(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0012】
次に、図面を参照しながら、本開示の発明を実施するための形態について説明する。
【0013】
図1は、本開示のダンパ装置10を備える発進装置1の概略構成図である。
図1の発進装置1では、ダンパ装置10が本開示の「振動減衰装置」に相当する。図示するように、発進装置1は、例えば駆動装置としてのエンジン(内燃機関)EGを備える車両に搭載されるものであり、ダンパ装置10に加えて、エンジンEGのクランクシャフトに連結される入力部材としてのフロントカバー3や、トルクコンバータ(流体伝動装置)TC,変速機(動力伝達装置)TMの入力軸ISに固定される出力部材としてのダンパハブ7,ロックアップクラッチ8等を備える。ここで、トルクコンバータTCは、フロントカバー3に固定されてフロントカバー3と一体に回転するポンプインペラ(入力側流体伝動要素)4と、ポンプインペラ4と同軸に回転可能で且つダンパ装置10のドリブン部材15およびダンパハブ7に固定されるタービンランナ(出力側流体伝動要素)5と、タービンランナ5からポンプインペラ4への作動油(作動流体)の流れを整流するステータ6と、ステータ6の回転方向を規制するワンウェイクラッチ61と、を備える。なお、トルクコンバータTCに代えて、ステータ6やワンウェイクラッチ61を備えない構成、即ち、ポンプインペラ4およびタービンランナ5を流体継手として機能させる構成を用いるものとしてもよい。変速機TMとしては、例えば、自動変速機(AT)や無段変速機(CVT),デュアルクラッチトランスミッション(DCT),ハイブリッドトランスミッション,減速機などを挙げることができる。ロックアップクラッチ8は、ダンパ装置10を介して、フロントカバー3とダンパハブ7とを連結するロックアップを実行すると共にロックアップを解除する。
【0014】
なお、以下の説明において、「軸方向」は、特に明記するものを除いて、基本的に、発進装置1やダンパ装置10の中心軸(軸心)の延在方向を示す。また、「径方向」は、特に明記するものを除いて、基本的に、発進装置1やダンパ装置10,これらの回転要素の径方向、即ち、中心軸から中心軸と直交する方向(半径方向)に延びる直線の延在方向を示す。さらに、「周方向」は、特に明記するものを除いて、基本的に、発進装置1やダンパ装置10,これらの回転要素の周方向、即ち、回転方向に沿った方向を示す。
【0015】
ダンパ装置10は、回転要素として、ドライブ部材(入力要素)11と、中間部材(中間要素)12と、ドリブン部材(出力要素)15と、を備える。また、ダンパ装置10は、トルク伝達要素として、ドライブ部材11とドリブン部材15との間に配置される複数(例えば2個)の捩れ剛性機構20と、ドライブ部材11と中間部材12との間に配置される複数(例えば2個)の捩れ剛性機構30と、中間部材12とドリブン部材15との間に配置される複数(例えば2個)の捩れ剛性機構40と、を備える。
【0016】
図2に示すように、ドライブ部材11は、板状の環状部材であり、ロックアップクラッチ8のロックアップピストンに連結(固定)される。したがって、ロックアップクラッチ8によりロックアップが実行されると、フロントカバー3(エンジンEG)とドライブ部材11とが連結される。中間部材12は、ドライブ部材11よりも径の小さい板状の環状部材である。ドリブン部材15は、ドライブ部材11および中間部材12よりも径の小さい板状の環状部材であり、ダンパハブ7およびタービンランナ5に固定される。ドライブ部材11と中間部材12とドリブン部材15とは、同心円上に配置される。
【0017】
複数の捩れ剛性機構20は、互いに180度離れるように配置され、それぞれ、連結部材21と、連結部材21とドリブン部材15とを互いに回転自在に連結するためのリベット23と、連結部材21とドライブ部材11とを連結するためのピン24と、を備える。連結部材21は、一定方向に延在するように形成され、略中央よりも一端側にかけて、連結部材21の延在方向に延びる穴部22を有する。連結部材21は、リベット23を介してドリブン部材15に回転自在に支持されると共に、ドライブ部材11に固定されるピン24が連結部材21の穴部22内に位置することによりドライブ部材11によって回転自在かつ穴部22(連結部材21)の延在方向に移動自在に支持される。これにより、連結部材21は、ドリブン部材15と回り対偶をなすと共にドライブ部材11とすべり対偶をなす。連結部材21は、ドライブ部材11とドリブン部材15との相対捩れ角(相対変位)がゼロのときに、径方向に延在する。そして、連結部材21の重心21gは、リベット23(ドリブン部材15との回り対偶の位置)およびピン24(ドライブ部材11とのすべり対偶の位置)を通る直線(ドライブ部材11とドリブン部材15との相対捩れ角がゼロのときには、径方向)におけるリベット23およびピン24よりも径方向外側に位置する。
【0018】
複数の捩れ剛性機構30は、周方向における複数の捩れ剛性機構20とは異なる位置で互いに180度離れるように配置され、それぞれ、連結部材31と、連結部材31と中間部材12とを互いに回転自在に連結するためのリベット33と、連結部材31とドライブ部材11とを連結するためのピン34と、を備える。連結部材31は、一定方向に延在するように形成され、略中央から一端側にかけて、連結部材31の延在方向に延びる穴部32を有する。連結部材31は、リベット33を介して中間部材12に回転自在に支持されると共に、ドライブ部材11に固定されるピン34が連結部材31の穴部32内に位置することによりドライブ部材11によって回転自在かつ穴部32(連結部材31)の延在方向に移動自在に支持される。これにより、連結部材31は、中間部材12と回り対偶をなすと共にドライブ部材11とすべり対偶をなす。連結部材31は、ドライブ部材11と中間部材12との相対捩れ角がゼロのときに、径方向に延在する。そして、連結部材31の重心31gは、リベット33(中間部材12との回り対偶の位置)およびピン34(ドライブ部材11とのすべり対偶の位置)を通る直線(ドライブ部材11と中間部材12との相対捩れ角がゼロのときには、径方向)におけるリベット33およびピン34よりも径方向外側に位置する。
【0019】
複数の捩れ剛性機構40は、周方向における複数の捩れ剛性機構20および捩れ剛性機構30とは異なる位置で互いに180度離れるように配置され、それぞれ、連結部材41と、連結部材41とドリブン部材15とを互いに回転自在に連結するためのリベット43と、連結部材41と中間部材12とを連結するためのピン44と、を備える。連結部材41は、一定方向に延在するように形成され、略中央から一端側にかけて、連結部材41の延在方向に延びる穴部42を有する。連結部材41は、リベット43を介してドリブン部材15に回転自在に支持されると共に、中間部材12に固定されるピン44が連結部材41の穴部42内に位置することにより中間部材12によって回転自在かつ穴部42(連結部材41)の延在方向に移動自在に支持される。これにより、連結部材41は、ドリブン部材15と回り対偶をなすと共に中間部材12とすべり対偶をなす。連結部材41は、中間部材12とドリブン部材15との相対捩れ角がゼロのときに、径方向に延在する。そして、連結部材41の重心41gは、リベット43(ドリブン部材15との回り対偶の位置)およびピン44(中間部材12とのすべり対偶の位置)を通る直線(中間部材12とドリブン部材15との相対捩れ角がゼロのときには、径方向)におけるリベット43およびピン44よりも径方向外側に位置する。
【0020】
次に、ダンパ装置10を備える発進装置1の動作について説明する。この発進装置1では、
図1から分かるように、ロックアップクラッチ8によりロックアップが解除されている際には、エンジンEGからフロントカバー3に伝達されたトルク(動力)が,ポンプインペラ4,タービンランナ5,ダンパハブ7の経路を介して変速機TMの入力軸ISに伝達される。また、ロックアップクラッチ8によりロックアップが実行されている際には、エンジンEGからフロントカバー3およびロックアップクラッチ8を介してドライブ部材11に伝達されたトルク(動力)が、複数の捩れ剛性機構20を含む第1トルク伝達経路と、複数の捩れ剛性機構30と中間部材12と複数の捩れ剛性機構40とを含む第2トルク伝達経路と、を介してドリブン部材15,ダンパハブ7,変速機TMの入力軸ISに伝達される。
【0021】
ロックアップクラッチ8によりロックアップが実行されている際には、エンジンEGの回転に伴って、ロックアップクラッチ8によりフロントカバー3に連結されたダンパ装置10が回転すると、捩れ剛性機構20は、ドライブ部材11とドリブン部材15とに相対捩れ角が生じたときにその相対捩れ角を小さくするように動作し、捩れ剛性機構30は、ドライブ部材11と中間部材12とに相対捩れ角が生じたときにその相対捩れ角を小さくするように動作し、捩れ剛性機構40は、中間部材12とドリブン部材15とに相対捩れ角が生じたときにその相対捩れ角を大きくするように動作する。以下、捩れ剛性機構20,30,40の動作や捩れ剛性k1,k2,k3について説明する。
【0022】
まず、捩れ剛性機構20の動作や捩れ剛性k1について
図3を用いて説明する。エンジンEG(ダンパ装置10)が回転すると、連結部材21の重心21gには、遠心力F11が作用する。この遠心力F11は、式(1)により表わすことができる。式(1)中、「m1」は、連結部材21の質量であり、「D11」は、ダンパ装置10(ドライブ部材11や中間部材12,ドリブン部材15)の回転中心RCと連結部材21の重心21gとの距離であり、「Ω」は、エンジンEGの角速度である。この遠心力F11の向きは、ダンパ装置10の回転中心RCおよび連結部材21の重心21gを通る直線L11の方向のうち径方向外側の向きである。
