18番染色体由来でもよい。
【0041】
いくつかの実施形態では、前記方法は前記試料を少なくとも50(例えば、少なくとも100、少なくとも200、少なくとも500、少なくとも1,000、少なくとも2,000、または少なくとも5,000)セットの前記プローブでハイブリダイズすることを含み、前記プローブは、同一染色体(例えば、例えば、ヒト21、13、または18番染色体)上の異なる断片を標的にし、該方法により該標的断片を含む複数の環状産物が得られる。生成した環状産物の数は、上述したように、例えばRCAを使用して増幅したRCA産物の数をカウントすることにより定量できる。
【0042】
いくつかの実施形態において、前記方法は前記核酸プローブのセットの第一のセット及び第二のセットと前記試料をハイブリダイズすることを含み、該プローブの第一及び第二セットは該試料中の第一の染色体及び第二の染色体をそれぞれ標的とし(つまり上述のように断片をハイブリタイズし連結することで環状産物を生成する)、ローリングサークル増幅(RCA)により該環状産物を増幅し、第一の染色体に対応するRCA産物の数を第一の染色体に対応するRCA産物の数と比較し、それにより該試料中の染色体由来のDNAの相対量の推定値を求める。
【0043】
いくつかの実施形態において、前記方法は前記核酸プローブのセットの第一のセット及び第二のセットと前記試料をハイブリダイズすることを含み、該プローブの第一及び第二セットは該試料中の染色体の第一領域及び第二領域をそれぞれ標的とし(つまり上述のように断片をハイブリタイズし連結することで環状産物を生成する)、ローリングサークル増幅(RCA)により該環状産物を増幅し、第一の染色体領域に対応するRCA産物の数を第二の染色体領域に対応するRCA産物の数と比較し、それにより該試料中の染色体領域由来のDNAの相対量の推定値を求める。本実施形態は、例えば欠失または複製の識別に使用できる。
【0044】
また本明細書は、核酸プローブを含む組成物を提供し、該核酸プローブは:i.第一のオリゴヌクレオチド分子の対向する末端に位置するヘッド配列及びテール配列;ii.該ヘッド配列に相補的な上流フランキング配列、ヒトゲノム中の標的断片に相補的な標的相補配列、及び該テール配列に相補的な下流フランキング配列をその順序で含むスプリント配列を含み、前記プローブは、第一のオリゴヌクレオチド、該スプリント配列、及び該標的断片が互いにハイブリダイズする時に、該標的断片の両末端が、第一オリゴヌクレオチド分子中の該ヘッド配列及び該テール配列の末端と連結可能に隣接するように設計されている。特定の実施形態において、該組成物は、少なくとも50(例えば、少なくとも100、少なくとも200、少なくとも500、少なくとも1,000、少なくとも2,000、または少なくとも5,000)の該核酸プローブの第一のセットを含んでいてもよく、該プローブの該標的相補配列は第一のヒト染色体(例えば、21、13、または18番染色体)の異なる標的断片に相補的である。
【0045】
特定の実施形態において、前記組成物は、少なくとも50(例えば、少なくとも100、少なくとも200、少なくとも500、少なくとも1,000、少なくとも2,000、または少なくとも5,000)の前記核酸プローブの第二のセットを含んでいてもよく、該プローブの第二セットの標的相補配列は第二のヒト染色体の異なる標的断片に相補的である。いくつかの実施形態では、第一のヒト染色体は21番染色体であってもよく、第二のヒト染色体は13または18番染色体であってもよい。いくつかの場合において、第二ヒト染色体は21、13、または18番染色体ではない。
【0046】
当業者は、以下に記載の図面は例示の目的のみに記載されていることを理解するであろう。これら図面は決して本発明の範囲を限定するものではない。
【図面の簡単な説明】
【0047】
図1図1は、環状DNA分子が形成されRCAまたはPCRによって増幅される本発明の方法の一実施形態を示す模式図である。
図2図2は、直鎖ライゲーション産物が形成され固相試薬で濃縮される本発明の方法の一実施形態を示す模式図である。
図3図3は、標的断片に結合した環状骨格オリゴヌクレオチドを含むプローブを示す図である。前記プローブは二つのバージョンA及びBとして図示される。
図4図4は、結合した標的断片を有する環状の単一オリゴヌクレオチドプローブを示す図である。
図5図5は、結合した標的断片を有する、ターゲティングオリゴヌクレオチド及びループ状の骨格オリゴヌクレオチドから構成される環状ダブルループプローブを示す図である。
図6図6は、結合した標的断片を有する、ターゲティングオリゴヌクレオチド及び直鎖状骨格オリゴヌクレオチドから構成される直鎖状ループプローブを示す図である。
図7図7は、結合した標的断片を有する、二つの骨格オリゴヌクレオチドを含む直鎖状プローブを示す図である。
図8図8は、本明細書に記載される方法の特異性を示すゲルの画像である。
図9図9は、本明細書に記載される方法の精度を示すグラフである。
図10図10のパネルAは、スライド表面上の標識されたRCA産物の画像を示し、パネルBは、異なる染色体由来の断片の比率を個々のRCA製品をカウントすることによって正確に決定できることを示す。
【発明を実施するための形態】
【0048】
標的核酸断片
前記プローブによって結合される前記標的断片は、核酸の一本鎖断片である。いくつかの実施形態において、本発明の方法では配列が予め規定された標的断片を結合する。末端を含む断片全体の配列が既知であってもよい。予め規定された配列の既知の断片は、ランダムではなく特異的な核酸の断片化によって作成することができる。具体的な断片化方法には、制限酵素による消化、PCR(例えば、多重PCR)、及び他の断片末端の配列指向性決定方法が含まれ、他の酵素、リボザイム、またはそれらを組み合わせた手技が含まれる。
【0049】
断片化方法の一つは、制限エンドヌクレアーゼまたは二つ以上の制限エンドヌクレアーゼの組み合わせによる消化である。よって、断片化された核酸の試料を制限酵素で消化することができ、標的断片は制限断片であってもよい。
【0050】
様々な特異的核酸切断酵素が知られており、本発明では任意の適切な酵素を使用してもよく、特定の核酸配列内の予め規定された位置を切断する酵素、または特異的核酸認識配列の前後で切断するエンドヌクレアーゼ切断酵素、及びニッキング酵素が含まれる。リボザイム等の触媒核酸をDNA断片化に使用することもできる。これらの酵素により二本鎖核酸を切断して平滑末端または付着末端を作成してもよく、または一本鎖核酸を切断してもよい。様々な種類の制限酵素が知られており、Type I、Type II、Type III、Type IV及びType V酵素が含まれる。適切な酵素または酵素の組み合わせを前記方法の使用のために所望に応じて選択することができる。例えば、試料中の核酸(例えば10ngのDNA)を対応する互換性のある制限酵素バッファー中の制限酵素(例えば1U)で消化してもよい。この反応では、適切な条件下で(例えば37℃で1時間)インキュベーションすることにより酵素を不活性化してもよい(例えば80℃で20分)。
【0051】
前記断片化された核酸を提供する他の簡便な方法では、該核酸由来の特異的直鎖状配列の増幅にプライマーを使用する。多重PCRは、複数の特異的プライマー対で核酸を処理し複数の特定の断片を増幅することに使用できる。この場合、標的断片の末端は、プライマー対の配列に対応する。
【0052】
多くの診断及びその他の用途では、前記試料は断片化された染色体(例えば、ヒト染色体または微生物の染色体)である。前記標的断片は、生物のゲノムの染色体に特異的なゲノム断片であってもよい。換言すれば、標的断片はゲノムの一つの染色体のみに認められ他の染色体に認められなくてもよい。一般に、前記方法は、標的断片が一つのヒト染色体に認められる、つまりその染色体以外のヒト染色体には認められない場合のヒトゲノムの分析に使用されるであろう。例えば、該断片は、21番染色体に特異的であってもよい。
【0053】
標的断片は染色体の一つの遺伝子座に特異的であってもよい。したがって、その染色体座に認められるが同一のゲノムの同じまたは他の染色体の他の遺伝子座に認められなくてもよい。例えば、該断片はヒト染色体の1つの遺伝子座に特異的であってもよい。
【0054】
試料中のある核酸種はいくつかの変異性を包含してもよく、例えば、試料は母系DNAと胎児DNAを含有する母体血液から得られた核酸のような、異なる個体の染色体を含んでもよい。目的の核酸種は特定の染色体であってもよいが、胎児または母体起源かについてその染色体の全てのコピーを検出することが簡便である。よって、目的の種は、1つの染色体または染色体遺伝子座であってもよく、前記標的配列は、該染色体または遺伝子座の母体と胎児両方のコピーにおける該染色体または染色体遺伝子座に認められてもよい。
【0055】
核酸の試料は、例えば患者由来の生物学的組織または体液試料として、任意の適切な方法で提供してもよい。試料は、血液試料、全血、血漿、血清、または組織のホルマリン固定パラフィン包埋試料といった組織試料であってもよく、血液もしくは組織から抽出された核酸試料であってもよい。
【0056】
前記試料は核酸を含む任意の試料であってもよい。該試料に含まれる核酸はDNA及び/またはRNAであってもよく、例えば全ゲノムDNA、生物個体由来のcDNA、組織や細胞集団またはそれらの分画等の複合体であってもよい。この点において、例えば、核酸単離手技または細胞溶解手技による直接産物であってもよく、さらに何らかの方法で分画または精製されてもよく、例えば、cDNAを生成するRNA等、何らかの方法で部分的にまたは全体的に分離または処理された核酸を含んでもよい。前記試料は、例えば微生物(例えば、細菌または真菌)、植物、または動物等の任意の真核生物または原核生物またはウイルス源由来であってもよい。好ましくは、該試料はヒトゲノムDNA等のヒト起源のものである。該試料は、検出される核酸が微生物、例えば、細菌、ウイルス、または真菌由来である動物の組織または血液試料であってもよい。非侵襲的出生前診断に関する方法では、該試料は妊婦の血液由来で胎児のDNAを含む。他の例では、検出または定量される核酸は腫瘍関連DNAである。
【0057】
通常、前記方法はインビトロ試料で実施される。したがって、該方法は一般的に人体や動物体におけるインビボでの診断や手術または治療を含まない。しかしながら、インビトロでの診断方法の結果を用いて患者に診断後の治療について知らせてもよい。
【0058】
標的核酸の変性
前記プローブは、一本鎖断片及びターゲティングオリゴヌクレオチドの標的相補配列間のハイブリダイゼーションを介して一本鎖の標的核酸を認識及び結合する。よって、試料中の標的断片が一本鎖にされていない場合、相補的核酸鎖から一本鎖の標的断片を分離するための変性条件を付与する。
【0059】
変性条件は、相補的配列から標的断片を分離するために十分に高い温度としてもよい。変性条件としては、95℃で適当な時間、例えば10分間、インキュベーションしてもよく、化学的変性を行ってもよい。
【0060】
相補性
標的断片の存在のための試料検査方法は、核酸プローブと試料を接触させることを含んでいてもよく、該プローブは、
該標的断片の相補体である標的相補配列及び該標的相補配列に隣接するフランキング配列を含有するターゲティングオリゴヌクレオチド、及び
遊離5’末端または3’末端を有する、該フランキング配列に相補的なオリゴヌクレオチド配列を含む。
【0061】
プローブの適切な濃度は、試料中の一つまたは複数の標的断片の濃度(または予想される濃度)に基づいて決定することができる。実施例に示すように、プローブは、プローブ当たり10pMの濃度で試料に添加できる。試料を複数のプローブ(例えばプローブのセット)と接触させる場合には、個々のプローブの濃度は10pMであってもよい。好ましくは、プローブは、検出または定量する対象の核酸種の予想される濃度を超えて使用される。過剰のプローブを使用すれば、確実に試料中に存在する標的配列の全てのコピーが認識される。これにより、検出感度が最大化する。定量化を伴う場合にも、ライゲーション産物またはプローブのセットからの累積シグナルの検出が試料中の標的配列の量に比例することが確実になる。
【0062】
アニーリング条件下で、標的断片(存在する場合)が標的鎖の標的相補配列にハイブリダイズし、オリゴヌクレオチド配列はフランキング配列にハイブリダイズすることにより、オリゴヌクレオチド配列の遊離5’末端または3’末端が標的断片の3’末端または5’末端に並列する。よって、ターゲティングオリゴヌクレオチドは、オリゴヌクレオチド配列へのライゲーションのための標的断片の鋳型となる。二重連結事象において、標的断片の3’末端はヘッド配列の5’末端に連結され、標的断片の5’末端はテール配列の3’末端に連結されてもよい。
【0063】
本発明のプローブでは、標的断片に対する特異性は、前記標的相補配列が前記標的断片の正確な相補体である場合に最大となり、それらの間のハイブリダイゼーションが完璧となる。しかし、これは全ての場合に必須ではなく、ミスマッチの度合いが低い場合も許容でき、例えば試料中に存在する正確な対立遺伝子の断片を検出することが望まれる対立遺伝子変異を示す断片の検出を可能にする。もしくは、多重プローブを変異体配列のために設計することができる。これにより異なる対立遺伝子または変異の検出及び識別が可能となる。本発明に係るプローブは、多数の異なるプローブが反応に含まれる多重方法において最も有利に使用される。そのような複数のプローブ内では、プローブの大半は標的断片に対し完全な相補性を持つが、いくつかのプローブが少ないミスマッチを持つ標的に結合するであろうことが想定される。
【0064】