【0024】
ドライブ部材11とドリブン部材15との相対捩れ角がゼロのときには、連結部材21は、径方向に延在する(
図2参照)。したがって、上述の直線L11と、連結部材21の延在方向の直線(リベット23およびピン24を通る直線)L12と、ダンパ装置10の回転中心RCおよびリベット23を通る直線L13と、ダンパ装置10の回転中心RCおよびピン24を通る直線L14と、の全てが一致する。このため、連結部材21の重心21gに作用する遠心力F11の直線L12に直交する方向の分力F12は、値0となる。
【0025】
ドライブ部材11とドリブン部材15との相対捩れ角がゼロでないときには、
図3に示すように、直線L11〜L14が互いにずれる。したがって、連結部材21の重心21gに作用する遠心力F11の直線L12に直交する方向の分力F12は、式(2)により表わすことができる。式(2)中、「α1」は、直線L11と直線L12との角度である。この分力F12の向きは、直線L12に直交する方向のうちドライブ部材11とドリブン部材15との相対捩れ角を小さくする側の向き(
図3では右上側の向き)である。また、連結部材21の重心21gは、
図2および
図3から分かるように、ドライブ部材11とドリブン部材15との相対捩れ角がゼロのときに最も径方向外側に位置し、ドライブ部材11とドリブン部材15との相対捩れ角が増加するにつれて径方向内側に移動し、ドライブ部材11とドリブン部材15との相対捩れ角が減少するにつれて径方向外側に移動する。さらに、ドライブ部材11とドリブン部材15との相対捩れ角がゼロでないときには、連結部材21の重心21gに、直線L12に直交する方向のうちドライブ部材11とドリブン部材15との相対捩れ角を小さくする側の向きの分力F12が生じるから、捩れ剛性機構20は、ドライブ部材11とドリブン部材15との相対捩れ角を小さくするように動作する(正の復元力を有する)と考えることができる。
【0027】
また、このとき、ピン24の位置(ドライブ部材11と連結部材21とのすべり対偶の位置)において、連結部材21がドライブ部材11から受ける力F13は、式(3)により表わすことができる。式(3)中、「D12」は、リベット23と連結部材21の重心21gとの距離であり、「D13」は、リベット23とピン24との距離である。この力F13の向きは、直線L12に直交する方向のうちドライブ部材11とドリブン部材15との相対捩れ角を大きくする側の向き(
図3では分力F12と反対側の向き)である。そして、ピン24の位置において、連結部材21がドライブ部材11から受ける力F13のダンパ装置10の回転方向の分力F14は、式(4)により表わすことができる。式(4)中、「β1」は、直線L12と直線L14との角度である。この力F14の向きは、ダンパ装置10の回転方向のうちドライブ部材11とドリブン部材15との相対捩れ角を大きくする側の向き(
図3では反時計回りの向き)である。
【0029】
したがって、ドライブ部材11に伝達されるトルクT1(ドライブ部材11とドリブン部材15との相対捩れ角を小さくする側を正とする)は、式(5)により表わすことができる。式(5)中、「D14」は、ダンパ装置10の回転中心RCとピン24との距離である。ここで、式(5)において、右辺の係数として値1を用いるのは以下の理由による。連結部材21がドライブ部材11から受ける力F13の向きは、連結部材21に対するモーメントの釣り合いの関係式により定まる。一方、ドライブ部材11は、反作用の法則により、力F13とは反対向きの力(ドライブ部材11とドリブン部材15との相対捩れ角を小さくする側の力)、即ち、正の復元力を連結部材21から受けることになる。このため、式(5)の右辺の係数として値1を用いるのである。
【0030】
そして、式(1)〜(5)をまとめると、トルクT1は、式(6)により表わすことができる。ここで、直線L13と直線L14との角度θ1が微小である即ち「sinθ1≒θ1,cosθ1=1」であるとみなすと、トルクT1は、式(7)に近似することができる。式(7)に示すように、トルクT1は、エンジンEGの角速度Ωの二乗に比例することから、この式(7)に基づく式(8)に示すように、捩れ剛性機構20は、エンジンEGの角速度Ωの二乗に比例する正の捩れ剛性k1を有すると考えることができる。
【0031】
続いて、捩れ剛性機構30の動作や捩れ剛性k2について説明する。捩れ剛性機構30は、捩れ剛性機構20がドライブ部材11とドリブン部材15との間に配置されるのに対して捩れ剛性機構30がドライブ部材11と中間部材12との間に配置される点を除いて、捩れ剛性機構20と同様に構成されることから、捩れ剛性機構20と同様に動作する。したがって、捩れ剛性機構30も、エンジンEGの角速度Ωの二乗に比例する正の捩れ剛性k2を有すると考えることができる。
【0033】
そして、捩れ剛性機構40の動作や捩れ剛性k3について
図4を用いて説明する。エンジンEG(ダンパ装置10)が回転すると、連結部材41の重心41gには、遠心力F31が作用する。この遠心力F31は、式(9)により表わすことができる。式(9)中、「m3」は、連結部材41の質量であり、「D31」は、ダンパ装置10の回転中心RCと連結部材41の重心41gとの距離であり、「Ω」は、上述したように、エンジンEGの角速度である。この遠心力F31の向きは、ダンパ装置10の回転中心RCと連結部材41の重心41gを通る直線L31の方向のうち径方向外側の向きである。
【0035】
中間部材12とドリブン部材15との相対捩れ角がゼロのときには、連結部材41は、径方向に延在する(
図2参照)。したがって、上述の直線L31と、連結部材41の延在方向の直線(リベット43およびピン44を通る直線)L32と、ダンパ装置10の回転中心RCおよびリベット43を通る直線L33と、ダンパ装置10の回転中心RCおよびピン44を通る直線L34と、の全てが一致する。このため、連結部材41の重心41gに作用する遠心力F31の直線L32に直交する方向の分力F32は、値0となる。
【0036】
中間部材12とドリブン部材15との相対捩れ角がゼロでないときには、
図4に示すように、直線L31〜L34が互いにずれる。したがって、連結部材41の重心41gに作用する遠心力F31の直線L32に直交する方向の分力F32は、式(10)により表わすことができる。式(10)中、「α3」は、直線L31と直線L32との角度である。この分力F32の向きは、直線L32に直交する方向のうち中間部材12とドリブン部材15との相対捩れ角を大きくする側の向き(
図4では右上側の向き)である。また、連結部材41の重心41gは、
図2および
図4から分かるように、中間部材12とドリブン部材15との相対捩れ角がゼロのときに最も径方向内側に位置し、中間部材12とドリブン部材15との相対捩れ角が増加するにつれて径方向外側に移動し、中間部材12とドリブン部材15との相対捩れ角が減少するにつれて径方向内側に移動する。さらに、中間部材12とドリブン部材15との相対捩れ角がゼロでないときには、連結部材41の重心41gに、直線L32に直交する方向のうち中間部材12とドリブン部材15との相対捩れ角を大きくする側の向きの分力F32が生じるから、捩れ剛性機構40は、中間部材12とドリブン部材15との相対捩れ角を大きくするように動作する(負の復元力を有する)と考えることができる。
【0038】
また、このとき、ピン44の位置(中間部材12と連結部材41とのすべり対偶の位置)において、連結部材41が中間部材12から受ける力F33は、式(11)により表わすことができる。式(11)中、「D32」は、リベット43と連結部材41の重心41gとの距離であり、「D33」は、リベット43とピン44との距離である。この力F33の向きは、直線L32に直交する方向のうち中間部材12とドリブン部材15との相対捩れ角を小さくする側の向き(
図4では分力F32と同一側の向き)である。そして、ピン44の位置において、連結部材41が中間部材12から受ける力F33のダンパ装置10の回転方向の分力F34は、式(12)により表わすことができる。式(12)中、「β3」は、直線L32と直線L34との角度である。この力F34の向きは、ダンパ装置10の回転方向のうち中間部材12とドリブン部材15との相対捩れ角を小さくする側の向き(
図4では時計回りの向き)である。
【0040】
したがって、中間部材12に伝達されるトルクT3(中間部材12とドリブン部材15との相対捩れ角を小さくする側を正とする)は、式(13)により表わすことができる。式(13)中、「D34」は、ダンパ装置10の回転中心RCとピン44との距離である。ここで、式(13)において、右辺の係数として値(−1)を用いるのは以下の理由による。連結部材41が中間部材12から受ける力F33の向きは、連結部材41に対するモーメントの釣り合いの関係式により定まる。一方、中間部材12は、反作用の法則により、力F33とは反対向きの力(中間部材12とドリブン部材15との相対捩れ角を大きくする側の力)、即ち、負の復元力を連結部材41から受けることになる。このため、式(13)の右辺の係数として値(−1)を用いるのである。
【0041】
そして、式(9)〜(13)をまとめると、トルクT3は、式(14)により表わすことができる。ここで、直線L33と直線L34との角度θ3が微小である即ち「sinθ3≒θ3,cosθ3=1」であるとみなし、ダンパ装置10の回転中心RCとリベット43との距離D35と、ダンパ装置10の回転中心RCとピン44との距離D34と、を用いて式(14)を変形すると、トルクT3は、式(15)に近似することができる。式(15)に示すように、トルクT3は、エンジンEGの角速度Ωの二乗に比例して小さくなる(負側の値として大きくなる)ことから、この式(15)に基づく式(16)に示すように、捩れ剛性機構40は、エンジンEGの角速度Ωの二乗に比例する負の捩れ剛性k3を有すると考えることができる。
【0043】
発明者らは、ダンパ装置10の構成、即ち、ドライブ部材11とドリブン部材15との間に第1トルク伝達経路(捩れ剛性機構20)と第2トルク伝達経路(捩れ剛性機構30,中間部材12,捩れ剛性機構40)とを有する構成において、例えば国際公開第2016/021669号に示すように、以下のことを見出した。ダンパ装置10の構成では、ドライブ部材11から第1トルク伝達経路を介してドリブン部材15に伝達されるエンジンEGからの振動と、ドライブ部材11から第2トルク伝達経路を介してドリブン部材15に伝達されるエンジンEGからの振動と、が互いに打ち消し合い、ドリブン部材15の振動振幅が理論上ゼロになる反共振点におけるエンジンEGからの振動の角振動数ωが存在する。そして、この反共振点の角振動数ωは、式(17)により表わすことができる。式(17)中、「k1」,「k2」,「k3」は、それぞれ捩れ剛性機構20,30,40の捩れ剛性であり、「J’」は、中間部材12の慣性モーメントJと連結部材21,31,41の質量m1,m2,m3と各リベット23,33,43および各ピン24,34,44の回転中心からの距離とから計算される値である。なお、捩れ剛性機構20,30,40の捩れ剛性k1,k2,k3および値J’は、式(17)の右辺(具体的には、根号内の分子)が正の値となるように設計される。
【0045】
上述したように、捩れ剛性機構40の捩れ剛性k3は負の値である。したがって、式(17)において、右辺の根号内の値「k2・k3」および値「k3・k1」は負の値となるから、捩れ剛性機構40の捩れ剛性k3が正の値であるものに比して、右辺の根号内の分子ひいては右辺全体を小さくすることができる。これにより、反共振点の角振動数ωを一定値とするときを考えると、式(17)の右辺の根号内の分母を小さくする、即ち、中間部材12の慣性モーメントを小さくすることができる。この結果、ダンパ装置10の小型化を図ったり、振動減衰性能の向上を図ったりすることができる。
【0046】
また、上述したように、捩れ剛性機構20はエンジンEGの角速度Ωの二乗に比例する正の捩れ剛性k1を有し、捩れ剛性機構30はエンジンEGの角速度Ωの二乗に比例する正の捩れ剛性k2を有し、捩れ剛性機構40はエンジンEGの角速度Ωの二乗に比例する負の捩れ剛性k3を有する。これを踏まえて、エンジンEGの角速度Ω(回転数)が増加するにつれて捩れ剛性機構20,30,40の捩れ剛性k1,k2,k3(ひいては全体の捩れ剛性)が適切に変化して反共振点の角振動数ωが増加するように捩れ剛性機構20,30,40の捩れ剛性k1,k2,k3および値J’を設計すれば、高い振動減衰性能を発揮できるエンジンEGの回転数領域を拡大することができる。特に、反共振点の角振動数ωがその時々のエンジンEGからの振動の角振動数と略一致するように捩れ剛性機構20,30,40の捩れ剛性k1,k2,k3および値J’を設計すれば、反共振となるエンジンEGの回転数領域をより拡大することができる。
【0047】
上述のダンパ装置10では、捩れ剛性機構20の連結部材21は、ドリブン部材15と回り対偶をなすと共にドライブ部材11とすべり対偶をなすものとしたが、ドリブン部材15とすべり対偶をなすと共にドライブ部材11と回り対偶をなすものとしてもよい。また、捩れ剛性機構30の連結部材31は、中間部材12と回り対偶をなすと共にドライブ部材11とすべり対偶をなすものとしたが、中間部材12とすべり対偶をなすと共にドライブ部材11と回り対偶をなすものとしてもよい。さらに、捩れ剛性機構40の連結部材41は、ドリブン部材15と回り対偶をなすと共に中間部材12とすべり対偶をなすものとしてもよい。
【0048】
上述のダンパ装置10では、捩れ剛性機構20はエンジンEGの角速度Ωの二乗に比例する正の捩れ剛性k1を有し、捩れ剛性機構30はエンジンEGの角速度Ωの二乗に比例する正の捩れ剛性k2を有し、捩れ剛性機構40はエンジンEGの角速度Ωの二乗に比例する負の捩れ剛性k3を有するものとした。しかし、捩れ剛性機構20と捩れ剛性機構30とのうちの少なくとも一方は、エンジンEGの回転数に拘わらずに一定の正の捩れ剛性を有するものとしてもよい。捩れ剛性機構20や捩れ剛性機構30が一定の正の捩れ剛性を有するものである場合、捩れ剛性機構20や捩れ剛性機構30としては、アークコイルスプリングやストレートコイルスプリングなどが用いられるものとしてもよい。
【0049】
上述のダンパ装置10では、ドライブ部材11と中間部材12との間に正の捩れ剛性を有する捩れ剛性機構30が配置されると共に中間部材12とドリブン部材15との間に負の捩れ剛性を有する捩れ剛性機構40が配置されるものとしたが、ドライブ部材11と中間部材12との間に捩れ剛性機構40が配置されると共に中間部材12とドリブン部材15との間に捩れ剛性機構30が配置されるものとしてもよい。
【0050】
上述のダンパ装置10では、トルクコンバータTCのタービンランナ5は、ドリブン部材15およびダンパハブ7に固定されるものとしたが、
図1において二点鎖線で示すように、ドライブ部材11と中間部材12とのうちの何れかに固定されるものとしてもよい。
【0051】
図5は、本開示の他のダンパ装置110の概略構成図である。
図5のダンパ装置110は、上述のダンパ装置10から中間部材12を省略したものに相当する。
図5のダンパ装置110の構成要素のうちダンパ装置10と同一の構成要素については、同一の符号を付し、その詳細な説明は省略する。
図5のダンパ装置110は、回転要素として、ドライブ部材(入力要素)11およびドリブン部材(出力要素)15を備えると共に、トルク伝達要素として、ドライブ部材11とドリブン部材15との間に配置される複数(例えば2個)の捩れ剛性機構20と、ドライブ部材11とドリブン部材15との間に捩れ剛性機構20に並列に配置される(並列に作用する)複数(例えば2個)の捩れ剛性機構140と、を備える。このダンパ装置110では、トルクコンバータTCのタービンランナ5は、図中実線で示すように、ドリブン部材15およびダンパハブ7に固定されるものとしてもよいし、図中二点鎖線で示すように、ドライブ部材11に固定されるものとしてもよい。捩れ剛性機構140は、ダンパ装置10の捩れ剛性機構40と同様に構成されており、エンジンEGの角速度Ωの二乗に比例する負の捩れ剛性k4を有する。このダンパ装置110では、捩れ剛性機構140が
図1のダンパ装置10の捩れ剛性機構40と同様に機能するから、
図1のダンパ装置10と同様の効果を奏することができる。
【0052】
図6は、本開示の他のダンパ装置210を備える発進装置201の概略構成図であり、
図7は、ダンパ装置210の断面図であり、
図8は、ダンパ装置210の正面図である。
図6〜
図8の発進装置201やダンパ装置210の構成要素のうち発進装置1やダンパ装置10と同一の構成要素については、同一の符号を付し、その詳細な説明は省略する。
【0053】
ダンパ装置210は、回転要素として、ドライブ部材(入力要素)211と、ドライブ部材211に連結される入力側回転部材212と、中間部材(中間要素)213と、ドリブン部材(出力要素)215と、ドリブン部材215に連結される出力側回転部材217と、を備える。また、ダンパ装置110は、トルク伝達要素として、ドライブ部材211と中間部材213との間に配置される複数(例えば4個)の外側スプリング(第3捩れ剛性機構)220と、中間部材213と出力側回転部材217との間に配置される複数(例えば4個)の外側スプリング(第4捩れ剛性機構)230と、ドライブ部材211と出力側回転部材217との間に配置される複数(例えば4個)の内側スプリング(第1捩れ剛性機構)240と、入力側回転部材216とドリブン部材215との間に配置される複数(例えば4個)の捩れ剛性機構(第2捩れ剛性機構)250と、を備える。
【0054】
この実施形態では、外側スプリング220,230および内側スプリング240としては、荷重が加えられてないときに真っ直ぐに延びる軸心を有するように螺旋状に巻かれた金属材からなり、且つ、有効巻部(座を除く部分)のピッチが等ピッチである等ピッチストレートコイルスプリングが採用される。なお、外側スプリング220,230および内側スプリング240のうちの少なくとも1つとして、等ピッチアークコイルスプリングが採用されるものとしてもよい。
【0055】
複数の外側スプリング220,230は、何れもダンパ装置210の周方向に沿って延在すると共に、その周方向に沿って外側スプリング220と外側スプリング230とが交互に並んで一個ずつ対をなす(直列に作用する)ように、フロントカバー3やポンプインペラ4により画成される流体室内の外周側領域に配置される。複数の内側スプリング240は、ダンパ装置210の周方向に沿って延在すると共にその周方向に沿って間隔をおいて並ぶように流体室内の内周側領域に配置される。また、外側スプリング220,230および内側スプリング240は、ダンパ装置210の取付状態(それぞれのスプリングを介して連結される2つの回転要素の相対捩れ角がゼロのとき)において、何れも自然長またはそれよりも僅かに圧縮されている。
【0056】