好ましくは、前記標的相補配列は前記標的断片に対し5個未満の塩基対ミスマッチを有する。該標的断片及び該標的相補配列間に、1個、2個、3個または4個の塩基対ミスマッチがあってもよい。該相補的配列がミスマッチ位置でループを形成するように、ミスマッチは、対応する塩基が一方の配列に存在しない位置にあってもよく、または非相補的ヌクレオチドが一方の配列に存在し他方の配列の対応する位置の塩基と対にならない位置でミスマッチが生じてもよい。AまたはTとCまたはGといった間違った塩基対が形成される場合、二本鎖の塩基間で水素結合は起こらないが、そのミスマッチに隣接するヌクレオチド間での塩基対形成により、前記標的断片及び前記標的相補的配列間でハイブリダイゼーションは起こりうる。ミスマッチは、ゆらぎ塩基であってもよい。通常、ゆらぎ塩基は、標的断片における既知の遺伝的変異の位置と対になる標的相補配列中の位置に対応する。プローブは、ゆらぎ塩基位置に対する特異的な合成サイクル中に1つまたは複数のジデオキシヌクレオチドを添加することによって合成することができる。これは、従来のオリゴヌクレオチド合成に典型的である。もしくは、複数の別個のプローブを、各遺伝子変異体に1つずつ作製してもよい。これは、プローブのマイクロアレイによる合成に典型的である。ゆらぎ塩基は、異なるコドンが同一のアミノ酸をコードする場合のコドン間の単一ヌクレオチドの違いに相応し得る。
【0065】
一般的に、より長い標的断片をハイブリダイズするために標的相補配列を長くすると、より短い標的相補配列と比較して高いミスマッチ数を許容できる。標的相補配列は、標的断片に対し、例えば最大で8塩基対に一つ、9塩基対に一つ、または10塩基対に一つのミスマッチを有してもよい。いかなるミスマッチも、ライゲーションまたは制限酵素消化等の配列特異的標的断片化を阻害しないように、標的相補配列及び標的断片の内部領域に限定されるべきである。したがって、好ましくは、標的断片と標的相補配列と間の完全な相補性が、標的断片の各末端の6〜8個の末端ヌクレオチド、好ましくは10個の末端ヌクレオチドに認められる。
【0066】
一般に、標的断片と標的相補配列は同じ長さである。よって標的断片は全長にわたって標的相補的配列に結合している。標的オリゴヌクレオチドへの標的断片のハイブリダイゼーションは、標的分子の両末端または2つの隣接していない領域へ結合するプローブと対照的に、2つの核酸分子間の単一の結合事象を表す。
【0067】
標的相補配列は、少なくとも10ヌクレオチド、例えば、少なくとも15ヌクレオチドの長さを有していてもよい。最大20、25、30、35、または40ヌクレオチド長であってもよい。好ましくは10〜20ヌクレオチド、10〜30ヌクレオチド、及び10〜40ヌクレオチド範囲である。このような比較的短い標的相補配列は、それに応じた短い断片を結合するのに適している。DNAリガーゼは塩基対のミスマッチに感受性があり、優先的に完全にマッチした配列を連結するので、短い配列は二重連結反応の特異性に寄与する。ミスマッチが、二本鎖配列に結合したDNAリガーゼのフットプリントに存在する場合、上記配列は連結されない可能性があるので、プルーフリーディング工程を追加する。これにより同一ではないが類似した配列の断片に優先して標的断片を検出するための高い特異性を確実にする。DNAリガーゼは、典型的には、ニックの両側に6〜8塩基のフットプリントを有するため、断片が20塩基の場合、12〜16塩基がリガーゼ特異性によってカバーされる。
【0068】
プローブハイブリダイゼーションは、特にハイブリダイズした配列の中央部においてミスマッチを区別するが、ライゲーションは標的断片の両末端においてミスマッチを区別すると考えられる。これにより高特異的に断片の検出が行われる。
【0069】
標的オリゴヌクレオチドは、標的相補配列とフランキング配列を含むので、標的断片よりも長くなり、さらに1つまたは複数のカスタム配列を含んでいてもよい。カスタム配列は、プローブの他の領域または標的断片に相補的でない、言い換えると、アニーリング条件下でプローブの他の領域(カスタムシーケンス外)または標的断片にハイブリダイズしない。上流のフランキング領域は、標的オリゴヌクレオチド中の標的相補配列の上流または5’側にある。下流のフランキング領域は、標的オリゴヌクレオチド中の標的相補配列の下流または3’側にある。したがって、標的相補配列は、標的オリゴヌクレオチドの内側にあり、上流と下流のフランキング配列が隣接しているため、標的オリゴヌクレオチドの末端を含まない。
【0070】
前記標的断片及び前記標的相補配列のハイブリダイゼーションにより産生される前記二本鎖配列は、前記標的及び前記プローブのハイブリッドであるためハイブリッド二本鎖配列と見なされる。典型的には該二本鎖配列は、該標的断片が二重らせんの一本鎖であり、前記ターゲティングオリゴヌクレオチドが他方の鎖である、二重らせん構造を採用している。前記ハイブリッド二本鎖配列が、該ターゲティングオリゴヌクレオチドの前記上流及び下流のフランキング配列に隣接した場合、前記ヘッド及びテール配列にハイブリダイズし二本鎖配列を生成する。これらは再び二本鎖核酸の正常な二重らせん構造をとることが典型的である。
【0071】
前記上流及び下流のフランキング配列は、好ましくは互いに異なっており、異なる配列を有する。前記ヘッド配列が下流のフランキング配列ではなく上流のフランキング配列に相補的であり、前記テール配列が上流のフランキング配列ではなく下流のフランキング配列に相補的であることが好ましい。これにより確実に該ヘッド配列及び該テール配列がそれぞれ上流と下流のフランキング配列にハイブリダイズする。
【0072】
通常、ヘッド配列は上流フランキング配列と同一の長さである。テール配列は下流フランキング配列と同一の長さである。
【0073】
フランキング配列の正常な長さは10〜40ヌクレオチド、例えば10〜20または10〜30ヌクレオチドである。フランキング配列は、互いに同じ長さであってもよい。一方または両方のフランキング配列は、標的相補配列と同じ長さであってもよい。よって前記上流及び/または下流フランキング配列は、例えば、少なくとも15ヌクレオチド、少なくとも10ヌクレオチドの長さを有していてもよい。最大20、25、30、35または40ヌクレオチド長であってもよい。
【0074】
好ましくは、前記ヘッド配列は上流配列の相補体である。好ましくは、前記テール配列は下流配列の相補体である。ヘッド及びテール配列が標的断片のライゲーションのために正確に配置されるように、プローブの最適な結合に配列の完全一致が望ましい。必要に応じて、ヘッド配列及び上流フランキング配列間及び/またはテール配列及び下フランキング配列間に1個、2個、3個または4個の塩基対ミスマッチが存在してもよい。好ましくは、5個未満の塩基対ミスマッチが存在する。
【0075】
通常、標的相補配列以外に、プローブは、標的断片または試料中に存在し得る他の核酸に相補的であってはならない。これにより標的以外の核酸に対するプローブの不要なハイブリダイゼーションを回避する。プローブがヒトゲノムDNAの断片を結合する場合、標的相補配列以外の配列がヒトゲノムDNAに相補的でなく、プローブが試料中の他の核酸ではなく標的断片のみにハイブリダイズするように、プローブを設計できる。
【0076】
アニーリング及びライゲーション
前記標的断片は両端の高度に特異的な反応で連結される。標的断片は、典型的には、核酸の特異的断片化の生成物であるので、これらの端部は、通常特定の予め決定された配列を有すると考えられる。ライゲーション工程において、これらの端部は、それぞれヘッド及びテール配列に配列依存ライゲーションすることにより特異的に検出される。好ましくは、プローブと標的断片の結合により、2つの完全にマッチした連結可能な接合部が作られ、1つは標的断片の3’末端とヘッド配列の5’末端の間に、もう一つは標的断片の5’末端とテール配列の3’末端の間に作られる。
【0077】
核酸の3’末端への5’末端のライゲーションは、両端が相補的な配列の隣接するヌクレオチドと塩基対形成する場合に生じる。隣接ヌクレオチドに対しそれぞれの末端ヌクレオチドが塩基対を形成すると、二つの端部の間にニックを含有する核酸鎖が形成される。両端のライゲーションはDNAリガーゼによって触媒できる。通常、ライゲーション条件の付与はDNAリガーゼ酵素及び反応条件を付与を含み、その条件下でDNAリガーゼは2つの末端を連結することにより連続的な核酸鎖を形成してニックを閉じる。Ampligase(Epicentre社)等の多数のリガーゼ酵素が市販されており、適した条件は、1Uの酵素を追加し、リガーゼ緩衝液中で55℃で1時間インキュベーションすることである。
【0078】
フランキング配列間の標的相補的配列の位置により、前記ターゲティングオリゴヌクレオチドは、前記ヘッド及びテール配列にライゲーションするための前記標的核酸の鋳型となる。標的断片の存在下でのアニーリング条件下で、該ヘッド及びテール配列はフランキング配列にハイブリダイズし、ヘッド配列の5’末端及びテール配列の3’末端のギャップを画定する。ギャップ内の標的相補配列に標的断片がハイブリダイズする。このように、標的オリゴヌクレオチドにヘッド及びテール配列並びに標的核酸のハイブリダイゼーションにより、ヘッド配列の5’末端に標的断片の3’末端を並列させ、テール配列の3’末端に標的断片の5’末端を並列させる。
【0079】
並列な二つの末端の配置により、両端を連結するDNAリガーゼのための基質が与えられる。前記ヘッド配列の5’末端及び前記標的断片の3’末端が前記ターゲティングオリゴヌクレオチドの隣接ヌクレオチドにハイブリダイズし、前記テール配列の3’末端及び前記標的断片の5’末端が該ターゲティングオリゴヌクレオチドの隣接ヌクレオチドにハイブリダイズすることが好ましい。したがって、上流の隣接配列は、介在ヌクレオチドなしで標的相補配列に直接隣接していてもよい。同様に、下流の隣接配列は、介在ヌクレオチドなしで標的相補配列に直接隣接していてもよい。隣接した3’及び5’末端を、末端間のニックを封鎖しているDNAリガーゼで直接連結し、連続核酸鎖を形成できる。
【0080】
前記二重連結産物、つまり前記標的断片に前記ヘッド配列及び前記テール配列の両方を連結した生成物は核酸の連続鎖である。ニックまたはギャップを含んでいないため全てのヌクレオチドが共有結合しているという意味で連続鎖である。
【0081】
前記ヘッド配列及び前記テール配列並びに前記標的断片を含む核酸の連続鎖が環状核酸となるように前記プローブを設計してもよい。用語「環状」は本明細書では遊離末端を持たない閉じたループである鎖のトポロジーを意味する。
【0082】
標的断片の存在下でのアニーリング条件の下で、前記ヘッド配列及び前記テール配列は前記フランキング配列にハイブリダイズし、該ヘッド配列の5’末端及び該テール配列の3’末端の間のギャップを画定する。該標的断片はギャップ内の標的相補配列とハイブリダイズし、それによって標的断片の末端が該ヘッド配列の5’末端及び該テール配列の3’末端と並んで配置され、該標的断片並びに該ヘッド配列及び該テール配列を含む環状核酸を完成する。
【0083】
環を形成する前記核酸分子は並列する末端を有する。該末端のライゲーションにより、少なくとも前記ヘッド配列及び前記テール配列並びに該標的断片を含む核酸の連続した環状鎖が生成する。
【0084】
環状核酸を形成するプローブは、前記ヘッド及びテール配列が単一の核酸分子上に付与されたプローブを含む。例えば、前記標的オリゴヌクレオチドに加えて、前記プローブは、5’末端及び3’末端にそれぞれ該ヘッド及びテール配列を有する骨格オリゴヌクレオチドを備えていてもよく、該骨格オリゴヌクレオチドの該ヘッド及びテール配列はアニーリング条件下で、前記ターゲティングオリゴヌクレオチドのフランキング配列にトランス結合する。該骨格オリゴヌクレオチドは、該ヘッド及びテール配列の間にカスタム配列を含んでいてもよい。図3は、このようなプローブの実施形態を示す図である。あるいは、前記骨格オリゴヌクレオチドのヘッド及びテール配列は、配列間にカスタム配列なしで隣接していてもよい。
【0085】
他の例では、前記ヘッド及びテール配列は、アニーリング条件下で前記ターゲティングオリゴヌクレオチドの末端で前記フランキング配列にシス結合してもよい。該ターゲティングオリゴヌクレオチドは、該ターゲティングオリゴヌクレオチド及び該ヘッド及び/またはテール配列の間にカスタム配列を含んでいてもよい。図4は、このようなプローブの一実施形態を示す。
【0086】
環状核酸を形成するプローブには、前記ヘッド及びテール配列が異なる核酸分子上に付与されるプローブも含まれる。この場合、前記アニーリング条件で形成される該環状核酸は、少なくとも三つの核酸分子、すなわち前記標的断片並びに前記ヘッド及びテール配列を含むであろう。既に述べた通り、前記核酸分子の末端は全て並列に位置する。このような場合、連続した環状鎖の核酸を形成するためには三つ以上のライゲーション反応が必要となる。一例では、該テール配列が該ターゲティングオリゴヌクレオチドの3’末端であり、該プローブが5’末端に該ヘッド配列を有する骨格オリゴヌクレオチドを含む。アニーリング条件下では、該ターゲティングオリゴヌクレオチドの該下流フランキング配列に該テール配列がシス結合し、該骨格オリゴヌクレオチドの該ヘッド配列が、該ターゲティングオリゴヌクレオチドの該上流フランキング配列にトランス結合する。シス結合は、結合が同一の核酸分子で起こる、つまり核酸の一本鎖が、異なる領域が接合しハイブリダイズする三次元構造を形成することを意味する。トランス結合は、異なる核酸分子間で結合が起こることを意味する。必要に応じて、前記骨格オリゴヌクレオチドは、アニーリング条件下でヘアピン構造を形成する逆反復配列対を含み、それにより前記骨格オリゴヌクレオチドの3’末端を前記ターゲティングオリゴヌクレオチドの5’末端に対し並列に配置する。両末端の間にはニックが存在する。このタイプのプローブを図5に示す。ライゲーションのための条件が付与される場合、前記ターゲティングオリゴヌクレオチドの5’末端が前記骨格オリゴヌクレオチドの3’末端に連結される。前記二重連結産物はターゲティングオリゴヌクレオチド、標的断片、及び骨格オリゴヌクレオチドを含む環状核酸である。もしくは、ターゲティングオリゴヌクレオチドの5’末端及び骨格オリゴヌクレオチドの3’末端の間にギャップがある場合、図5に示すプローブはライゲーションによって環状化されず、ヘッド及びテール配列並びに該標的断片を含む核酸の連続鎖は直鎖状となる。
【0087】