ドライブ部材211は、周方向に間隔をおいて複数のリベット211rを介してロックアップクラッチ8のロックアップピストン81に連結される。このドライブ部材211は、板状の環状部材であり、複数(例えば4個)の外側当接部211coと、複数(例えば4個)の内側当接部211ciと、を有する。複数の外側当接部211coは、ドライブ部材211の外周部に周方向に間隔をおいて設けられており、複数の内側当接部211ciは、ドライブ部材211の内周部に周方向に間隔をおいて設けられている。
【0057】
入力側回転部材212は、2枚の板状の環状部材212a,212bを有し、周方向に間隔をおいて複数のリベット253を介して互いに連結される。また、入力側回転部材212は、ロックアップピストン81に連結されることにより、ドライブ部材211に連結される。
【0058】
中間部材213は、板状の環状部材であり、周方向に間隔をおいて径方向外側に突出する複数(例えば4個)の当接部212cを有する。ドリブン部材215は、板状の環状部材であり、周方向に間隔をおいて、周方向に沿って延びる複数の開口部215oと径方向に沿って延びる複数(例えば4個)のガイド穴215hとが形成されている。
【0059】
出力側回転部材217は、ドリブン部材215に連結される有底筒状の有低筒状部材218と、有低筒状部材218に連結されるプレート部材219と、を有する。有低筒状部材218は、軸方向におけるドリブン部材215側に周方向に間隔をおいて突出する突起部218pを有する。有低筒状部材218とドリブン部材215とは、有低筒状部材218の突起部218pがドリブン部材215の開口部215oに嵌合されることにより、互いに連結される。プレート部材219は、周方向に間隔をおいて複数のリベット217rを介して有低筒状部材218に連結される。このプレート部材219は、複数(例えば4個)の外側当接部219coと、複数(例えば、4個)の内側当接部219ciと、を有する。複数の外側当接部219coは、プレート部材219の外周部に周方向に間隔をおいて設けられており、複数の内側当接部219ciは、プレート部材219の内周部に周方向に間隔をおいて設けられている。
【0060】
ダンパ装置210の取付状態(それぞれのスプリングを介して連結される2つの回転要素の相対捩れ角がゼロのとき)において、ドライブ部材211の各外側当接部211coは、対をなさない(直列に作用しない)外側スプリング220,230の間で両者の端部に当接する。同様に、出力側回転部材217のプレート部材219の各外側当接部219coも、対をなさない(直列に作用しない)外側スプリング220,230の間で両者の端部に当接する。また、中間部材213の各当接部213cは、互いに対をなす(直列に作用する)外側スプリング220,230の間で両者の端部に当接する。
【0061】
これにより、ダンパ装置210の取付状態において、各外側スプリング220の一端は、ドライブ部材211の対応する外側当接部211coおよびプレート部材219の対応する外側当接部219coに当接し、各外側スプリング220の他端は、中間部材213の対応する当接部213cに当接する。各外側スプリング230の一端は、中間部材213の対応する当接部213cに当接し、各外側スプリング230の他端は、ドライブ部材211の対応する外側当接部211coおよびプレート部材219の対応する外側当接部219coに当接する。
【0062】
また、ダンパ装置210の取付状態において、ドライブ部材211の各内側当接部211ciは、周方向において隣り合う2つの内側スプリング240の間で両者の端部に当接する。プレート部材219の内側当接部219ciは、周方向において隣り合う2つの内側スプリング240の間に配置され、ダンパ装置210の取付状態などドライブ部材211と出力側回転部材217(プレート部材219)との相対捩れ角が所定捩れ角未満のときには、内側スプリング240に当接せずに、ドライブ部材211と出力側回転部材217(プレート部材219)との相対捩れ角が所定捩れ角以上のときには、内側スプリング240に当接する。
【0063】
複数の捩れ剛性機構250は、周方向に間隔をおいて配置され、且つ、ダンパ装置210の取付状態(入力側回転部材212とドリブン部材215との相対捩れ角がゼロのとき)において径方向に延在するように、入力側回転部材212とドリブン部材215とに連結される。
【0064】
捩れ剛性機構250は、スプリング(弾性体)251と、スプリング251の径方向外側の端部を保持する外側保持部材252と、入力側回転部材212と外側保持部材252とを連結するための上述のリベット253と、スプリング251の径方向内側の端部を保持する内側保持部材254と、ドリブン部材215と内側保持部材254とを連結するためのリベット255と、を備える。
【0065】
スプリング251としては、荷重が加えられてないときに真っ直ぐに延びる軸心を有するように螺旋状に巻かれた金属材からなり、且つ、有効巻部(座を除く部分)のピッチが等ピッチである等ピッチストレートコイルスプリングが採用される。このスプリング251は、ダンパ装置210の取付状態(入力側回転部材212とドリブン部材215との相対捩れ角がゼロのとき)において、自然長よりも十分に圧縮されている。
【0066】
外側保持部材252は、スプリング251を保持する保持部252aと、保持部252aのスプリング251とは反対側から延出される突起部252bと、を有する。リベット253は、入力側回転数部材212の一対の環状部材212a,212bの間に外側保持部材252の突起部252bが差し込まれている状態で、一対の環状部材212a,212bと突起部252bとを互いに回転自在に連結する。
【0067】
内側保持部材254は、スプリング251を保持する保持部254aと、保持部254aのスプリング251とは反対側から互いに軸方向に間隔をおいて延出される一対の突起部254b,254cと、を有する。リベット255は、内側保持部材254の一対の突起部254b,254cの間にドリブン部材215が差し込まれている状態で、ドリブン部材215のガイド穴215hに挿通されると共にドリブン部材215と一対の突起部254b,254cとを互いに回転自在に連結する。このリベット255は、質量体としても機能し、ガイド穴215hに沿って移動可能である。
【0068】
こうして構成されるダンパ装置210では、ドリブン部材215は、ドライブ部材211と出力回転部材217(プレート部材219)との相対捩れ角が所定捩れ角未満のときには、複数の外側スプリング220と中間部材213と複数の外側スプリング230と出力側回転部材217とを介してドライブ部材211に連結されると共に、入力側回転部材212と複数の捩れ剛性機構250とを介してドライブ部材211に連結される。また、ドリブン部材215は、ドライブ部材211と出力側回転部材217(プレート部材219)との相対捩れ角が所定捩れ角以上のときには、複数の外側スプリング220と中間部材213と複数の外側スプリング230と出力側回転部材217とを介してドライブ部材211に連結されると共に、入力側回転部材212と複数の捩れ剛性機構250とを介してドライブ部材211に連結され、更に、複数の内側スプリング240と出力側回転部材217とを介してドライブ部材211に連結される。
【0069】
次に、ダンパ装置210を備える発進装置201の動作について説明する。この発進装置201では、
図6から分かるように、ロックアップクラッチ8によりロックアップが解除されている際には、エンジンEGからフロントカバー3に伝達されたトルク(動力)が,ポンプインペラ4,タービンランナ5,ダンパハブ7の経路を介して変速機TMの入力軸ISに伝達される。
【0070】
これに対して、ロックアップクラッチ8によりロックアップが実行されている際において、ドライブ部材211とプレート部材219との相対捩れ角が所定捩れ角未満のときには、エンジンEGからフロントカバー3およびロックアップクラッチ8を介してドライブ部材211に伝達されたトルク(動力)が、複数の外側スプリング220と中間部材213と複数の外側スプリング230と出力側回転部材217とを含む第1トルク伝達経路と、入力側回転部材212と複数の捩れ剛性機構250とを含む第2トルク伝達経路と、を介してドリブン部材215,ダンパハブ7,変速機TMの入力軸ISに伝達される。そして、ロックアップが実行されている際において、ドライブ部材211とプレート部材219との相対捩れ角が所定捩れ角以上のときには、ドライブ部材211に伝達されたトルク(動力)が、第1トルク伝達経路と、第2トルク伝達経路と、複数の内側スプリング240と出力側回転部材217とを含む第3トルク伝達経路と、を介してドリブン部材215に伝達される。
【0071】
ここで、外側スプリング220,230および内側スプリング240は、ダンパ装置210の取付状態(それぞれのスプリングを介して連結される2つの回転要素の相対捩れ角がゼロのとき)において、何れもダンパ装置210の周方向に沿って延在し、何れも自然長またはそれよりも僅かに圧縮されている。したがって、ロックアップの実行によりエンジンEGの回転に伴ってダンパ装置10が回転しているときに、外側スプリング220,230および内側スプリング240は、それぞれの両側の2つの回転要素に相対捩れ角が生じると、その相対捩れ角を小さくするように動作する(正の復元力を有する)。このとき、外側スプリング220,230および内側スプリング240は、一定のばね定数、即ち、正の一定の捩れ剛性を有するスプリングとして機能する。
【0072】
また、捩れ剛性機構250は、ダンパ装置210の取付状態(入力側回転部材212とドリブン部材215との相対捩れ角がゼロのとき)においてダンパ装置210の径方向に延在し、捩れ剛性機構250のスプリング251は、ダンパ装置210の取付状態において自然長よりも十分に圧縮されている。したがって、ロックアップの実行によりエンジンEGの回転に伴ってダンパ装置10が回転しているときに、捩れ剛性機構250は、入力側回転部材212とドリブン部材215とに相対捩れ角が生じると、その相対捩れ角を大きくするように動作する(負の復元力を有する)。以下、捩れ剛性機構250の動作や剛性k5について
図9を用いて説明する。
【0073】
捩れ剛性機構250において、リベット253は、入力側回転部材212に対して回転方向および径方向に拘束されており、リベット255は、ドリブン部材215に対して回転方向に拘束されているものの径方向には移動可能である。
【0074】
捩れ剛性機構250において、入力側回転部材212とドリブン部材215との相対捩れ角がゼロのときには、捩れ剛性機構250が径方向に延在する(
図8参照)から、ダンパ装置210の回転中心RCおよびリベット253を通る直線L51と、捩れ剛性機構250の延在方向の直線(リベット253およびリベット255を通る直線)L52と、ダンパ装置210の回転中心RCおよびリベット255を通る直線L53と、の全てが一致する。これに対して、入力側回転部材212とドリブン部材215との相対捩れ角がゼロでないときには、
図9に示すように、捩れ剛性機構250の延在方向が径方向からずれるから、直線L51〜L53が互いにずれる。
【0075】
ここで、スプリング251の発生する力F51は、フックの法則により、式(18)により表わすことができる。式(18)中、「ks5」は、スプリング251のばね定数であり、「Ls50」は、スプリング251の自然長であり、「Ls51」は、スプリング251の現在の長さである。この力F51のリベット255における回転方向の分力F52は、式(19)により表わすことができる。式(19)中、「φ5」は、直線L52と直線L53との角度である。したがって、スプリング251が伝達するトルクT5は、式(20)により表わすことができる。式(20)中、「r5」は、ダンパ装置210の回転中心RCとリベット255との距離である。リベット255は、上述したように、ドリブン部材215に対して径方向に移動可能であるから、この距離r5は可変となる。具体的には、質量体として機能するリベット255にエンジンEGの角速度Ω(回転数)の二乗に比例する遠心力が作用するから、距離r5は、エンジンEGの角速度Ωが大きくなるにつれて大きくなる。なお、分力F52やトルクT5は、入力側回転部材212とドリブン部材215との相対捩れ角を大きくする向きの力やトルクである。したがって、捩れ剛性機構250は、負の復元力を有すると言える。
【0077】
ここで、ダンパ装置210の回転中心RCとリベット253とリベット255とを頂点とする三角形に対して正弦定理および余弦定理を適用すると、式(21)および式(22)が得られる。式(21)および式(22)中、「R5」は、ダンパ装置210の回転中心RCとリベット253との距離であり、「θ5」は、入力側回転部材212とドリブン部材215との相対捩れ角である。
【0079】
式(21)および式(22)を式(20)に代入してスプリング251の現在の長さLs51および直線L52と直線L53との角度φ5を消去すれば、スプリング251が伝達するトルクT5と、入力側回転部材212とドリブン部材215との相対捩れ角θ5と、の関係が得られる。特に、相対捩れ角θ5が微小であるときには、トルクT5と相対捩れ角θ5との関係は、式(23)により表わすことができる。したがって、捩れ剛性機構250全体としての捩れ剛性k5は、式(24)により表わすことができる。
【0081】
図10は、式(24)における距離r5と捩れ剛性k5との関係の一例を示す説明図である。
図10に示すように、捩れ剛性k5は、距離r5が距離R5とスプリング251の自然長Ls50との差分(R5−Ls50)に等しいときにが値0となり、この差分(R5−Ls50)よりも大きく距離R5よりも小さい範囲内で、距離r5が大きくなるにつれて小さくなる(負側の値として大きくなる)。したがって、距離r5が差分(R5−Ls50)よりも大きく距離R5よりも小さくなるように、捩れ剛性機構250やドリブン部材215のガイド穴215hを設計すればよいことが分かる。
【0082】
そして、上述したように、エンジンEGの角速度Ω(回転数)が大きくなるにつれて距離r5が大きくなるから、エンジンEGの角速度Ωが大きくなるにつれて捩れ剛性機構250全体としての捩れ剛性k5が小さくなる(負側に大きくなる)と言える。この結果、上述のダンパ装置10と同様の効果を奏することができる。
【0083】
図11は、本開示の他のダンパ装置310の断面図であり、
図12は、ダンパ装置310の正面図である。
図11および
図12のダンパ装置310は、上述のダンパ装置210の捩れ剛性機構250を捩れ剛性機構350に置き換えたものに相当する。
図11および
図12のダンパ装置310のうちダンパ装置210と同一の構成要素については、同一の符号を付し、その詳細な説明は省略する。
【0084】
図11や
図12に示すように、捩れ剛性機構350は、捩れ剛性機構250と同様のスプリング251,外側保持部材252,リベット253,内側保持部材254,リベット255に加えて、内側保持部材254の位置を調節することによりリベット255の位置(上述の距離r5)を調整する位置調節部360(
図11参照)と、を備える。なお、この捩れ剛性機構350のリベット255は、ドリブン部材215のガイド穴215に沿って移動可能なものであればよく、捩れ剛性機構の250のリベット255に比して軽量のものとしてもよい。
【0085】
図11に示すように、位置調節部360は、内側保持部材252に連結される連結部材361と、連結部材361および内側保持部材254を介してリベット255を径方向に移動させるアクチュエータ362と、エンジンEGの回転数を検出する回転数センサ363と、回転数センサ351からのエンジンEGの角速度Ω(回転数)を入力すると共にアクチュエータ352を制御する電子制御装置353と、を備える。内側保持部材254の突起部254cの外側壁面には、軸方向に突出する突起部254dが形成されており、連結部材361には、開口部361oが形成されている。内側保持部材254と連結部材361とは、内側保持部材254の突起部254dが連結部材361の開口部361oに嵌合することにより、互いに連結される。
【0086】
この位置調節部360では、電子制御装置353は、エンジンEGの角速度Ωが大きくなるにつれて内側保持部材254およびリベット255が径方向外側に移動するように、アクチュエータ352を制御する。
【0087】
この捩れ剛性機構360全体としての剛性k6は、ダンパ装置210の捩れ剛性機構250全体の捩れ剛性k5と同様に、スプリング251のばね定数ks5を用いて表わすことができる(式(24)参照)。したがって、位置調節部360により上述のようにリベット255の位置を調節すれば、捩れ剛性機構360全体の構成k6を、捩れ剛性機構250全体の捩れ剛性k5と同様に、エンジンEGの角速度Ωが大きくなるにつれて小さくなる(負側に大きくなる)ようにすることができる。この結果、ダンパ装置210と同様の効果を奏することができる。
【0088】
図13は、本開示の他のダンパ装置410の断面図であり、
図14は、ダンパ装置410の正面図である。
図14のダンパ装置310は、上述のダンパ装置210のドリブン部材215および捩れ剛性機構250をドリブン部材415および捩れ剛性機構450に置き換えたものに相当する。
図14のダンパ装置410のうちダンパ装置210と同一の構成要素については、同一の符号を付し、その詳細な説明は省略する。
【0089】
図13や
図14に示すように、ドリブン部材415は、ガイド穴215hを有しない点を除いて、ダンパ装置210のドリブン部材215と同一である。捩れ剛性機構450は、捩れ剛性機構250と同様に、入力側回転部材212とドリブン部材215との相対捩れ角がゼロのときに径方向に延在するように入力側回転部材212とドリブン部材215とに連結され、且つ、スプリング451,外側保持部材252,リベット253,内側保持部材254,リベット455を備える。
【0090】
スプリング451としては、荷重が加えられてないときに真っ直ぐに延びる軸心を有するように螺旋状に巻かれた金属材からなり、且つ、有効巻部(座を除く部分)のピッチが不等ピッチである不等ピッチストレートコイルスプリングが採用される。ダンパ装置410の取付状態において、スプリング451の有効巻部のピッチは、径方向外側に向かうにつれて徐々に小さくなっており、スプリング451は、自然長よりも圧縮されている。リベット455は、ドリブン部材415と内側保持部材254の一対の突起部254b,254cとを互いに回転自在に連結する。
【0091】
次に、捩れ剛性機構450の動作について説明する。
図15は、エンジンEGの角速度Ω(回転数)が小さく且つ入力側回転部材212とドリブン部材215との相対捩れ角がゼロのときの様子を示す説明図であり、
図16は、エンジンEGの角速度Ω(回転数)が大きく且つ入力側回転部材212とドリブン部材215との相対捩れ角がゼロのときの様子を示す説明図である。
【0092】
上述したように、スプリング451の有効巻部のピッチは、ダンパ装置410の取付状態において径方向外側に向かうにつれて徐々に小さくなっている。エンジンEGの角速度Ωが小さいときには、捩れ剛性機構450のスプリング451に作用する遠心力が小さいために、
図15に示すように、スプリング451が全体的に径方向外側に寄る程度が小さく、スプリング451全体で密着部分がなく或いは少なく、スプリング451の有効巻数が多い。これに対して、エンジンEGの角速度Ωが大きいときには、スプリング451に作用する遠心力が大きいために、