前記ヘッド配列が前記ターゲティングオリゴヌクレオチドの5’末端に位置し、3’末端に前記テール配列を有する骨格オリゴヌクレオチドを前記プローブが含むように、該プローブを反対の向きに配置してもよい。この場合、前記アニーリング条件下において、該ターゲティングオリゴヌクレオチドの上流フランキング配列に前記ヘッド配列がシス結合し、前記骨格オリゴヌクレオチドのテール配列が該ターゲティングオリゴヌクレオチドの下流フランキング配列にトランス結合する。再度、該ターゲティングオリゴヌクレオチドの3’末端に並列するように該骨格オリゴヌクレオチドの5’末端を位置するために、アニーリング条件下においてヘアピン構造を形成する逆反復配列対を該骨格オリゴヌクレオチドが含んでもよい。前記二重連結産物がターゲティングオリゴヌクレオチド、標的断片、及び骨格オリゴヌクレオチドを含む環状核酸となるように、該ターゲティングオリゴヌクレオチドの3’末端は、該骨格オリゴヌクレオチドの5’末端に連結される。もしくは、上述の通り、該骨格オリゴヌクレオチドの5’末端が該ターゲティングオリゴヌクレオチドの3’末端の近くに位置しつつ一つまたは複数のヌクレオチドのギャップによって分離されるようにアニーリングを行うことができる。そして、上記連結された産物は前記ヘッド及びテール配列並びに前記標的断片を含む連続した直鎖状核酸となる。
【0088】
図5に示すようにアニーリング条件の下で前記骨格オリゴヌクレオチドがヘアピンループを形成するように、該骨格オリゴヌクレオチドは逆方向反復配列との間にカスタム配列を含んでもよい。
【0089】
上述のように、前記ヘッド及びテール配列並びに前記標的断片を含む核酸の連続鎖が直鎖状核酸となるようにプローブを設計できる。標的断片の存在下でのアニーリング条件下で、前記ヘッド及びテール配列は、該ヘッド配列の5’末端及び該テール配列の3’末端の間のギャップを画定する前記フランキング配列にハイブリダイズする。ギャップにおいて前記標的断片が前記標的相補配列とハイブリダイズすることにより、前記ヘッド配列の5’末端及び前記テール配列の3’末端と並列するように該標的断片の両末端を配置し、該ヘッド配列及びテール配列を含む核酸の鎖を完成する。本鎖を形成する核酸分子は、並列する末端を有する。用語「並列」については色々な議論がある。連結される末端間にはニックが存在する。末端のライゲーションにより、少なくとも前記ヘッド及びテール配列並びに前記標的断片を含む核酸の連続鎖が生成する。
【0090】
前記プローブは、前記テール配列を3’末端に有するターゲティングオリゴヌクレオチド及び前記ヘッド配列を5’末端に有する直鎖骨格オリゴヌクレオチドを含んでいてもよい。アニーリング条件下で、該テール配列は、該ターゲティングオリゴヌクレオチドの下流フランキング配列にシス結合し、該骨格オリゴヌクレオチドの該ヘッド配列は、該ターゲティングオリゴヌクレオチドの上流フランキング配列にトランス結合する。該ターゲティングオリゴヌクレオチドは、アニーリング条件下で該ターゲティングオリゴヌクレオチドがヘアピンループを形成するように、下流フランキング配列及びテール配列の間にカスタム配列を含んでもよい。アニーリング条件下で形成された該直鎖状核酸は、前記骨格オリゴヌクレオチド、前記標的断片、及び前記ターゲティングオリゴヌクレオチドを含む。図6にこの配置を図示する。
【0091】
前記ヘッド配列が前記ターゲティングオリゴヌクレオチドの5’末端に位置し、前記プローブが3’末端に前記テール配列を有する骨格オリゴヌクレオチドを含むように、前記プローブは同様に逆方向に配置してもよい。この場合、該ヘッド配列は、該ターゲティングオリゴヌクレオチドの上流フランキング配列にシス結合し、該骨格オリゴヌクレオチドの該テール配列は、該ターゲティングオリゴヌクレオチドの下流フランキング配列にトランス結合する。
【0092】
ライゲーション産物として直鎖状核酸鎖を形成するプローブの別の形態は、別々の骨格オリゴヌクレオチド上に上記ヘッド及びテール配列を含むプローブである。このようなプローブは、遊離5’末端を有するヘッド配列を含む骨格オリゴヌクレオチド及び遊離3’末端を有するテール配列を含む骨格オリゴヌクレオチドを含んでもよく、アニーリング条件下では該ヘッド及びテール配列は、該ターゲティングオリゴヌクレオチドのフランキング配列にトランス結合する。一方または両方の骨格オリゴヌクレオチドはさらにカスタム配列を含んでもよい。図7はこのタイプのプローブを示す。
【0093】
好ましくは、未連結型の前記プローブのオリゴヌクレオチドは直鎖状である。よって好ましくは、前記ターゲティングオリゴヌクレオチドは直鎖核酸分子である。一つまたは複数の骨格オリゴヌクレオチドを含むプローブもまた好ましくは直鎖状である。これにより、前記プローブを環状化する実施形態におけるライゲーションの成功によってのみ環状DNAは形成されるため、連結及び未連結プローブを簡便に区別できる。直鎖核酸分子はローリングサークル複製では増幅されない。
【0094】
検出
前記標的断片が存在する場合、前記プローブに連結する条件を付与した後、検出工程を実施しライゲーションが生じたか否かを判断する。これにより、該標的断片が試料中に存在していたか否かが示される。したがって生成物の検出は、核酸の連続鎖を形成するための前記ヘッド及びテール配列に対する該標的断片のライゲーションの成否による。一般に、検出工程は両方のライゲーション接合部の存在を必要とするシグナルの検出を含む。例えば、検出は、両方のライゲーション接合部全体の増幅(例えば、PCRによって、またはプローブ環状化の実施形態の場合はローリングサークル複製によって)または一方の末端で連続核酸鎖を捕捉し、もう一方の末端を検出することを含んでもよい。
【0095】
必要に応じて、検出の前に二重連結産物の濃縮を含む方法でもよい。生成物は、増幅及び/または固相化学によって濃縮できる。直鎖状核酸産物を消化するためのエキソヌクレアーゼ(例えばλエキソヌクレアーゼ)で試料を処理することによって、環状核酸産物を選択的に濃縮できる。一般に、ライゲーション産物をエキソヌクレアーゼ分解から保護する場合、エキソヌクレアーゼ分解を用いてライゲーション産物を濃縮してもよい。エキソヌクレアーゼは、その後重合を伴う後続のステップ、例えばローリングサークル増幅の前に不活性化(熱によって)する必要がある。実施例1に示すように、1Uのエキソヌクレアーゼを、未反応のプローブ及び断片を除去するために添加してもよい。適切な条件は、対応するエキソヌクレアーゼ緩衝液中で37℃で1時間インキュベーションした後、80℃で20分間、酵素を不活性化する。捕捉/検出方法が使用される場合、ライゲーション産物が捕捉部分を介して固相に捕捉されることによって濃縮される。実施例2に示すように、直鎖状の連結産物を含む溶液を、最終容量の200mlとしたTris−HCI(pH 7.5)、3.5mMのEDTA、及び0.07%Tween−20に含まれる10mlのM−280ストレプトアビジン被覆磁気ビーズ(Invitrogen社製)と混合し、室温で15分間インキュベーションしてもよい。インキュベーション後、ビーズをリングマグネットを使って回収し上清を除去する。ライゲーション産物を濃縮する他の手段は、特にサイズ選択的連結産物を含む。
【0096】
二重連結産物を検出する簡便な方法では増幅条件を付与し該増幅産物の存在について試験する。NASPA、LAMP、T7増幅、PCR、または連続鎖が環状の場合はローリングサークル複製などいくつかの増幅アプローチが考えられる。二重連結産物を検出する工程は、核酸連続鎖の第一及び第二のライゲーション接合部全体を増幅する条件を付与すること及び増幅産物が存在するかを検出することを含む。ライゲーション産物はクローン増幅で増幅してもよい。適した増幅手技には、ローリングサークル増幅(以下参照)、ブリッジPCR(Adessi Cら, Nucleic Acids Res. 2000 Oct 15;28(20):E87)、エマルジョンPCR (Dressmanらによるエマルジョン中でのデジタルPCR, Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8817−22. Epub 2003 Jul 11)及びデジタルPCR(Vogelstein & Kinzler, Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9236−41)が含まれる。ゲル中での限定的なクローン増幅は、Mitra & Church, Nucleic Acids Res. 1999 December 15; 27(24): e34に開示された。
【0097】
前記二重連結産物が環状核酸である場合、該産物を検出するための簡便な方法は、ローリングサークル複製条件を提供し、ローリングサークル複製産物が存在するかを検出することである。ローリングサークル複製産物は、増幅用の環状核酸を提供するための二重連結に依存する。ローリングサークル複製は、US 5,854,033(Lizardi)及びFire & Xu, Proc Natl Acad Sci U S A. 1995 May 9;92(10):4641−5に開示された。ローリングサークル複製は、鎖置換型DNAポリメラーゼを使用した環状核酸分子の増幅であり、増幅された配列のタンデムリピートを含有する大きなDNA分子が得られる。上記DNAポリメラーゼは、所望時間進行する進行性ローリングサークルポリメライゼーション反応におけるプライマー伸長及び鎖置換を触媒する。それにより、標的配列のコピー数の倍化に各サイクルが限定されるPCR複製の単サイクル及び他の増幅手技よりも、はるかに高度な環状プローブ配列の増幅となる。鎖置換反応のカスケードを用いて追加的増幅が可能である。ローリングサークル複製は超分岐ハイパーローリングサークル複製でもよい。超分岐RCAは以下に開示された:Lizardiら, Nat Genet. 1998 Jul;19(3):225−32。ローリングサークル複製条件は実施例に記載されており、例えば、37℃1時間のインキュベーションでは、1Uのphi29ポリメラーゼ(New England Biolabs)を、対応するphi29緩衝液及びヌクレオチド(dNTP)に添加できる。
【0098】
ローリングサークル複製に続いて、蛍光標識の検出、酵素連結検出系、抗体介在標識検出、及び放射性標識の検出といった従来の核酸検出系のいずれかを使用して、前記増幅されたプローブ配列を検出し定量できる。好ましくは、ローリングサークル増幅産物は、例えば、プローブのカスタム配列におけるモチーフのようなRCA産物中のモチーフに対する標識された検出オリゴヌクレオチドのハイブリダイゼーションによって検出される。増幅産物は、試料中に存在する標的配列の量に正比例するため、定量的な測定は試料中の標的配列の量を確実に表す。この方法の主な利点は、連結工程を対立遺伝子の識別のために操作可能であり、DNA複製工程は等温であり、増幅反応が線形で高度加工性の酵素によって触媒されるため、シグナルが厳密に定量される。多重アッセイでは、DNAポリメラーゼ反応に使用したプライマーオリゴヌクレオチドは、全てのプローブについて同じであってもよい。
【0099】
前記ヘッド及びテール配列が別々の核酸分子上にあるプローブでは、捕捉/検出方法を簡便に使用できる。前記二重連結産物は、非連結プローブに含まれない該ヘッド及びテール配列を単核酸分子(連続鎖)中に含有する。したがって、該二重連結産物は、該ヘッド配列を含有する核酸分子を捕捉し、洗浄により非連結プローブ核酸を除去し、捕捉した分画中に該テール配列の存在を検出することによって、特異的に検出される。もしくは、該二重連結産物は、該テール配列を含有する核酸分子を捕捉し、洗浄により非連結プローブ核酸を除去し、捕捉した分画中に該ヘッド配列の存在を検出することによって、検出してもよい。検出は連結されたプローブに特異的である。これは非連結プローブ中の該ヘッド及びテール配列は核酸間のハイブリダイゼーションのみで接続され洗浄によって分離されるが、連結プローブは連続核酸鎖中に該ヘッド及びテール配列を含有する、つまり共有結合を有するためである。
【0100】
プローブは捕捉部分を担持するように修飾できる。捕捉部分は、ビーズなどの固体基質への付着を可能にする。適切な捕捉部分はビオチンで、ビオチンはストレプトアビジンと対になり、修飾されたプローブ核酸がストレプトアビジンでコーティングされた固体基質上に単離される。ここで、プローブがヘッドまたはテール配列を含有する骨格オリゴヌクレオチド及びヘッドまたはテール配列を含有する別の核酸(標的オリゴヌクレオチドまたは第二の骨格オリゴヌクレオチド)を含む場合、核酸分子のいずれかが捕捉部分を有していてもよく、例えばビオチン化されていてもよい。試料とプローブを結合する前に、捕捉部分を有するプローブを付与することが簡便であり得る。あるいは、捕捉部分をライゲーション工程の後に導入してもよい。
【0101】
前記プローブ内の1つの核酸分子が捕捉部分を持つ場合、他の核酸分子が標識を担持していてもよい。核酸配列自体を標識として使用可能であり、例えば、特にヘッド配列(テールが捕捉される)またはテール配列(ヘッドが捕捉される)の存在を特異的に検出するか、または検出する核酸分子に特有のカスタム配列を検出できる。相補的オリゴヌクレオチドを検出に使用できる。あるいは核酸を蛍光団などの異種性の標識で標識してもよい。異種性の標識は核酸自体の一部ではない。使用可能な他の標識には、量子ドット、生物発光、チラミドシグナル増幅などのシグナル発生酵素カスケード、及び放射性部分が挙げられる。検出方法には、標識の存在を検出する、例えば蛍光検出、量子ドット検出、生物発光検出、酵素によって生成されたシグナルの検出、または放射能検出等が含まれてもよい。
【0102】
一例として、二重連結産物が存在するかを検出するステップは、捕捉部分を介して基質上のプローブの骨格オリゴヌクレオチドを捕捉し、基質を洗浄して非連結プローブを除去して基質と捕捉された骨格オリゴヌクレオチドを含む捕捉分画を保持し、捕捉分画中の二重連結産物の存在について試験することを含む。二重連結産物が標識を担持する場合、捕捉分画内の標識の存在について試験することが含まれる。捕捉部分は、ストレプトアビジン基質への親和性を有するビオチン分子であり得る。他の適切な親和性タグは、例えば骨格オリゴヌクレオチドといったヒスチジン含有配列の精製に用いることができるコバルト、ニッケル、銅などの固定化金属イオンに対する親和性を有するポリヒスチジンタグを含む。捕捉部分は、このように、例えば、His−タグ配列といった捕捉される配列の一部であってもよく、または核酸自体の一部ではない異種性の部分であってもよい。