図16に示すように、スプリング451が全体的に径方向外側に寄る程度が大きく、スプリング451の径方向外側の部分が密着し或いは密着量が多くなり、スプリング451の有効巻数が少なくなる。即ち、エンジンEGの角速度Ωが大きくなるにつれてスプリング451の密着量(密着巻数)が多くなり、スプリング451の有効巻数が少なくなり、スプリング451のばね定数ks7が大きくなり、捩れ剛性機構450全体としての捩れ剛性k7が小さくなる(負側に大きくなる)のである。この結果、ダンパ装置210と同様の効果を奏することができる。
【0093】
上述のダンパ装置210,310,410では、捩れ剛性機構としての外側スプリング240として、等ピッチストレートコイルスプリングが採用されるものとした。しかし、
図17に示すように、内側スプリング240Bとして、有効巻部(座を除く部分)のピッチが不等ピッチである不等ピッチストレートコイルスプリングが採用されるものとしてもよい。この場合、内側スプリング240Bの有効巻部のピッチは、内側スプリング240Bの延在方向における両端から中央に向かうにつれて徐々に小さくなるものとしてもよい。外側スプリング220として不等ピッチストレートコイルスプリングが採用され且つ外側スプリング220の両端部が径方向に支持されている場合、エンジンEGの角速度Ωが小さいときには、外側スプリング220に作用する遠心力が小さいために、外側スプリング220の延在方向における中央付近が径方向外側に膨らむ程度が小さく、内側スプリング240Bで密着部分がなく或いは少なく、スプリング240Bの有効巻数が多い。これに対して、エンジンEGの角速度Ωが大きいときには、スプリング240Bに作用する遠心力が大きいために、スプリング240Bの中央付近が径方向外側に膨らむ程度が大きくなってその曲率半径が小さくなり、内側スプリング240Bの中央付近の径方向内側の部分が密着する或いは密着量が多くなり、内側スプリング240Bの有効巻数が少なくなる。即ち、エンジンEGの角速度Ωが大きくなるにつれて内側スプリング240Bの密着量(密着巻数)が多くなり、240Bの有効巻数が少なくなり、内側スプリング240Bのばね定数が大きくなる(第1捩れ剛性機構全体としての捩れ剛性が正側に大きくなる)のである。ここでは、内側スプリング240Bについて説明したが、外側スプリング220,230についても同様に考えることができる。
【0094】
上述のダンパ装置210,310,410では、トルクコンバータTCのタービンランナ5は、ドリブン部材15およびダンパハブ7に固定されるものとしたが、
図6において二点鎖線で示すように、ドライブ部材211と中間部材213とのうちの何れかに固定されるものとしてもよい。
【0095】
図18は、本開示の他のダンパ装置510の概略構成図である。
図18のダンパ装置210Cは、上述のダンパ装置210から外側スプリング220,230および中間部材213を省略し、内側スプリング240がドライブ部材211と出力側回転部材217(プレート部材219)との相対捩れ角に拘わらずに常時作動する(機能する)ようにしたものに相当する。
図18のダンパ装置210Cの構成要素のうちダンパ装置210と同一の構成要素については、同一の符号を付し、その詳細な説明は省略する。
図18のダンパ装置210Cは回転要素として、ドライブ部材(入力要素)211と、ドライブ部材211に連結される入力側回転部材212と、ドリブン部材(出力要素)215と、ドリブン部材215に連結される出力側回転部材217と、を備える。また、ダンパ装置110は、トルク伝達要素として、ドライブ部材211と出力側回転部材217との間に配置される複数(例えば4個)の内側スプリング(第1捩れ剛性機構)240と、入力側回転部材216とドリブン部材215との間に配置される複数(例えば4個)の捩れ剛性機構(第2捩れ剛性機構)250と、を備える。このダンパ装置210Cでは、トルクコンバータTCのタービンランナ5は、図中実線で示すように、ドリブン部材15およびダンパハブ7に固定されるものとしてもよいし、図中二点鎖線で示すように、ドライブ部材11に固定されるものとしてもよい。このダンパ装置210でも、ダンパ装置210と同様の効果を奏することができる。
【0096】
図19は、本開示の他のダンパ装置510の概略構成図であり、
図20および
図21は、遠心振子吸振装置520の概略構成図であり、
図22は、
図20の遠心振子吸振装置520のAA断面図である。
図20は、遠心振子吸振装置520の静止状態を示し、
図21は、遠心振子吸振装置520の揺動状態を示す。
図19のダンパ装置510の構成要素のうち、上述のダンパ装置10と同一の要素については、同一の符号を付し、その詳細な説明は省略する。
図19のダンパ装置510は、回転要素として、ドライブ部材(入力要素)511およびドリブン部材(出力要素)15を備えると共に、トルク伝達要素として、ドライブ部材511とドリブン部材15との間に配置されるスプリングSPを備える。また、ダンパ装置510は、ドライブ部材511に連結される遠心振子吸振装置520を備える。
図19のダンパ装置510では、ダンパ装置510でなく、遠心振子吸振装置520が本開示の振動減衰装置に相当する。
【0097】
図20〜
図22に示すように、遠心振子吸振装置520は、ドライブ部材511に連結される捩れ剛性機構530と、ドライブ部材511に連結される捩れ剛性機構540と、捩れ剛性機構530と捩れ剛性機構540とを連結する連結機構550と、を備える。
【0098】
ドライブ部材511は、周方向に間隔をおいて複数(例えば4個)のガイド穴511hを有する点を除いて、ダンパ装置10と同一である。ガイド穴511hは、所定方向(
図20および
図21の右上左下方向)に延在する開口部であり、ドライブ部材511の回転中心RCを通ると共にガイド穴511hの延在方向に直交する方向の直線(以下、「基準線L81」という、
図20および
図21の一点鎖線の直線参照)に対して左右対称に形成される。
【0099】
捩れ剛性機構530は、質量体531と、質量体531とドライブ部材511とを互いに回転自在に連結するためのリベット534と、を備える。質量体531は、円柱状の質量体本体532と、質量体本体532の外周から一定方向(遠心振子吸振装置520が静止状態のときにおける径方向内側)に延出する腕部533と、を備える。腕部533の先端部は、基準線L81における回転中心RCから径方向外側に距離R8で且つガイド穴511hよりも距離(r8/2)だけ径方向内側の位置で、リベット534を介してドライブ部材511に回転自在に連結される。したがって、質量体531(腕部533)は、ドライブ部材511と回り対偶をなす。質量体531の重心531gは、軸方向からみて質量体本体532の中心で且つリベット534(ドライブ部材511と質量体531との回り対偶の位置)から距離r8の位置に位置する。この質量体531の重心531gは、遠心振子吸振装置520が静止状態のときに、最も径方向外側で且つ基準線L81におけるガイド穴511hよりも距離(r8/2)だけ径方向外側に位置し、遠心振子吸振装置520の揺動量(静止状態からの変位)が大きくなるにつれて径方向内側に移動すると共に遠心振子吸振装置520の揺動量が小さくなるにつれて径方向外側に移動する。なお、質量体本体532と腕部533とは、一体に形成されるものとしたが、別体に形成されてリベットなどによって連結されるものとしてもよい。
【0100】
捩れ剛性機構540は、質量体541と、質量体541とドライブ部材511とを互いに回転自在に連結するためのリベット544と、を備える。質量体541は、円柱状の質量体本体542と、質量体本体542の外周から一定方向(遠心振子吸振装置520が静止状態のときにおける径方向外側)に延出する腕部543と、を備える。腕部543の先端部は、基準線L81におけるガイド穴511hよりも距離(r8/2)だけ径方向外側の位置(回転中心RCから距離(R8+r8)の位置)で、リベット544を介してドライブ部材511に回転自在に連結される。したがって、質量体541(腕部543)は、ドライブ部材511と回り対偶をなす。質量体541の重心541gは、軸方向からみて質量体本体542の中心で且つリベット544(ドライブ部材511と質量体541との回り対偶の位置)から距離r8の位置に位置する。この質量体541の重心541gは、遠心振子吸振装置520が静止状態のときに、最も径方向内側で且つ基準線L81におけるガイド穴511hよりも距離(r8/2)だけ径方向内側に位置し、遠心振子吸振装置520の揺動量(静止状態からの変位)が大きくなるにつれて径方向外側に移動すると共に遠心振子吸振装置520の揺動量が小さくなるにつれて径方向内側に移動する。なお、質量体本体542と腕部543とは、一体に形成されるものとしたが、別体に形成されてリベットなどによって連結されるものとしてもよい。
【0101】
連結機構550は、ガイドリンク551と、ガイドリンク552と、ガイドリンク551と質量体531とを互いに回転自在に連結するためのリベット553と、ガイドリンク551と質量体541とを互いに回転自在に連結するためのリベット554と、ドライブ部材511に形成されたガイド穴511hに沿って移動すると共にガイドリンク551,552を互いに回転自在に連結するためのピボット(リベット)555と、を備える。
【0102】
ガイドリンク551は、一定方向に延在するように形成され、一端部がリベット553により質量体531の重心531gに回転自在に連結されると共に、他端部がピボット555によりガイドリンク552およびピボット555に回転自在に連結される。したがって、ガイドリンク551は、一端部で質量体531と回り対偶をなすと共に他端部でガイドリンク552およびピボット555と回り対偶をなす。
【0103】
ガイドリンク552は、一定方向に延在するように形成され、一端部がリベット554により質量体541の重心541gに回転自在に連結されると共に、他端部がピボット555によりガイドリンク551およびピボット555に回転自在に連結される。したがって、ガイドリンク552は、一端部で質量体541と回り対偶をなすと共に他端部でガイドリンク551およびピボット555と回り対偶をなす。
【0104】
この遠心振子吸振装置520では、静止状態のときには、
図20や
図22から分かるように、軸方向からみて、基準線L81における、回転中心RCから距離R8の位置に、リベット534(質量体531の支点)と質量体541の重心541gとリベット554とが位置し、回転中心RCから距離(R8+r8/2)の位置に、ピボット555が位置し、回転中心RCから距離(R8+r8)の位置に、質量体531の重心531gとリベット553とリベット544(質量体541の支点)とが位置する。
【0105】
また、遠心振子吸振装置520では、捩れ剛性機構530は、
図1のダンパ装置10の捩れ剛性機構20や捩れ剛性機構30と同様に機能し、捩れ剛性機構540は、
図1のダンパ装置10の捩れ剛性機構40と同様に機能する。したがって、遠心振子吸振装置520が揺動状態のとき、即ち、質量体531および質量体541が遠心振子吸振装置520が静止状態のときの位置からずれたときには、捩れ剛性機構530には、捩れ剛性機構20や捩れ剛性機構30と同様に、ばね部材230の揺動量(静止状態からのずれ)を小さくする側で且つエンジンEGの角速度Ωの二乗に比例する力が作用し、捩れ剛性機構540には、捩れ剛性機構40と同様に、捩れ剛性機構540の揺動量を大きくする側で且つエンジンEGの角速度Ωの二乗に比例する力が作用する。したがって、捩れ剛性機構530は、捩れ剛性機構20や捩れ剛性機構30と同様に、エンジンEGの角速度Ωの二乗に比例する正の捩れ剛性k81を有すると考えることができ、捩れ剛性機構540は、捩れ剛性機構40と同様に、エンジンEGの角速度Ωの二乗に比例する負の捩れ剛性k82を有すると考えることができる。この遠心振子吸振装置520では、捩れ剛性機構530と捩れ剛性機構540とがドライブ部材511に対して並列に作用すると考えることができるから、捩れ剛性機構530,540の全体の捩れ剛性k(=k81−k82)を小さくすることができる。そして、この捩れ剛性機構530の質量体531と捩れ剛性機構540の質量体541との移動により、質量体531,541にガイドリンク551,552を介して連結されるピボット555がガイド穴511hに沿って移動する。このようにして、遠心振子吸振装置520からドライブ部材511に、エンジンEGからドライブ部材511に伝達される振動とは逆位相の振動を付与し、ドライブ部材511やドリブン部材15の振動を吸収(減衰)することができる。また、第4,第5捩れ剛性機構530,540の捩れ剛性k81,k82を適切に設計すれば、ドライブ部材511やドリブン部材15に対する高い振動減衰性能を発揮できるエンジンEGの回転数領域を拡大することができる。
【0106】
ところで、発明者らは、遠心振子吸振装置520の運動方程式が式(25)により表わすことができることを見出した。式(25)中、「m81」は、質量体531の質量であり、「m82」は、質量体541の質量であり、「r8」は、リベット534(質量体531の支点)と質量体531の重心531gとの距離およびリベット544(質量体541の支点)と質量体541の重心541gとの距離であり、「R8」は、回転中心RCと質量体531の支点(リベット534の位置)との距離であり、「φ8」は、質量体531,541の振れ角(基準線L81と腕部533の延在方向との間の角度、および、基準線L81と腕部543の延在方向との間の角度)であり、「θ8」は、制振対象としてのドライブ部材511の回転角度(回転位置)である。ここで、ドライブ部材511が一定速度で回転していると仮定すると、式(25)における「θ8の2回微分」は値0となり、「θ8の1回微分」はエンジンEGの角速度となる。そして、角度φ8が微小である即ち「sinφ8≒φ8,cosφ8=1」であるとみなし、式(25)を変形すると、式(26)が得られる。この式(26)において、質量体531,541の振れ角φ8の係数「{m81・R8−m82・(R8+r8)}・Ω
2」は、捩れ剛性機構530,540の全体の捩れ剛性k(=k81−k82)に相当すると考えることができる。また、この式(26)を用いて、固有振動数fnは、式(27)により表わすことができる。したがって、遠心振子吸振装置520の次数nは、式(28)により表わすことができる。この遠心振子吸振装置520では、式(27)および式(28)の根号内が正の値になる必要があるから、式(29)を満たす場合に、動吸振器としての機能を発揮できると言える。
【0110】
また、遠心振子吸振装置520では、以下の効果も奏する。ここで、比較例としては、
図23の遠心振子吸振装置520Bに示すように、
図20〜
図22の遠心振子吸振装置520の捩れ剛性機構530を備えると共にガイド穴511hや捩れ剛性機構540,連結機構550を省略したものを考える。遠心振子吸振装置520や遠心振子吸振装置520Bでは、これらの装置の次数がエンジンEGからドライブ部材511に伝達される振動の次数に一致するときに、良好な振動減衰性能を発揮することができる。
図23の遠心振子吸振装置520Bの場合、遠心振子吸振装置520の次数n’は、式(30)により表わすことができる。式(30)中、「r8」は、リベット534と質量体531の重心531gとの距離であり、「R8」は、回転中心RCと質量体531の支点(リベット534の位置)との距離である。上述したように、遠心振子吸振装置520では、式(29)を満たす場合に動吸振器としての機能を発揮できるから、その範囲内で質量体541の質量m82を大きくすれば、距離R8を大きくできると言える。例えば、エンジンEGが2気筒のときを考える。このとき、遠心振子吸振装置520Bの次数n’を値1(エンジンEGからドライブ部材511に伝達される振動の次数)に一致させるには、距離R8と距離r8とを等しくする必要があり、ドライブ部材511の側面(軸方向の端面)の大部分を遠心振子吸振装置520が占有することになり得る。一方、遠心振子吸振装置520の次数nを値1に一致させる際には、式(28)から、質量体531,541の質量m81,m82を適切に設計すれば、距離R8を距離r8よりも大きくできる(例えば、質量体531,541の質量m81,m82の比を2:1にすれば「R8=4・r8」にできる)ことが分かる。したがって、遠心振子吸振装置520では、比較例の遠心振子吸振装置520Bに比して距離R8を大きくすることができ、ドライブ部材511の内周部の側面側のスペースをより確保することができる。
【0112】
上述のダンパ装置510では、捩れ剛性機構530はエンジンEGの角速度Ωの二乗に比例する正の捩れ剛性k81を有するように構成されるものとしたが、エンジンEGの回転数に拘わらずに一定の正の捩れ剛性を有するように構成されるものとしてもよい。
【0113】
上述のダンパ装置510では、トルクコンバータTCのタービンランナ5は、ドリブン部材15に固定されるものとしたが、
図19において二点鎖線で示すように、ドライブ部材511に固定されるものとしてもよい。
【0114】
上述のダンパ装置510では、遠心振子吸振装置520は、ドライブ部材511に連結されるものとしたが、ドリブン部材15に連結されるものとしてもよい。
【0115】
以上説明したように、本開示の第1の振動減衰装置は、エンジン(EG)からのトルクが伝達される入力要素(11)と出力要素(15)とを含む複数の回転要素を有する振動減衰装置(10,110)であって、前記入力要素(11)と前記出力要素(15)との間に配置されると共に正の捩れ剛性を有する第1捩れ剛性機構(20)と、前記入力要素(11)と前記出力要素(15)との間に前記第1捩れ剛性機構(20)と並列に作用すると共に負の捩れ剛性を有する第2捩れ剛性機構(40,140)と、を備え、前記第2捩れ剛性機構(40,140)の捩れ剛性は、前記エンジン(EG)の回転数が大きいほど負側に大きくなる、ことを要旨とする。
【0116】
この本開示の第1の振動減衰装置では、エンジンからのトルクが伝達される入力要素と出力要素との間で、正の捩れ剛性を有する第1捩れ剛性機構と負の捩れ剛性を有する第2捩れ剛性機構とが並列に作用する。これにより、第1捩れ剛性機構および第2捩れ剛性機構を含む複数の捩れ剛性機構の全体の捩れ剛性(ばねの場合の合成ばね定数に相当するもの)を小さくすることができる。そして、第2捩れ剛性機構の捩れ剛性を、エンジンの回転数が大きいほど負側に大きくなるようにする。これにより、複数の捩れ剛性機構の全体の捩れ剛性がエンジンの回転数に応じて適切に変化するようにすることができる。この結果、エンジンからのトルクが伝達される入力要素に対して、高い振動減衰性能を発揮できる回転数領域を拡大することができる。
【0117】
こうした本開示の第1の振動減衰装置において、前記第1捩れ剛性機構(20,240)と前記第2捩れ剛性機構(40,140,250,350,450)とは、前記振動減衰装置(10,110,210,310,410)の周方向に並ぶように配置されるものとしてもよい。この場合、前記第1捩れ剛性機構(20,240)と前記第2捩れ剛性機構(40,140、250,350,450)とは、前記周方向において交互に並ぶように配置されるものとしてもよい。
【0118】