【0103】
適切な固体基質は、磁石を使用した捕捉産物の濃縮を容易にする磁性ビーズ等のビーズである。基質は捕捉部分に対する結合部分で被覆してもよく、例えば、ストレプトアビジン被覆磁気ビーズをビオチン化プローブと一緒に使用できる。
【0104】
本発明の方法のいくつかの実施形態の利点は、ある配列が他の配列よりも効率的に増幅することによりバイアスのある結果を生じさせる核酸配列決定やPCRに依存しないことである。しかし必要に応じて、検出は、生成物を配列決定することによって連結断片の同一性を検証するステップを含んでもよい。本発明の利点の1つは、二重連結産物の実際の標的断片を組み込むことによって、該産物が配列決定され、プローブが正しいターゲットと反応したことを確認できるということである。これは、US20130172212(Ariosa)に記載されるような二重連結に基づく他のアプローチと比較して優れている。
【0105】
多重化
複数の異なる標的核酸断片を並行して複数のプローブを用いて検出することができる。例えば、断片化された染色体の試料は、染色体の複数の断片を結合するためのプローブのセットと接触させることができ、セットの各プローブは染色体に特異的な異なる標的断片を結合する。これらプローブは、特異的に染色体に結合するプローブを同定するためのバーコードとして使用できる一般的なカスタム配列を共有してもよい。多重化には、多重標的化オリゴヌクレオチド及び一つの共通の骨格オリゴヌクレオチドだけでなく、各サブセットが別々の骨格オリゴヌクレオチドとハイブリダイズするターゲティングオリゴヌクレオチドのいくつかのセットを含めることができる。
【0106】
複数のプローブは、シグナルの大きさが標的断片を認識するプローブの数に比例する検出可能なシグナルの付与に使用できる。複数のプローブからの個々のシグナルは、検出可能な単一の累積シグナルに変換され、多重プロービングにより個々のシグナルを増幅する。10以上のプローブは、10倍以上のシグナル増幅を生じさせる。生成されたシグナルは、標的認識の際に正しく反応したプローブに依存し、上記シグナルが得られる特異的な二重連結産物を生成するために配列特異的ハイブリダイゼーション及びライゲーションを使用する。
【0107】
標的断片を認識する各プローブはライゲーション産物を生成し、各プローブのハイブリダイゼーションにより生成したライゲーション産物は個別に検出可能であるため、個々のシグナルが各プローブから得られる。しかし、本発明の優れた特徴は、個々のシグナルを個別に検出する必要はなく、その代わりに累積シグナルに統合し、累積的なシグナルを検出することにある。累積的なシグナルは、個々のシグナルの組み合わせであるため、検討対象の核酸種の存在または量を表すライゲーション産物の検出及び/または定量に使用できる。配列決定及びマイクロアレイを使用する従来の方法と比較して、本発明の方法の実施においては初期の段階でプローブシグナルを統合可能であり、個々のシグナルが領域全体の複数のプローブに対し生成され、分析においてシグナルが統合され領域を表す。個々のシグナルを別々にマッピングまたは調査しないため、シグナルを検出前に統合可能である。これにより簡素化された読み出しフォーマットを実現する。
【0108】
個々のシグナルは、各標的断片へのプローブハイブリダイゼーションの結果生じる各二重連結産物から得られる。例えば、試料中の目的種の10標的断片を認識する10個の異なるプローブを含むセットの場合、ライゲーション接合部を含む10のライゲーション産物が存在し、10個のライゲーション産物からの個々のシグナルの組み合わせである累積シグナルが検出される。通常、試料中に各標的断片の複数のコピーが存在し試料は各プローブの複数のコピーと接触することになるので、本実施例では当然のことながら、分子プローブ、標的断片、及びライゲーション産物の実際の数は10より高くてもよい。
【0109】
多重化によるシグナル増幅方法は、例えば複合体としての核酸試料において、核酸種が主成分でないまたは微量成分である場合、試料中の目的の核酸種の検出に使用できる。多重化による増幅は信頼性の高い検出を可能にする。これは診断目的で、例えば患者試料等の試料中の微生物の核酸の検出に使用できる。試料の存在を検出及び同定するために、複数種の微生物の核酸に特異的なプローブで調べることができる。これは、細菌、ウイルス、真菌などの感染性疾患の病原体の検出に有用である。特定の核酸転写物を検出することができる。多重化による増幅は、核酸種を定量するために使用してもよい。目的の1つ以上の核酸種と1つ以上の基準核酸種といった二種以上の核酸を調べることにより、この方法では試料中の2つの種の相対量の定量化が行える。例えば、染色体コピー数の検出といった一つ以上の染色体遺伝子座の検出または定量に適用した場合、本方法は特に有用である。特定の値の適用では、癌及び先天的異数性の診断を含む、染色体異常を同定する方法として使用する。非侵襲的出生前診断のための使用(NIPT)を具体的に説明する。
【0110】
試料中の核酸種は、本発明のプローブのセットと試料を接触させることによって検出可能であり、各プローブは検出される核酸種の異なる標的配列を特異的に認識する。標的配列は、核酸種の標的断片に対応する。本明細書に記載されるように、各プローブによってそれぞれの標的配列を認識することにより二重連結産物を生成する。累積的なシグナルは、この産物からのシグナルの組み合わせとして検出される。シグナルの検出は、試料中の核酸種の存在を示す。核酸種は、シグナルレベルを決定するための累積シグナルを定量化することによって定量化でき、該シグナルレベルは、試料中の核酸種の量に比例するので、試料中の核酸種の量を決定できる。第一の核酸種は、第一のプローブセット及び第二のプローブセットと試料を接触させることにより、第二のまたは基準の核酸種に対して定量化可能であり、第一のセットの各プローブは第1の核酸種の特徴的な標的配列を特異的に認識し、第二のセットの各プローブは第2のまたは基準の核酸種の特徴的な標的配列を特異的に認識する。第一及び第二の累積シグナルが検出され、第一の累積シグナルは標的配列を認識する第一のセットのプローブによって生成された産物からの個々のシグナルの組み合わせであり、第二の累積シグナルは標的配列を認識する第二のセットのプローブによって生成された産物からの個々のシグナルの組み合わせである。第一及び第二のシグナルを定量化し、試料中の第一及び第二の核酸種の量に比例する第一及び第二のシグナルレベルを決定する。試料中の第一及び第二の核酸種の相対量は、このように第一及び第二のシグナルレベルを比較することによって決定できる。
【0111】
例えば、累積シグナルは、標的配列を認識するプローブのクローン増幅及び/または標識された産物を列挙したまとめとすることができる。それらの産物は、例えば、ローリングサークル増幅産物や蛍光シグナルを発する産物全てから発生した蛍光シグナル等である。複数の核酸種の相対量を定量化するため、異なるシグナルをそれぞれの種に使用する。例えば、一つのプローブセットの産物が、他のプローブセットの産物と比べて、異なる蛍光波長やスペクトルを発してもよい。
【0112】
試料中の核酸種は、
検出する核酸種中の特徴的な標的配列を特異的に認識するプローブのセットに該試料を接触させること、
該核酸種中の該標的配列が一本鎖となる変性条件を付与すること、
該プローブがそれらの標的配列とハイブリダイズしてライゲーション産物を生成するアニーリング及びライゲーション条件を付与すること、及び
全てのライゲーション産物からの個々のシグナルの組み合わせである累積シグナルを検出することを含み、
前記シグナルの検出が前記試料中の核酸種の存在を示す方法により検出できる。
【0113】
前記試料、標的核酸、方法の工程(例えば、変性、アニーリング、ライゲーション)及びプローブの詳細については本明細書に記載の通りである。該方法は、
(i) 核酸種が標的断片に断片化されている試料を供すること、
(ii) 該標的断片が一本鎖となる変性条件を付与すること、
(iii) 検出する核酸種中の特徴的な標的配列を特異的に認識するプローブのセットに該試料を接触させること、ここで該標的配列は前記標的断片の配列であり、各プローブは、
前記標的断片よりも長い、内在性標的相補配列を含有するターゲティングオリゴヌクレオチドであって、該ターゲティングオリゴヌクレオチド及び該標的断片間のハイブリダイゼーションにより該ターゲティングオリゴヌクレオチドの上流及び下流フランキング配列間に位置する二本鎖配列が形成される、前記ターゲティングオリゴヌクレオチド、及び
遊離5’及び3’末端をそれぞれ有する、前記上流及び下流フランキング配列にそれぞれ相補的である、ヘッド配列及びテール配列を含む、
(iv) 前記ヘッド配列及び前記テール配列が前記フランキング配列にハイブリダイズし、前記標的断片が、存在していれば、前記標的相補配列にハイブリダイズし、それにより該標的断片の末端が該ヘッド配列の5’末端及び該テール配列の3’末端と並んで配置されるアニーリング条件を付与すること、
(v) 前記標的断片が存在する場合、前記標的断片の3’末端が前記ヘッド配列の5’末端に連結されて第一のライゲーション接合部を形成し、該標的断片の5’末端が前記テール配列の3’末端に連結されて第二のライゲーション接合部を形成し、該ヘッド配列及び該テール配列並びに該標的断片を含む核酸連続鎖を含む二重連結産物を生成するライゲーション条件を付与すること、及び
(vi) 全ての上記産物からの個々のシグナルの組み合わせである累積シグナルを検出すること、
を含み、該累積シグナルの検出が前記試料中の核酸種の存在を示す、前記方法である。
【0114】
前記核酸種は、
(i) 該核酸種が標的断片に断片化されている試料を供すること、
(ii) 該標的断片が一本鎖となる変性条件を付与すること、
(iii) 定量する核酸種中の特徴的な標的配列を特異的に認識するプローブのセットに該試料を接触させること、ここで各プローブは、
前記標的断片よりも長い、内在性標的相補配列を含有するターゲティングオリゴヌクレオチドであって、該ターゲティングオリゴヌクレオチド及び該標的断片間のハイブリダイゼーションにより該ターゲティングオリゴヌクレオチドの上流及び下流フランキング配列間に位置する二本鎖配列が形成される、前記ターゲティングオリゴヌクレオチド、及び
遊離5’及び3’末端をそれぞれ有する、前記上流及び下流フランキング配列にそれぞれ相補的である、ヘッド配列及びテール配列を含み、
(iv) 前記ヘッド配列及び前記テール配列が前記フランキング配列にハイブリダイズし、前記標的断片が、存在していれば、前記標的相補配列にハイブリダイズし、それにより該標的断片の末端が該ヘッド配列の5’末端及び該テール配列の3’末端と並んで配置されるアニーリング条件を付与すること、
(v) 前記標的断片が存在する場合、前記標的断片の3’末端が前記ヘッド配列の5’末端に連結されて第一のライゲーション接合部を形成し、該標的断片の5’末端が前記テール配列の3’末端に連結されて第二のライゲーション接合部を形成し、該ヘッド配列及び該テール配列並びに該標的断片を含む核酸連続鎖を含む二重連結産物を生成するライゲーション条件を付与すること、
(vi) 全ての上記産物からの個々のシグナルの組み合わせである累積シグナルを検出すること、及び
(vii) 該累積シグナルを定量化し、前記試料中の前記核酸種の量に比例することにより該試料中の該核酸種の量を決定するシグナルレベルを決定することを含む方法により定量できる。
【0115】
前記方法を使用して試料中の第二の核酸種に対する第一の核酸種の相対量を定量してもよい。本方法は、
(i) 該第一及び第二の核酸種が標的断片に断片化されている試料を供すること、
(ii) 該標的断片が一本鎖となる変性条件を付与すること、
(iii) 前記第一の核酸種中の特徴的な標的配列を特異的に認識する前記第一のプローブのセット及び前記第二の核酸種中の特徴的な標的配列を特異的に認識する前記第二のプローブのセットに該試料を接触させること、ここで各プローブは、
前記標的断片よりも長い、内在性標的相補配列を含有するターゲティングオリゴヌクレオチドであって、該ターゲティングオリゴヌクレオチド及び該標的断片間のハイブリダイゼーションにより該ターゲティングオリゴヌクレオチドの上流及び下流フランキング配列間に位置する二本鎖配列が形成される、前記ターゲティングオリゴヌクレオチド、及び
遊離5’及び3’末端をそれぞれ有する、前記上流及び下流フランキング配列にそれぞれ相補的である、ヘッド配列及びテール配列を含む、
(iv) 前記ヘッド配列及び前記テール配列が前記フランキング配列にハイブリダイズし、前記標的断片が、存在していれば、前記標的相補配列にハイブリダイズし、それにより該標的断片の末端が該ヘッド配列の5’末端及び該テール配列の3’末端と並んで配置されるアニーリング条件を付与すること、
(v) 前記標的断片が存在する場合、前記標的断片の3’末端が前記ヘッド配列の5’末端に連結されて第一のライゲーション接合部を形成し、該標的断片の5’末端が前記テール配列の3’末端に連結されて第二のライゲーション接合部を形成し、該ヘッド配列及び該テール配列並びに該標的断片を含む核酸連続鎖を含む二重連結産物を生成するライゲーション条件を付与すること、
(vi) 前記第一のセットのプローブによって生成した前記ライゲーション産物からの個々のシグナルの組み合わせである累積シグナルを検出し定量化することにより前記試料中の前記第一の核酸種の量に比例する第一のシグナルレベルを決定すること、
(vii) 前記第二のセットのプローブによって生成した前記ライゲーション産物からの個々のシグナルの組み合わせである累積シグナルを検出し定量化することにより前記試料中の前記第二の核酸種の量に比例する第二のシグナルレベルを決定すること、及び
(viii) 前記第一及び第二のシグナルレベルを比較し、それにより前記試料の前記第一及び第二の核酸種の相対量を決定することを含む。
【0116】
一般に、プローブの数は、検出または定量される各核酸種に対して少なくとも10となるであろう。コースの数は、プローブの分子の絶対数ではなく、異なるプローブの数を指す。したがって、核酸は少なくとも10個の異なる特定の標的配列を含有すると考えられ、累積シグナルは、少なくとも10のユニークなプローブの個々のシグナルの組み合わせであり、この累積シグナルが一つの核酸種を表す。ハイレベルな多重化を用いて、対応するようにハイレベルのシグナル増幅を得られる。例えば、少なくとも100、少なくとも1,000、少なくとも10,000もしくはそれ以上の数のプローブを使用して、各核酸種を検出または定量してもよい。
【0117】
前記方法は、断片化染色体の試料をプローブの複数セットと接触させて二つ以上の染色体の複数断片を結合することを含んでいてもよく、プローブのセットは、
第一の染色体に特異的な複数の標的断片を結合するための第一のプローブのセット、及び
第二の染色体に特異的な複数の標的断片を結合するための第二のプローブのセット、さらに必要に応じて、
一つまたは複数の染色体に特異的な複数の標的断片を結合するための一つまたは複数のプローブのセットを含む。
【0118】
セット内のプローブは、各セットからのプローブを簡便に識別することができるように、そのセットに共通であり他のセットにおけるプローブのカスタム配列とは異なるカスタム配列を共有することができる。プローブの各セットは、少なくとも500、600、700、800、900、または少なくとも1,000以上の染色体に特異的な複数の標的断片を結合するための異なるプローブを含んでいてもよい。例えば、各21、13、及び18番染色体に1,000の異なる標的オリゴヌクレオチド、及び3つの異なる骨格オリゴヌクレオチド、及び染色体サブセットを一つずつ使用する方法でもよい。
【0119】
各プローブのセットで二重連結産物を検出し、該産物のカスタム配列の相対量を検出することにより、試料中の2つ以上の染色体の相対量を決定することが可能である。
【0120】
前記ターゲティングオリゴヌクレオチド並びに前記上流及び下流オリゴヌクレオチドが環を形成するプローブを使用して、特定の対立遺伝子及びまたは遺伝子座をコードするモチーフを、高度多重化によりカスタムシーケンスに組み込むことができる。
【0121】
デジタル染色体分析及び非侵襲的出生前診断
本発明の方法のいくつかの実施形態では、標的DNAの正確な定量化が求められる分野で特に有利な点が挙げられる。これにはたくさんの核酸による診断技術が含まれる。そのような領域の一つとして、患者由来の生物学的試料(例えば血液)中の癌DNAの分析が挙げられる。他には、無細胞DNAの分析による非侵襲的出生前診断(NIPT)が挙げられる。
【0122】
NIPTの課題は、異常染色体異数性(染色体コピー数の差)の診断に必要な統計的信頼性を確立するために多数の特定のゲノム断片をカウントしなければならないことである。胎児DNAは母系DNAと混合され、妊婦の血流中の遺伝物質の4%〜30%に相当するため、胎児DNAに染色体異数性の観察には非常に正確な測定を必要とする。
【0123】
本明細書に記載のプローブは、母体血液試料中の遊離循環胎児DNAの分析に使用してもよい。1つの染色体の異なるフラグメントを対象にした複数のプローブ及び2つめの染色体の異なるフラグメントを対象にした複数のプローブを用いることにより、試料中の2つの染色体の相対数の不均衡を高い信頼度で決定できる。これにより、母体DNAの高いバックグラウンドがあっても、トリソミーなどの染色体異数性を胎児DNAから診断できる。
【0124】
本明細書に記載のプローブは、例えばトリソミーなどの染色体異常の診断用に、妊婦の母体血液試料を検査し胎児の核酸を検出する目的、患者における腫瘍の存在の診断やモニタリング用に、腫瘍DNAの患者試料を検査する目的に使用可能である。他の用途には、細菌核酸の有無について物質の試料を検査することが含まれ、細菌核酸の検出は、細菌、ウイルス、または真菌等の感染性因子となり得る微生物による物質の感染を示す。該試料は患者からの組織または血液試料であってもよい。
【0125】
より一般的には、本発明の方法は、数百または数千の異なるプローブを使用した数百または数千の特定の核酸断片の検出で高精度を達成し得ることから、幅広い診断用途に有利である。特定の疾患に関連する染色体や染色体遺伝子座から多数のDNAフラグメントの検出することにより、試料中のわずかな違いも確実に検出できるように、対照染色体または遺伝子座に対する該染色体または遺伝子座の量を測定可能になる。
【0126】
短い標的核酸を分析することにより、母体血液中の高度に断片化された無細胞DNAの大部分を高効率で解析することができる。これは、母体血液中の無細胞DNAの量は非常に少ないため重要である。
【0127】
個体から得られた核酸試料中の第二の染色体または染色体遺伝子座に対する第一染色体または染色体座を定量化する方法は、
(i) 該第一及び第二の染色体または染色体遺伝子座が標的断片に断片化されている試料を供すること、
(ii) 該標的断片が一本鎖となる変性条件を付与すること、
(iii) 前記第一の染色体の特徴的な標的配列を特異的に認識する前記第一のプローブのセット及び前記第二の染色体の特徴的な標的配列を特異的に認識する前記第二のプローブのセットに該試料を接触させること、ここで各プローブは、
前記標的断片よりも長い、内在性標的相補配列を含有するターゲティングオリゴヌクレオチドであって、該ターゲティングオリゴヌクレオチド及び該標的断片間のハイブリダイゼーションにより該ターゲティングオリゴヌクレオチドの上流及び下流フランキング配列間に位置する二本鎖配列が形成される、前記ターゲティングオリゴヌクレオチド、及び
遊離5’及び3’末端をそれぞれ有する、前記上流及び下流フランキング配列にそれぞれ相補的である、ヘッド配列及びテール配列を含む、
(iv) 前記ヘッド配列及び前記テール配列が前記フランキング配列にハイブリダイズし、前記標的断片が、存在していれば、前記標的相補配列にハイブリダイズし、それにより該標的断片の末端が該ヘッド配列の5’末端及び該テール配列の3’末端と並んで配置されるアニーリング条件を付与すること、
(v) 前記標的断片が存在する場合、前記標的断片の3’末端が前記ヘッド配列の5’末端に連結されて第一のライゲーション接合部を形成し、該標的断片の5’末端が前記テール配列の3’末端に連結されて第二のライゲーション接合部を形成し、該ヘッド配列及び該テール配列並びに該標的断片を含む核酸連続鎖を含む二重連結産物を生成するライゲーション条件を付与すること、
(vi) 前記第一のセットのプローブによって生成した前記ライゲーション産物からの個々のシグナルの組み合わせである累積シグナルを検出し定量化することにより前記試料中の前記第一の染色体または染色体遺伝子座の量に比例する第一のシグナルレベルを決定すること、
(vii) 前記第二のセットのプローブによって生成した前記ライゲーション産物からの個々のシグナルの組み合わせである累積シグナルを検出し定量化することにより前記試料中の前記第二の染色体または染色体遺伝子座の量に比例する第二のシグナルレベルを決定すること、及び
(viii) 前記第一及び第二のシグナルレベルを比較し、それにより前記試料の前記第一及び第二の染色体または染色体遺伝子座の相対量を決定することを含んでもよい。
【0128】
この方法は、胎児における異数性(例えばトリソミー)の診断に使用されてもよく、核酸試料は母体血液から得られた試料で母系DNAと混合された無細胞胎児DNAを含み、前記第一及び第二のシグナルレベルの不均等な比が異数性(例えばトリソミー)を示す。
【0129】
プローブ
さらなる態様は、本発明の方法における使用に適したプローブを含む。プローブ及びその特徴は既に例示されている。さらに他の特徴及び実施例は本明細書に記載されている。
【0130】
前記プローブ核酸は好ましくはDNAであるが、他の天然もしくは非天然の核酸であってもよい。DNAの標準的な塩基は、A、T、C及びGであるが、プローブ核酸は必要に応じて非標準ヌクレオチドを含んでもよい。
【0131】
一般に、本発明のプローブはターゲティングオリゴヌクレオチド並びにヘッド及びテール配列を含む。ヘッド及びテール配列は、ターゲティングオリゴヌクレオチドの一部であってもよく、どちらか一つまたは両方が異なる核酸分子上にあってもよい。必要に応じて、前記プローブは、ターゲティングオリゴヌクレオチド、ヘッド配列を含む骨格オリゴヌクレオチド、及びテール配列を含む骨格オリゴヌクレオチドを含む。よって、プローブは、非連結状態の1つ、2つまたは3つの核酸分子を含んでもよい。
【0132】
前記ターゲティングオリゴヌクレオチドは、前記標的断片よりも長い、内在性標的相補配列を含有し、該ターゲティングオリゴヌクレオチド及び該標的断片間のハイブリダイゼーションにより該ターゲティングオリゴヌクレオチドの上流及び下流フランキング配列間に位置する二本鎖配列が形成される。前記ヘッド配列及びテール配列は遊離5’及び3’末端をそれぞれ有し、前記上流及び下流フランキング配列にそれぞれ相補的である。標的断片の存在下でのアニーリング条件の下で、前記ヘッド配列及び前記テール配列は前記フランキング配列にハイブリダイズし、該ヘッド配列の5’末端及び該テール配列の3’末端の間のギャップを画定する。該標的断片はギャップ内の標的相補配列とハイブリダイズし、それによって標的断片の末端が該ヘッド配列の5’末端及び該テール配列の3’末端と並んで配置される。
【0133】
該プローブは、前記ギャップ中の標的断片のハイブリダイゼーションにより、前記標的断片並びに前記ヘッド及びテール配列を含む環状核酸が完成するように設計してもよい。
【0134】
前記プローブの前記ヘッド及び/またはテール配列は、好ましくはプローブの他の領域や標的断片に相補的でないカスタム配列に結合されている。
【0135】
前記プローブのいくつかの実施形態において、単一の核酸分子は、前記ヘッド及びテール配列を含む。
【0136】
前記フランキング配列にトランス結合するように、前記ヘッド及びテール配列は前記ターゲティングオリゴヌクレオチドから分離してもよい。例えば、該ヘッド及びテール配列は骨格オリゴヌクレオチドの5’及び3’末端にそれぞれ位置してもよい。該骨格オリゴヌクレオチドの該ヘッド及びテール配列の間にカスタム配列を含むこともできる。そうしたプローブの実施例を図1及び図3に示す。もしくは、該骨格オリゴヌクレオチドの該ヘッド及びテール配列は、介在するヌクレオチド配列なしで隣接していてもよい。この場合、該ターゲティングオリゴヌクレオチドの該フランキング配列は該骨格オリゴヌクレオチドの全長に沿ってハイブリダイズし環状化する。
【0137】
前記プローブは、前記ヘッド配列を前記ターゲティングオリゴヌクレオチドの5’末端に配置及び/または前記テール配列を該ターゲティングオリゴヌクレオチドの3’末端に配置するように設計してもよく、それにより前記ギャップにおける前記標的断片のハイブリダイゼーションによって該標的断片、該ヘッド及びテール配列、該標的相補配列、及び該フランキング配列を含む核酸鎖が形成されてもよい。該ヘッド及びテール配列は該ターゲティングオリゴヌクレオチドの末端に位置し、該フランキング配列にシス結合してもよい。そのようなプローブの実施例を図4に示す。このバージョンのプローブでは、該ヘッド及びテール配列並びに該標的相補配列が全て該標的断片と環状化する。カスタム配列は該オリゴヌクレオチドのループ中に配置できる。前記プローブ核酸は、比較的長いが、予め組み立てられる一つの分子にオリゴヌクレオチド構造を結合する利点を有し、異なるプローブ核酸分子のハイブリダイゼーションを必要としない。
【0138】
プローブは、前記ターゲティングオリゴヌクレオチドから分離した核酸分子である骨格オリゴヌクレオチドを用いて設計できる。前記テール配列は、該ターゲティングオリゴヌクレオチドの3’末端に配置でき、前記ヘッド配列は、骨格オリゴヌクレオチドの5’末端に配置できる。もしくは該ヘッド配列は、該ターゲティングオリゴヌクレオチドの5’末端に配置でき、該テール配列は、骨格オリゴヌクレオチドの3’末端に配置できる。カスタム配列は、例えば該ヘッドまたはテール配列と前記フランキング配列の間にループを形成するように、前記ターゲティングオリゴヌクレオチドに導入することができる。このプローブアプローチを使用する利点は、検出配列をループに導入することができるとともに前記標的相補配列と関連付けられ、多重方法、特に高度多重検出スキームによる高い多重化のために有利となることである。前記骨格オリゴヌクレオチドは、さらにカスタム配列を含むことができる。二つのオリゴヌクレオチドのプローブを提供することにより、プローブ核酸分子は単一のオリゴヌクレオチドのバージョンよりも短くなっているが、同様の機能を維持する。
【0139】
プローブの別の設計では、前記ヘッド及びテール配列が二つの骨格オリゴヌクレオチド上に配置される。したがって、プローブは以下を含む。
前記標的断片よりも長い、内在性標的相補配列を含有するターゲティングオリゴヌクレオチドであって、該ターゲティングオリゴヌクレオチド及び該標的断片間のハイブリダイゼーションにより該ターゲティングオリゴヌクレオチドの上流及び下流フランキング配列間に位置する二本鎖配列が形成される、前記ターゲティングオリゴヌクレオチド、
遊離5’末端を有するヘッド配列を含む骨格オリゴヌクレオチド、及び
遊離3’末端を有するテール配列を含む骨格オリゴヌクレオチド、
該ヘッド配列及び該テール配列は該上流及び下流フランキング配列にそれぞれ相補的である。
【0140】
一つの骨格オリゴヌクレオチドは、他の骨格オリゴヌクレオチドが検出に使用され、異種性の標識を担持する場合には、捕捉部分を有していてもよい。一方または両方の骨格オリゴヌクレオチドは、さらにカスタム配列を含んでもよい。もしくはまたは追加的に、ターゲティングオリゴヌクレオチドはカスタム配列を含んでもよい。
【0141】
標的断片の存在下でのアニーリング条件の下で、前記ヘッド配列及び前記テール配列は前記フランキング配列にハイブリダイズし、該ヘッド配列の5’末端及び該テール配列の3’末端の間のギャップを画定する。該標的断片はギャップ内の標的相補配列とハイブリダイズし、それによって標的断片の末端が該ヘッド配列の5’末端及び該テール配列の3’末端と並んで配置される。該ギャップ中の標的断片のハイブリダイゼーションにより、標的断片並びにヘッド及びテール配列を含む核酸鎖が完成する。この鎖は捕捉部分と標識を担持し、本明細書中に記載の捕捉/検出方法による検出が可能となる。
【0142】
キット及びプローブのセット
本開示のさらなる態様は、一本鎖標的核酸断片を結合するための複数のプローブのセットであり、該プローブは複数の異なる標的断片を結合するための複数の異なる標的相補配列を有する。
【0143】
プローブのセットは、ヒト染色体の複数の断片を結合するためのものであり、セット内の各プローブは、その染色体に特異的な異なる標的断片を結合するためのものであってよい。このようなプローブは全て、ターゲティングオリゴヌクレオチドまたは骨格オリゴヌクレオチドの一部として、共通のカスタム配列を含んでもよい。
【0144】
プローブの複数のセットを二つ以上のヒト染色体の異なる断片を結合するために提供することができる。このセットは、
第一の染色体に特異的な複数の標的断片を結合するプローブの第一のセット、
第二の染色体に特異的な複数の標的断片を結合するプローブの第二のセット、及び必要に応じて、
一つまたは複数の染色体に特異的な複数の標的断片を結合するプローブの一つまたは複数のセットを含む。セット内のプローブはセットに共通であり他のセットにおけるプローブのカスタム配列とは異なる独自の配列を共有することができる。
【0145】
また、1つ以上の容器中の溶液中のプローブのセットを含むキットを提供することができる。
【0146】
用途
本明細書に記載のプローブ及びプローブとキットのセットは、標的核酸断片の存在のための試料の検査に使用してもよい。これらは、断片化核酸の試料の規定された標的断片の存在のインビトロでの同定に使用してもよい。
【0147】
一つの態様では、標的一本鎖核酸断片の存在について試料を試験するプローブの使用を含み、
該プローブは、標的断片の一致する相補体である配列を含む標的オリゴヌクレオチド、該標的オリゴヌクレオチドの標的断片に隣接してハイブリダイズするヘッド及びテールオリゴヌクレオチド配列を含み、
前記標的断片と前記プローブとのハイブリダイゼーションは、該ヘッド及びテール配列に対するライゲーションの鋳型を生成する。
【0148】
試料の試験方法におけるこのようなプローブ及びそれらの使用の実施例は、本明細書中により詳細に記載されている。用途には、トリソミーなどの染色体異常の診断時に胎児の核酸を検出するために妊婦からの母体血液試料を試験すること、患者の腫瘍の存在を診断またはモニタリングするための腫瘍DNAの患者試料を試験することが含まれる。他の用途は、微生物核酸の存在のための材料の試料を検査することを含み、該微生物核酸の検出が細菌、ウイルス、または真菌などの感染性因子でもよい微生物で材料を検査することを含む。試料は、患者からの組織または血液試料であってもよい。
【実施例】
【0149】
以下の実施例は、特定の実施形態及び本発明の態様を実証しさらに例示するために提供されるものであり、本発明の範囲を限定的に解釈するものではない。
【0150】
実施例1
図1に示す方法の実施に適したプロトコルを以下に示す。
1)10ngのDNAを、対応する互換性のある制限酵素緩衝液中で1Uの制限酵素を用いて消化する。反応は、37℃で1時間インキュベーションし80℃で20分間酵素不活性化を行う。2)DNA断片を95℃で10分間処理し一本鎖フラグメントに変性させ、プローブ及びリガーゼと混合し環状化する。1UのAmpligase(Epicentre社)とともに各10pMの濃度でプローブプールを添加し、リガーゼ緩衝液中で55℃で1時間インキュベーションする。3)1Uのエキソヌクレアーゼを未反応のプローブ及び断片を除去するために添加する。IUのλエキソヌクレアーゼ(Epicentre社)を対応するエキソヌクレアーゼ緩衝液に加え37℃で1時間経過後、80℃で20分酵素を不活化する。4)残りの環状化物をRCAによって増幅する。1Uのphi29ポリメラーゼ(New England Biolabs社)を対応するphi29緩衝液及びヌクレオチド(dNTP)に添加し37℃で1時間処理する。
【0151】
実施例2
図2に示す方法の実施に適したプロトコルを以下に示す。
1)10ngのDNAを、対応する互換性のある制限酵素緩衝液中で1Uの制限酵素を用いて消化する。反応は、37℃で1時間インキュベーションし80℃で20分間酵素不活性化を行う。2)DNA断片を95℃で10分間処理し一本鎖フラグメントに変性させ、プローブ及びリガーゼと混合し直鎖状のライゲーション産物を形成する。1UのAmpligase(Epicentre社)とともに各10pMの濃度でプローブプールを添加し、リガーゼ緩衝液中で55℃で1時間インキュベーションする。3)該ライゲーション産物を磁気ストレプトアビジンビーズ上で捕捉する。未反応プローブ及び断片を除去するために、該溶液を10mlのM−280ストレプトアビジン被覆磁気ビーズ(Invitrogen社)と最終容量200mlのTris−HCl(pH7.5)、3.5mM EDTA及び0.07%Tween−20中で混合し、室温で15分間インキュベーションする。インキュベーション後、該ビーズをリングマグネットを使用して回収し上清を除去する。
【0152】
実施例3
材料及び方法
サンプル調製:各被験者からの10mlの血液を無細胞DNAチューブ(Streck社、Omaha、NE)に採取した。血漿を二重遠心分離プロトコルにより血液から単離した(1600gで10分間処理後16000gで10分間処理、最初の回転後新しいチューブへ移動)。cfDNAは、Qiagen ccf 核酸キット(Qiagen社、Hilden、Germany)を用いて製造業者のプロトコルに従い単離した。得られたDNAを50μlの緩衝液(Qiagenキットの一部)の中に溶出させた。
【0153】
プローブ及び骨格デザイン:本明細書に記載の多重プローブ技術は、数千の染色体断片の特定と同時増幅を可能にする。21、18、及び13番染色体のそれぞれから2500〜5000断片(標的)を捕捉するためにプローブを設計する。標的は均一なAT/GC構成のゲノムに特有の配列を有するように選択され、既知の遺伝子多型や標的配列のCNVを含まず、サイズは18〜35bpである。各13番及び18番染色体からの2500断片を標的化するプローブを21番染色体からの5000断片を標的化するプローブと一緒にプールしてシングルオリゴプローブプールを作成した。
【0154】
プローブの配列例において、「N」は標的相補配列を表す:
ATGTGACCCTTCCGTCTGTTGAGTTAGGCCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTCGTGCCTTGTCATTCGGGAGCACTAACTGCTG(配列番号1)
【0155】
前記プローブの末端に相補的なヘッド配列及びテール配列を有する前記骨格は、配列決定及びデジタルカウント両方の配列モチーフを含むよう設計された。結果の項に概説される実験に二つの骨格を使用した:13番及び18番染色体にターゲティングするプローブに相補的な配列:
(/5Phos/CGCACACGATTAAGGTCCAGTCACAGGCAGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTNNNNNNNNNNGTGTAGATCTCGGTGGTCGCCGTATCATTTCATGCTGCTAACGGTCGAGTCGGACAGGTGGCTCCACTAAATAGACGCA);配列番号2、及び21番染色体にターゲティングする骨格:
(/5Phos/GGCCTAACTCAACAGACGGAAGGGTCACATAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTNNNNNNNNNNGTGTAGATCTCGGTGGTCGCCGTATCATTTCATGCTGCTAACGGTCGAGCAGTTAGTGCTCCCGAATGACAAGGCACGA;配列番号:3)。
【0156】
生化学プローブプロトコル: 50μlの精製cfDNAを5UのMseI(NewEngland Biolabs社)で全容量55μlの1xNEB4バッファー(New England Biolabs社)及び1xBSA中で37℃で30分間で消化し、65℃で20分間で熱不活性化した。消化されたDNAをプローブ及び骨格とともにライゲーションミックスと混合した。55μlの消化されたDNAをプローブ(1pM/プローブ)、骨格(各60nM)、1xライゲーションバッファー(Epicentre)、100UのAmpligase(Epicentre)、1mM NAD、及び5mM Mg2+と全容量が70μlとなるように混合した。最初に、消化された断片を95℃で5分間変性して一本鎖DNAとし、55℃で16時間ハイブリダイゼーション及びライゲーションを行った。ライゲーション混合物はその後エキソヌクレアーゼで処理し残留する直鎖DNA分子を全て除去した。ライゲーション反応物を20UのExoI(NEB)、5UのExoIII(NEB)、1xBSAと全容量が75μlとなるように混合して37℃で60分間処理し、その後65℃で10分間不活性化した。
【0157】
解析:シークエンシング解析では、体外で処理した環状化物をIlluminaの配列決定手段に相補的なシークエンシングプライマーで増幅しIllumina Miseqシーケンサーに製造業社プロトコルに従って供した。
【0158】
デジタル解析では、体外で処理した反応物をローリングサークル増幅反応(RCA)に供し、環状化物の鎖状のコピーである分離したDNA目的物を生成した。37.5μlの体外で処理した環状化物を、4mM DTT、3Uのphi29ポリメラーゼ(NEB)、0.1μM プライマー、1mM dNTP mix(NEB)及び1xBSAと全容量が50μlとなるように混合し、37℃で1時間インキュベーションし、65℃で10分間熱不活性化した。RCA反応物はその後、前記骨格配列に相補的な蛍光標識したオリゴヌクレオチドで標識した。50μlのRCA産物を0.1% Tween20(Sigma)、5nMの標識オリゴヌクレオチド、及び2x SSC(Sigma)と全容量が100μlとなるように混合した。標識RCA産物を最終的にPoly−lysine(Sigma)で被覆した顕微鏡スライド上に広げ、蛍光顕微鏡でカウントした。
【0159】
結果
本明細書に記載のプローブ法をIlluminaの配列決定とデジタル計数システムで実証した。該プローブ法の性能を実証するために、21トリソミーを有するDNA試料を、異なる濃度の正常血漿試料(3〜5mlの血漿)から抽出したDNAと混合した。次いで、該試料を用いて該プローブ法を実施し、配列決定により評価した。
【0160】
図8に示すように、100ngの細胞株DNAを上記のプロトコルに供した。13、18、及び21番染色体からの10,000個の対応する染色体断片を特異的に環状化するために、プローブをプール中で混合した。得られた10,000個の環状物を、Illumina対応PCRプライマーを用いて増幅し、配列決定前にゲル上で分析した。レーン1はDNAラダーに対応し、レーン2は消化後のDNA試料に対応し、レーン3は10,000個の増幅断片を含むPCR産物に対応する。
【0161】
図9に示す結果では、12個の正常血漿試料を、異なる濃度でトリソミー21のDNAを有する試料と並行して分析した。DNAを抽出し、10K−plexプローブプロトコルを用いて処理し、最終的にIlluminaシーケンサーで配列決定した。99%の特異性の信頼区間を用いて、陽性試料を90%の感度で推定正規分布に基づいて検出する。
【0162】
標識されたDNA目的物を標的断片に変換する原理を実証するために、21トリソミーを有するDNAの10%を20ngの正常細胞株のDNAに加えて、前記プローブ法を実施した。得られた標識RCA産物をランダムに顕微鏡スライド上に堆積してカウントを行った。21番染色体由来の断片を標的とするプローブを一色及びChr由来の断片を用いて標識した。13番及び18番染色体由来の断片を基準色で標識した。これらの結果を図10に示す。図10のパネル(A)は、標識し検出されたRCA産物の顕微鏡画像を示す。13番染色体からの全ての断片を第一のフルオロフォアで標識し、基準染色体からの断片を第二のフルオロフォアで標識することにより、比測定を実現する。パネル(B)は10K−plexプローブプロトコルを用いて処理し、標識RCA産物に変換された20ngのDNAを示す。RCA産物はトリソミー21DNAが10%添加された試料と並行して分析した。12個の正常なDNA試料(試料番号1〜12)を3個の陽性試料(試料番号13〜15)と並行して分析した。
【0163】
さらなる説明
以下の項は本明細書の一部である。
1. 標的核酸断片の存在のための試料試験方法であって、
(i) 断片化した核酸の試料を供すること、
(ii) 前記標的断片が一本鎖となる変性条件を付与すること、
(iii) 前記標的断片よりも長い、内在性標的相補配列を含有するターゲティングオリゴヌクレオチドであって、該ターゲティングオリゴヌクレオチド及び該標的断片間のハイブリダイゼーションにより該ターゲティングオリゴヌクレオチドの上流及び下流フランキング配列間に位置する二本鎖配列が形成される、前記ターゲティングオリゴヌクレオチド、及び遊離5’及び3’末端をそれぞれ有する、前記上流及び下流フランキング配列にそれぞれ相補的である、ヘッド配列及びテール配列を含む核酸プローブに、前記試料を接触させること、
(iv) 前記ヘッド配列及び前記テール配列が前記フランキング配列にハイブリダイズし、前記標的断片が、存在していれば、前記標的相補配列にハイブリダイズし、それにより該標的断片の末端が該ヘッド配列の5’末端及び該テール配列の3’末端と並んで配置されるアニーリング条件を付与すること、
(v) 前記標的断片が存在する場合、前記標的断片の3’末端が前記ヘッド配列の5’末端に連結されて第一のライゲーション接合部を形成し、該標的断片の5’末端が前記テール配列の3’末端に連結されて第二のライゲーション接合部を形成し、該ヘッド配列及び該テール配列並びに該標的断片を含む核酸連続鎖を含む二重連結産物を生成するライゲーション条件を付与すること、及び
(vi) 前記二重連結産物が存在するかを検出すること、を含み
前記二重連結産物の検出が前記試料中の前記標的断片の存在を示す、前記方法。
2. 前記断片化核酸の試料が制限酵素消化物であり、前記標的断片が制限断片である、第1項に記載の方法。
3. 前記ヘッド配列の5’末端及び前記標的断片の3’末端が、隣接する前記ターゲティングオリゴヌクレオチドのヌクレオチドにハイブリダイズし、前記テール配列の3’末端及び該標的断片の5’末端が、隣接する該ターゲティングオリゴヌクレオチドのヌクレオチドにハイブリダイズする、第1または2項に記載の方法。
4. 前記二重連結産物を検出する工程が、前記核酸連続鎖の前記第一及び第二のライゲーション接合部全体を増幅するための条件を付与し、増幅産物が存在するかを検出することを含む、先行する項のいずれかに記載の方法。
5. 前記ヘッド配列及び前記テール配列並びに前記標的断片を含む前記核酸連続鎖が、環状核酸である、先行する項のいずれかに記載の方法。
6. 前記二重連結産物を検出する工程が、ローリングサークル複製のための条件を付与し、ローリングサークル複製産物が存在するかを検出することを含む、第5項に記載の方法。
7. 前記ローリングサークル複製が超分岐ローリングサークル複製である、第6項に記載の方法。
8. 前記プローブが前記ヘッド配列及び前記テール配列を一つの核酸分子上に含む、第5〜7項のいずれかに記載の方法。
9. 前記プローブが、前記ヘッド配列及び前記テール配列を有する骨格オリゴヌクレオチドを5’及び3’末端にそれぞれ含み、前記骨格オリゴヌクレオチドの該ヘッド配列及び該テール配列が、前記ターゲティングオリゴヌクレオチドの前記フランキング配列に、前記アニーリング条件でトランス結合する、第8項に記載の方法。
10. 前記骨格オリゴヌクレオチドが、前記ヘッド配列及び前記テール配列間にカスタム配列を含み、該カスタム配列は、前記プローブの他の領域または前記標的断片に相補的でない、第9項に記載の方法。
11. 前記骨格オリゴヌクレオチドの前記ヘッド配列及び前記テール配列が隣接している、第9項に記載の方法。
12. 前記ヘッド配列及び前記テール配列は、前記ターゲティングオリゴヌクレオチドの両末端に位置し、前記アニーリング条件下で前記フランキング配列にシス結合する、第5〜8項のいずれかに記載の方法。
13. 前記ターゲティングオリゴヌクレオチドが、前記ターゲティングオリゴヌクレオチド並びに前記ヘッド及び/またはテール配列の間にカスタム配列を含み、該カスタム配列は、前記プローブの他の領域または前記標的断片に相補的でない、第12項に記載の方法。
14. 前記テール配列は、前記ターゲティングオリゴヌクレオチドの3’末端に位置し、前記プローブが、前記ヘッド配列を5’末端に有する骨格オリゴヌクレオチドを含み、
前記アニーリング条件下で、該テール配列が、該ターゲティングオリゴヌクレオチドの前記下流フランキング配列にシス結合し、該骨格オリゴヌクレオチドの該ヘッド配列が、該ターゲティングオリゴヌクレオチドの前記上流フランキング配列にトランス結合する、第1〜7項のいずれかに記載の方法。
15. 前記骨格オリゴヌクレオチドが一対の逆反復配列を含み、
前記アニーリング条件下で該逆反復配列がヘアピン構造を形成し、それにより前記骨格オリゴヌクレオチドの3’末端を前記ターゲティングオリゴヌクレオチドの5’末端に並列するよう配置し、
前記ライゲーションのための条件下で、前記二重連結産物が該ターゲティングオリゴヌクレオチド、前記標的断片、及び該骨格オリゴヌクレオチドを含む環状核酸となるように、該ターゲティングオリゴヌクレオチドの5’末端を該骨格オリゴヌクレオチドの3’末端に連結する、第14項に記載の方法。
16. 前記ヘッド配列が、前記ターゲティングオリゴヌクレオチドの5’末端に位置し、前記プローブが、3’末端に前記テール配列を有する骨格オリゴヌクレオチドを含んでおり、
前記アニーリング条件下で、該ヘッド配列が該ターゲティングオリゴヌクレオチドの前記上流フランキング配列にシス結合し、前記骨格オリゴヌクレオチドの該テール配列が該ターゲティングオリゴヌクレオチドの前記下流フランキング配列にトランス結合する、第1〜7項のいずれかに記載の方法。
17. 前記骨格オリゴヌクレオチドが一対の逆反復配列を含み、
前記アニーリング条件下で前記逆反復配列がヘアピン構造を形成し、それにより該骨格オリゴヌクレオチドの5’末端が前記ターゲティングオリゴヌクレオチドの3’末端に並列するよう配置し、
前記ライゲーションのための条件下で、前記二重連結産物が該ターゲティングオリゴヌクレオチド、前記標的断片、及び該骨格オリゴヌクレオチドを含む環状核酸となるように、該ターゲティングオリゴヌクレオチドの5’末端を該骨格オリゴヌクレオチドの3’末端に連結する、第16項に記載の方法。
18. 前記アニーリング条件下で、前記骨格オリゴヌクレオチドがヘアピンループを形成するように、該骨格オリゴヌクレオチドが前記逆反復配列間にカスタム配列を含む、第14〜17項のいずれかに記載の方法。
19. 前記ヘッド配列及び前記テール配列並びに前記標的断片を含む核酸の連続鎖が直鎖状核酸である、第1〜4項のいずれかに記載の方法。
20. 前記テール配列は前記ターゲティングオリゴヌクレオチドの3’末端に位置し、前記プローブが、前記ヘッド配列を5’末端に有する骨格オリゴヌクレオチドを含み,
前記アニーリング条件下で、該テール配列が該ターゲティングオリゴヌクレオチドの前記下流フランキング配列にシス結合し、前記骨格オリゴヌクレオチドの該ヘッド配列が該ターゲティングオリゴヌクレオチドの前記上流フランキング配列にトランス結合する、第19項に記載の方法。
21. 前記アニーリング条件下で、前記ターゲティングオリゴヌクレオチドがヘアピンループを形成するように、該ターゲティングオリゴヌクレオチドが、前記下流フランキング配列及び前記テール配列の間にカスタム配列を含む、第14、15、または20項のいずれかに記載の方法。
22. 前記ヘッド配列が前記ターゲティングオリゴヌクレオチドの5’末端に位置し、前記プローブが、前記テール配列を3’末端に有する骨格オリゴヌクレオチドを含み,
前記アニーリング条件下で、該ヘッド配列が該ターゲティングオリゴヌクレオチドの前記上流フランキング配列にシス結合し、前記骨格オリゴヌクレオチドの該テール配列が該ターゲティングオリゴヌクレオチドの前記下流フランキング配列にトランス結合する、第19項に記載の方法。
23. 前記アニーリング条件下で前記ターゲティングオリゴヌクレオチドがヘアピンループを形成するように、該ターゲティングオリゴヌクレオチドが前記ヘッド配列及び前記上流フランキング配列の間にカスタム配列を含む、第16、17、または22項のいずれかに記載の方法。
24. 前記骨格オリゴヌクレオチドが捕捉部分を担持する、第14〜18または20〜23項のいずれかに記載の方法。
25. 前記プローブが、遊離5’末端を有するヘッド配列を含む骨格オリゴヌクレオチド及び遊離3’末端を有するテール配列を含む骨格オリゴヌクレオチドを含み、前記アニーリング条件下で、該ヘッド配列及び該テール配列が、前記ターゲティングオリゴヌクレオチドの前記フランキング配列にトランス結合する、第19項に記載の方法。
26. 一方または両方の骨格オリゴヌクレオチドがさらにカスタム配列を含み、該カスタム配列は、前記プローブの他の領域または前記標的断片に相補的でない、第25項に記載の方法。
27. 前記骨格オリゴヌクレオチドの一方が捕捉部分を担持する、第25または26項に記載の方法。
28. 前記骨格オリゴヌクレオチドの他方が異種性の標識を担持する、第27項に記載の方法。
29. 前記標識がフルオロフォアである、第28項に記載の方法。
30. 前記二重連結産物が存在するかを検出する工程が、前記骨格オリゴヌクレオチドを基質上で前記捕捉部分を介して捕捉すること、該基質を洗浄して連結されていないプローブを除去するとともに該基質及び捕捉した骨格オリゴヌクレオチドを含む捕捉分画を保持すること、及び該捕捉分画中の該二重連結産物の存在について試験することを含む、第24項または第27〜29項のいずれかに記載の方法。
31. 前記二重連結産物が存在するかを検出する工程が、前記骨格オリゴヌクレオチドを基質上で前記捕捉部分を介して捕捉すること、該基質を洗浄して連結されていないプローブを除去するとともに該基質及び捕捉した骨格オリゴヌクレオチドを含む捕捉分画を保持すること、及び該捕捉分画中の前記標識の存在について試験することを含む、第28または29項に記載の方法。
32. 前記捕捉部分がビオチンである、第24項または第27〜31項のいずれかに記載の方法。
33. 前記標的相補配列の長さが10〜30ヌクレオチドである、先行する項のいずれかに記載の方法。
34. 前記標的相補配列が、前記標的断片に対して5個未満の塩基対ミスマッチを有する、先行する項のいずれかに記載の方法。
35. 前記標的相補配列が該標的断片の正確な相補体である、第34項に記載の方法。
36. 各フランキング配列の長さが10〜30ヌクレオチドである、先行する項のいずれかに記載の方法。
37. 前記上流及び下流フランキング配列が互いに異なる、先行する項のいずれかに記載の方法。
38. 前記ヘッド配列が、前記上流フランキング配列に対して5個未満の塩基対ミスマッチを有し、前記テール配列が、前記下流フランキング配列に対して5個未満の塩基対ミスマッチを有する、先行する項のいずれかに記載の方法。
39. 前記ヘッド配列が、前記上流フランキング配列の正確な相補体であり、前記テール配列が前記下流フランキング配列の正確な相補体である、第38項に記載の方法。
40. 前記ターゲティングオリゴヌクレオチドが直鎖状である先行する項のいずれかに記載の方法。
41. 前記試料が断片化したヒト染色体の試料であり、前記標的断片が一つの染色体に特異的なヒトゲノム断片である、先行する項のいずれかに記載の方法。
42. 前記標的断片が、ヒトゲノムの一つの遺伝子座に特異的である、第41項に記載の方法。
43. 前記プローブ核酸がDNAである、先行する項のいずれかに記載の方法。
44. 同時に複数の前記プローブを用いて、複数の異なる標的核酸断片を多重試験することを含む、先行する項のいずれかに記載の方法。
45. 断片化染色体の試料を、染色体の複数の断片を結合するためのプローブのセットに接触させることを含む第44項に記載の方法であって、該セットの各プローブは該染色体に特異的な異なる標的断片を結合するためのものである、前記方法。
46. 前記プローブは共通のカスタム配列を有する、第45項に記載の方法。
47. 断片化染色体の試料を、二つ以上の染色体の複数の断片を結合するためのプローブの複数のセットに接触させることを含む第44項に記載の方法であって、該プローブの複数のセットは、
第一の染色体に特異的な複数の標的断片を結合するための第一のプローブセット、及び
第二の染色体に特異的な複数の標的断片を結合するための第二のプローブセット、及び、必要に応じて、
一つまたは複数のさらなる染色体に特異的な複数の標的断片の結合のための一つまたは複数のさらなるプローブセットを含む、前記方法。
48. 各プローブのセットは、前記染色体に特異的な複数の標的断片の結合のための少なくとも500個の異なるプローブを含む、第47項に記載の方法。
49. 一つのセット中の前記プローブが共通のカスタム配列を有し、該カスタム配列はサブセットに共通し他のセットのプローブのカスタム配列とは異なる、第47または48項に記載の方法。
50. 各プローブのセットに対し前記二重連結産物を検出し、該産物中の前記カスタム配列の相対量を検出することにより、前記試料中の前記複数の染色体の相対量を決定することを含む、第49項に記載の方法。
51. 前記一つまたは複数の染色体がヒト染色体である、第45〜50項のいずれかに記載の方法。
52. 一本鎖標的核酸断片を結合するための核酸プローブであって、該プローブが、
前記標的断片よりも長い、内在性標的相補配列を含有するターゲティングオリゴヌクレオチドであって、該ターゲティングオリゴヌクレオチド及び該標的断片間のハイブリダイゼーションにより該ターゲティングオリゴヌクレオチドの上流及び下流フランキング配列間に位置する二本鎖配列が形成される、前記ターゲティングオリゴヌクレオチド、及び
遊離5’及び3’末端をそれぞれ有する、前記上流及び下流フランキング配列にそれぞれ相補的である、ヘッド配列及びテール配列を含み、
よって、上記標的断片存在下のアニーリング条件下で、該ヘッド配列及び該テール配列は上記フランキング配列にハイブリダイズして、該ヘッド配列の5’末端及び該テール配列の3’末端の間のギャップを画定し、該ギャップにおいて該標的断片は上記標的相補配列にハイブリダイズし、それにより該標的断片の末端が該ヘッド配列の5’末端及び該テール配列の3’末端と並んで配置され、
該ギャップにおける該標的断片のハイブリダイゼーションにより、該標的断片並びに該ヘッド配列及び該テール配列を含む環状核酸が完成する、前記核酸プローブ。
53. 前記ヘッド/またはテール配列はカスタム配列に連結され、該カスタム配列は、前記プローブの他の領域または前記標的断片に相補的でない、第52項に記載の核酸プローブ。
54. 単一核酸分子が前記ヘッド配列及び前記テール配列を含む、第52または53項に記載の核酸プローブ。
55. 前記ヘッド配列及び前記テール配列が前記ターゲティングオリゴヌクレオチドから分離して前記フランキング配列にトランス結合する、第52または53項に記載のプローブ。
56. 前記ヘッド配列及び前記テール配列が、骨格オリゴヌクレオチドの5’及び3’末端にそれぞれ位置する、第55項に記載のプローブ。
57. 前記骨格オリゴヌクレオチドが、前記ヘッド配列及び前記テール配列の間にカスタム配列を含み、該カスタム配列は、前記プローブの他の領域または前記標的断片に相補的でない、第56項に記載のプローブ。
58. 前記骨格オリゴヌクレオチドの前記ヘッド配列及び前記テール配列が隣接している、第56項に記載のプローブ。
59. 一本鎖標的核酸断片を結合するための核酸プローブであって、該プローブが、
前記標的断片よりも長い、内在性標的相補配列を含有するターゲティングオリゴヌクレオチドであって、該ターゲティングオリゴヌクレオチド及び該標的断片間のハイブリダイゼーションにより該ターゲティングオリゴヌクレオチドの上流及び下流フランキング配列間に位置する二本鎖配列が形成される、前記ターゲティングオリゴヌクレオチド、及び
遊離5’及び3’末端をそれぞれ有する、前記上流及び下流フランキング配列にそれぞれ相補的である、ヘッド配列及びテール配列を含み、
よって、上記標的断片存在下のアニーリング条件下で、該ヘッド配列及び該テール配列は上記フランキング配列にハイブリダイズして、該ヘッド配列の5’末端及び該テール配列の3’末端の間のギャップを画定し、該ギャップにおいて該標的断片は上記標的相補配列にハイブリダイズし、それにより該標的断片の末端が該ヘッド配列の5’末端及び該テール配列の3’末端と並列するように配置され、
該ヘッド配列が、該ターゲティングオリゴヌクレオチドの5’末端であり、及び/または該テール配列が該ターゲティングオリゴヌクレオチドの3’末端であり、よって該ギャップにおける該標的断片のハイブリダイゼーションにより、該標的断片、該ヘッド配列及び該テール配列、該標的相補配列及び該フランキング配列を含む核酸鎖が完成される、前記核酸プローブ。
60. 前記ヘッド配列及び前記テール配列が前記ターゲティングオリゴヌクレオチドの両末端に位置し前記フランキング配列にシス結合する、第52または59項に記載のプローブ。
61. 前記テール配列が前記ターゲティングオリゴヌクレオチドの3’末端であり、前記ヘッド配列が該ターゲティングオリゴヌクレオチドから分離した骨格オリゴヌクレオチドの5’末端である、第52または59項に記載のプローブ。
62. 前記ヘッド配列が前記ターゲティングオリゴヌクレオチドの5’末端であり、前記テール配列が該ターゲティングオリゴヌクレオチドから分離した骨格オリゴヌクレオチドの3’末端である、第52または59項に記載のプローブ。
63. 前記骨格オリゴヌクレオチドがさらにカスタム配列を含み、該カスタム配列は、前記プローブの他の領域または前記標的断片に相補的でない、第61または62項に記載のプローブ。
64. 一本鎖標的核酸断片を結合するための核酸プローブであって、該プローブが、
前記標的断片よりも長い、内在性標的相補配列を含有するターゲティングオリゴヌクレオチドであって、該ターゲティングオリゴヌクレオチド及び該標的断片間のハイブリダイゼーションにより該ターゲティングオリゴヌクレオチドの上流及び下流フランキング配列間に位置する二本鎖配列が形成される、前記ターゲティングオリゴヌクレオチド、
遊離5’末端を有するヘッド配列を含む骨格オリゴヌクレオチド、及び
遊離3’末端を有するテール配列を含む骨格オリゴヌクレオチド、を含み
上記ヘッド及びテールオリゴヌクレオチド配列がそれぞれ上記上流及び下流フランキング配列に相補的であり、
一方の骨格オリゴヌクレオチドが捕捉部分を担持し、他方の骨格オリゴヌクレオチドが異種性の標識を担持し、
よって、上記標的断片存在下のアニーリング条件下で、該ヘッド配列及び該テール配列は上記フランキング配列にハイブリダイズして、該ヘッド配列の5’末端及び該テール配列の3’末端の間のギャップを画定し、該ギャップにおいて該標的断片は上記標的相補配列にハイブリダイズし、それにより該標的断片の末端が該ヘッド配列の5’末端及び該テール配列の3’末端と並列するように配置され、
該ギャップにおける該標的断片のハイブリダイゼーションにより該標的断片並びに該ヘッド配列及び該テール配列を含む核酸鎖が完成し、該鎖が該捕捉部分及び該標識を担持する、前記核酸プローブ。
65. 前記捕捉部分がビオチンである、第64項に記載のプローブ。
66. 前記標識がフルオロフォアである、第64または65項に記載のプローブ。
67. 一方または両方の骨格オリゴヌクレオチドがさらにカスタム配列を含み、該カスタム配列は、前記プローブの他の領域または前記標的断片に相補的でない、第64〜66項のいずれかに記載のプローブ。
68. 前記ターゲティングオリゴヌクレオチドがさらに前記プローブの他の領域または前記標的断片に相補的でないカスタム配列を含む、第52〜67項のいずれかに記載のプローブ。
69. 前記標的相補配列の長さが10〜30ヌクレオチドである、先行する項のいずれかに記載のプローブ。
70. 前記標的相補配列が前記標的断片に対して5個未満の塩基対ミスマッチを有する、先行する項のいずれかに記載のプローブ。
71. 前記標的相補配列が前記標的断片の正確な相補体である、第70項に記載のプローブ。
72. 各フランキング配列の長さが10〜30ヌクレオチドである、第52〜71項のいずれかに記載のプローブ。
73. 前記ターゲティングオリゴヌクレオチドの前記上流及び下流フランキング配列が互いに異なる、第52〜72項のいずれかに記載のプローブ。
74. 前記ヘッド配列が、前記上流フランキング配列に対して5個未満の塩基対ミスマッチを有し、前記テール配列が前記下流フランキング配列に対して5個未満の塩基対ミスマッチを有する、第52〜73項のいずれかに記載のプローブ。
75. 前記ヘッド配列及び前記テール配列が前記フランキング配列の正確な相補体である、第74項に記載のプローブ。
76. 前記ターゲティングオリゴヌクレオチドが直鎖状である、第52〜75項のいずれかに記載のプローブ。
77. 前記標的断片が制限エンドヌクレアーゼ断片である、第52〜76項のいずれかに記載のプローブ。
78. 前記標的断片がヒトゲノム断片である、第52〜77項のいずれかに記載のプローブ。
79. 前記標的断片が、一つの染色体に特異的なヒトゲノム断片である、第78項に記載のプローブ。
80. 前記標的断片が該ヒトゲノムの一つの遺伝子座に特異的である、第79項に記載のプローブ。
81. 前記プローブ核酸がDNAである、第52〜80項のいずれかに記載のプローブ。
82. 第52〜81項のいずれかに記載のプローブを複数含む、一本鎖標的核酸断片を結合するためのプローブのセットであって、該プローブが複数の異なる標的断片を結合するための複数の異なる標的相補配列を有する、前記プローブのセット。
83. ヒト染色体の複数の断片を結合するための、第82項に記載のプローブのセットであって、該セットの各プローブは、該染色体に特異的であって異なる標的断片を結合する、前記プローブのセット。
84. 前記プローブが共通のカスタム配列を有する、第83項に記載のプローブのセット。
85. 二つ以上のヒト染色体の異なる断片を結合するためのプローブの複数のセットであって、
第一の染色体に特異的な複数の標的断片を結合するための、第一のプローブのセット、
第二の染色体に特異的な複数の標的断片を結合するための、第二のプローブのセット、及び、必要に応じて、
一つまたは複数のさらなる染色体に特異的な複数の標的断片を結合するためのプローブの一つまたは複数のさらなるセット、を含む前記プローブの複数のセット。
86. 一つのセット中の前記プローブが共通のカスタム配列を有し、該カスタム配列は該セットに共通であるが他のセットのプローブのカスタム配列とは異なる、第85項に記載のプローブの複数のセット。
87. 一つまたは複数の容器内の溶液中の第82〜86項のいずれかに記載の一つまたは複数のプローブのセットを含むキット。
88. 標的核酸断片の存在について試験するための、第52〜81項のいずれかに記載のプローブ、第82〜86項のいずれかに記載のプローブのセット、または第87項に記載のキットの使用。
89. 標的一本鎖核酸断片の存在について試料を試験するためのプローブの使用であって、該プローブは、該標的断片の正確な相補体である配列を含有するターゲティングオリゴヌクレオチド及び該ターゲティングオリゴヌクレオチド上で該標的断片に隣接してハイブリダイズするヘッド及びテールオリゴヌクレオチド配列を含み
該標的断片及び該プローブ間のハイブリダイゼーションにより、該ヘッド配列及び該テール配列へのライゲーションのための該標的断片の鋳型が形成される、前記プローブの使用。
90. 前記プローブが第52〜81項のいずれかに規定される、第89項に記載の使用。
【0164】
一つの実施形態では、核酸試料の処理方法であって、a)標的断片を含む試料を核酸プローブにハイブリダイズし、該核酸プローブは:i.第一のオリゴヌクレオチド分子の両末端に位置するヘッド配列及びテール配列;及びii.該ヘッド配列に相補的な上流フランキング配列、該標的断片に相補的な標的相補配列、及び該テール配列に相補的な下流フランキング配列をその順序で含むスプリント配列を含み、それにより、該標的断片の両末端が、第一のオリゴヌクレオチド分子中の該ヘッド配列及び該テール配列の末端に連結可能に隣接するハイブリダイゼーション産物を生成すること、及びb)上記標的断片の両末端を第一オリゴヌクレオチド分子の上記ヘッド配列及びテール配列の末端に連結することにより、上記標的断片並びに上記ヘッド配列及びテール配列を含む環状産物を生成することを含む方法を提供する。
【0165】
任意の実施形態において、前記方法はさらに、前記第一のオリゴヌクレオチド分子または前記スプリント配列にハイブリダイズするプライマーを使用するローリングサークル増幅によって前記環状産物を増幅することを含んでもよい。これらの実施形態では、前記方法はさらに、産生されたローリングサークル増幅産物の数を定量することにより、前記試料中の前記標的断片の量の推定値を求めることを含んでもよい。
【0166】
いくつかの実施形態では、前記スプリント配列は、前記第一のオリゴヌクレオチド分子に含まれてもよい。
【0167】
いくつかの実施形態では、前記スプリント配列は、第二のオリゴヌクレオチド分子に含まれてもよい。
【0168】
任意の実施形態では、前記標的相補配列の長さは10〜30ヌクレオチドであってもよい。
【0169】
任意の実施形態では、前記標的相補配列は、前記標的断片にたいする一つまたは複数のミスマッチを含んでいてもよい。
【0170】
任意の実施形態では、前記フランキング配列の長さは10及び40ヌクレオチドであってもよい。
【0171】
任意の実施形態では、前記試料は、制限酵素で消化されてもよい。
【0172】
任意の実施形態では、前記試料はゲノムDNA、例えばヒトゲノムDNAを含んでいてもよい。これらの実施形態では、前記試料は血液から単離される無細胞DNAを含んでいてもよい。例えば、任意の実施形態では、前記試料は、妊婦の血流から単離される無細胞DNAを含んでもよい。
【0173】
いくつかの実施形態では、前記スプリント配列は捕捉部分、例えばビオチン部分を含む第二のオリゴヌクレオチド分子に含まれていてもよい。これらの実施形態では、前記方法は:c)該捕捉部分を固相に結合することにより前記環状産物を固定化すること;及びd)該固相を洗浄して連結されていない核酸及び他の反応成分を除去することにより、該環状産物を濃縮することを含んでいてもよい。
【0174】
任意の実施形態では、前記標的断片は、21、13、または18番染色体由来でもよい。
【0175】
いくつかの実施形態では、前記方法は、前記試料を、少なくとも50個の前記プローブのセットとハイブリダイズする工程であって、前記プローブは同一の染色体上の異なる断片を標的とし、該標的断片を含む複数の環状産物を生成することを含んでいてもよい。
【0176】
これらの実施形態では、前記方法は、前記試料を前記プローブのセットである第一のセット及び第二のセットとハイブリダイズし、第一及び第二のセットは第一の染色体及び第二の染色体をそれぞれ標的とし、ローリングサークル増幅(RCA)により前記環状産物を増幅し、第一の染色体に対応するRCA産物の数を第一の染色体に対応するRCA産物の数と比較することを含んでいてもよい。
【0177】
これらの実施形態では、前記方法は、前記試料を前記プローブのセットである第一のセット及び第二のセットとハイブリダイズし、第一及び第二のセットは染色体の第一及び第二の領域をそれぞれ標的とし、ローリングサークル増幅(RCA)により前記環状産物を増幅し、第一の領域に対応するRCA産物の数を第二の領域に対応するRCA産物の数と比較することを含んでいてもよい。
【0178】
また本明細書では、上述の通り、核酸プローブを含む組成物を提供する。いくつかの実施形態では、該核酸プローブは:i.第一のオリゴヌクレオチド分子の対向する末端に位置するヘッド配列及びテール配列;ii.該ヘッド配列に相補的な上流フランキング配列、ヒトゲノム中の標的断片に相補的な標的相補配列、及び該テール配列に相補的な下流フランキング配列をその順序で含むスプリント配列を含み、前記プローブは、第一のオリゴヌクレオチド、該スプリント配列、及び該標的断片が互いにハイブリダイズする時に、該標的断片の両末端が、第一オリゴヌクレオチド分子中の該ヘッド配列及び該テール配列の末端と連結可能に隣接するように設計されている。
【0179】
任意の組成物の実施形態では、前記組成物は、少なくとも50個の前記核酸プローブの第一のセットを含んでいてもよく、該プローブの前記標的相補配列は、第一のヒト染色体(例えばヒト21、13または18番染色体)の異なる標的断片に相補的である。これらの実施形態では、該組成物は、必要に応じて少なくとも50個の前記核酸プローブの第二のセットを含んでいてもよく、第二のセットの前記プローブの前記標的相補配列は、第二のヒト染色体、例えば(第一の染色体が21番染色体の場合)13または18番染色体の異なる標的断片に相補的である。
【要約】
【課題】生物学的試料中の特異的核酸配列を検出するためのプローブ、特に多重特異的配列の同時多重検出方法に使用するプローブ、及び当該プローブを核酸断片の検出に使用する方法に関する。
【解決手段】(a)以下の(i)〜(iii):(i)10〜100ヌクレオチドの長さを有し、かつ、ヒトゲノムDNAの配列である一本鎖標的核酸断片に相補的である内在性標的相補配列、(ii)ヒトゲノムDNAに相補的でない、少なくとも10ヌクレオチドの長さを有する上流フランキング配列、及び(iii)ヒトゲノムDNAに相補的でない、少なくとも10ヌクレオチドの長さを有する下流フランキング配列を含むターゲティングオリゴヌクレオチド、並びに、(b)ヘッド配列及びテール配列であって、それぞれ遊離5’及び3’末端を有し、それぞれ上流フランキング配列及び下流フランキング配列に相補的である、ヘッド配列及びテール配列を有する第二のオリゴヌクレオチドを含み、標的核酸断片が存在しない場合に、ターゲティングオリゴヌクレオチドと第二のオリゴヌクレオチドのハイブリダイゼーションにより、内在性標的相補配列が一本鎖である環状核酸を形成する。
【選択図】図1
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
【配列表】
[この文献には参照ファイルがあります.J-PlatPatにて入手可能です(IP Forceでは現在のところ参照ファイルは掲載していません)]