本開示の第1の振動減衰装置において、前記第2捩れ剛性機構(40,140)は、該第2捩れ剛性機構(40,140)を介して連結される2つの回転要素のうちの一方と回り対偶をなすと共に他方とすべり対偶をなす負側連結部材(41)を有し、前記負側連結部材(41)の重心は、前記2つの回転要素の相対捩れ角が増加するにつれて前記振動減衰装置(10,110)の径方向の外側に移動すると共に前記2つの回転要素の相対捩れ角が減少するにつれて前記径方向の内側に移動する、ものとしてもよい。この場合、前記第2捩れ剛性機構(40,140)は、前記2つの回転要素に相対捩れ角が生じたときに、前記2つの回転要素の相対捩れ角を大きくするように動作する、ものとしてもよい。また、前記2つの回転要素は、互いに径の異なる環状に形成されると共に互いに同心円上に配置され、前記負側連結部材(41)は、前記2つの回転要素のうちの一方と回転自在に連結されると共に他方と回転自在かつ前記負側連結部材(41)の延在方向に移動自在に連結され、前記負側連結部材(41)の重心は、前記2つの回転要素の相対捩れ角がゼロのときに、前記2つの回転要素のうちの一方および他方との連結位置よりも前記径方向の内側に位置するものとしてもよい。
【0119】
本開示の第1の振動減衰装置において、前記第1捩れ剛性機構(20)の捩れ剛性は、前記エンジン(EG)の回転数が大きいほど正側に大きくなる、ものとしてもよい。この場合、前記第1捩れ剛性機構(20)は、前記入力要素(11)と前記出力要素(15)とのうちの一方と回り対偶をなすと共に他方とすべり対偶をなす正側連結部材(21)を有し、前記正側連結部材(21)の重心は、前記入力要素(11)と前記出力要素(15)との相対捩れ角が増加するにつれて前記振動減衰装置(10,110)の径方向の内側に移動すると共に前記入力要素(11)と前記出力要素(15)との相対捩れ角が減少するにつれて前記径方向の外側に移動する、ものとしてもよい。この場合、前記第1捩れ剛性機構(20)は、前記2つの回転要素に相対捩れ角が生じたときに、前記2つの回転要素の相対捩れ角を小さくするように動作する、ものとしてもよい。また、前記入力要素(11)および前記出力要素(15)は、互いに径の異なる環状に形成されると共に互いに同心円上に配置され、前記正側連結部材(21)は、前記入力要素(11)と前記出力要素(15)とのうちの一方によって回転自在に連結されると共に他方によって回転自在かつ前記正側連結部材(21)の延在方向に移動自在に連結され、前記正側連結部材(21)の重心は、前記入力要素(11)と前記出力要素(15)との相対捩れ角がゼロのときに、前記入力要素(11)と前記出力要素(15)とのうちの一方および他方によって支持される位置よりも前記径方向の外側に位置するものとしてもよい。
【0120】
本開示の第1の振動減衰装置において、正の捩れ剛性を有する第3捩れ剛性機構(30)を更に備え、前記複数の回転要素(11,12,15)は、前記入力要素(11)と前記出力要素(15)との間に配置される中間要素(12)を含み、前記第2捩れ剛性機構(40)は、前記入力要素(11)と前記中間要素(15)との間と、前記中間要素(12)と前記出力要素(15)との間と、のうちの一方に配置され、前記第3捩れ剛性機構(30)は、前記入力要素(11)と前記中間要素(12)との間と、前記中間要素(12)と前記出力要素(15)との間と、のうちの他方に配置されるものとしてもよい。
【0121】
本開示の第1の振動減衰装置において、前記第2捩れ剛性機構(250,350,450)は、前記振動減衰装置(210,310,410)の径方向に延在するように配置されるものとしてもよい。
【0122】
第2捩れ剛性機構が振動減衰装置の径方向に延在するように配置される態様の本開示の第1の振動減衰装置において、前記第2捩れ剛性機構(250)を介して連結される2つの回転要素(212,215)のうち前記径方向における内側の回転要素である内側回転要素(215)は、前記径方向に沿って延在するように形成されたガイド穴(215h)を有し、前記第2捩れ剛性機構(250)は、前記ガイド穴(215h)に沿って移動可能な質量体(255)と、前記質量体(255)と前記2つの回転要素(212,215)のうち前記径方向における外側の回転要素である外側回転要素(212)とに連結されると共に前記2つの回転要素(212,215)の相対捩れ角がゼロのときに自然長よりも圧縮されているスプリング(251)と、を有するものとしてもよい。この場合、前記第2捩れ剛性機構(250)の捩れ剛性は、前記スプリング(251)のばね定数を含んで定義される前記第2捩れ機構(250)全体の捩れ剛性である。
【0123】
第2捩れ剛性機構が振動減衰装置の径方向に延在するように配置される態様の本開示の第1の振動減衰装置において、前記第2捩れ剛性機構(250)を介して連結される2つの回転要素(212,215)のうち前記径方向における内側の回転要素である内側回転要素(215)は、前記径方向に沿って延在するように形成されたガイド穴(215h)を有し、前記第2捩れ剛性機構(350)は、前記ガイド穴(215h)に沿って移動可能な移動部材(255)と、前記移動部材(255)と前記2つの回転要素(212,215)のうち前記径方向における外側の回転要素である外側回転要素(212)とに連結されると共に前記2つの回転要素(212,215)の相対捩れ角がゼロのときに自然長よりも圧縮されているスプリング(251)と、前記移動部材(255)の前記径方向における位置を調節する位置調節部(360)と、を有するものとしてもよい。この場合、エンジンの回転数が大きくなるにつれて移動部材の位置が径方向外側となるように移動部材の位置を調節すればよい。この場合、前記第2捩れ剛性機構(350)の捩れ剛性は、前記スプリング(251)のばね定数を含んで定義される前記第2捩れ機構(350)全体の捩れ剛性である。
【0124】
第2捩れ剛性機構が振動減衰装置の径方向に延在するように配置される態様の本開示の第1の振動減衰装置において、前記第2捩れ剛性機構(450)は、有効巻部のピッチが不等の不等ピッチコイルスプリング(451)を有し、前記不等ピッチコイルスプリング(451)は、前記2つの回転要素の相対捩れ角がゼロのときに自然長よりも圧縮されているものとしてもよい。この場合、前記不等ピッチコイルスプリング(451)の有効巻部のピッチは、前記径方向における外側で内側よりも狭くなっているものとしてもよい。
【0125】
第2捩れ剛性機構が振動減衰装置の径方向に延在するように配置される態様の本開示の第1の振動減衰装置において、前記第1捩れ剛性機構(240)は、前記振動減衰装置(210,310,410)の周方向に延在するように配置されるものとしてもよい。この場合、前記第1捩れ剛性機構(240)は、有効巻部のピッチが不等の不等ピッチコイルスプリングであるものとしてもよい。前記第1捩れ剛性機構(240)の前記不等ピッチコイルスプリングの有効巻部のピッチは、該第1捩れ剛性機構(240)の延在方向における中央部で両端部よりも狭くなっているものとしてもよい。
【0126】
第2捩れ剛性機構が振動減衰装置の径方向に延在するように配置される態様の本開示の第1の振動減衰装置において、正の捩れ剛性を有する第3捩れ剛性機構(220)および第4捩れ剛性機構(230)を更に備え、前記複数の回転要素は、前記入力要素(211)と前記出力要素(215)との間に配置される中間要素(213)を含み、前記第3捩れ剛性機構(220)は、前記入力要素(211)と前記中間要素(213)との間に配置され、前記第4捩れ剛性機構(230)は、前記中間要素(213)と前記出力要素(215)との間に配置されるものとしてもよい。この場合、前記第1捩れ剛性機構(240)は、前記入力要素(211)と前記出力要素(215)との相対捻れ角が所定捩れ角以上のときに作動するものとしてもよい。
【0127】
本開示の第2の振動減衰装置(520)は、エンジン(EG)からのトルクが伝達される回転要素(511)の振動を減衰する振動減衰装置(520)であって、前記回転要素(511)に回転自在に連結されると共に正の捩れ剛性を有する第1捩れ剛性機構(530)と、前記回転要素(511)に回転自在に連結されると共に負の捩れ剛性を有する第2捩れ剛性機構(540)と、前記第1捩れ剛性機構(530)と前記第2捩れ剛性機構(540)とを連結する連結機構(550)と、を備え、前記第2捩れ剛性機構(540)の捩れ剛性は、前記エンジン(EG)の回転数が大きいほど負側に大きくなる、ことを要旨とする。
【0128】
この本開示の第2の振動減衰装置では、エンジンからのトルクが伝達される回転要素に回転自在に連結されると共に正の捩れ剛性を有する第1捩れ剛性機構と、回転要素に回転自在に連結されると共に負の捩れ剛性を有する第2捩れ剛性機構と、が連結機構を介して連結されている。この構成では、第1捩れ剛性機構および第2捩れ剛性機構が回転要素に対して並列に作用すると考えることができるから、第1捩れ剛性機構および第2捩れ剛性機構を含む複数の捩れ剛性機構の全体の捩れ剛性を小さくすることができる。また、この構成では、回転要素の回転変動が生じて第1捩れ剛性機構および第2捩れ剛性機構が静止状態の位置からずれると、第1捩れ剛性機構が静止状態の位置に戻ろうとすると共に第2捩れ剛性機構がそのずれ量を大きくしようとして、振動減衰装置から回転要素に、エンジンから回転要素に伝達される振動とは逆位相の振動を付与し、回転要素の振動を吸収(減衰)することができる。そして、第2捩れ剛性機構の捩れ剛性を、エンジンの回転数が大きいほど負側に大きくなるようにする。これにより、第1捩れ剛性機構および第2捩れ剛性機構を含む複数の捩れ剛性機構の全体の捩れ剛性がエンジンの回転数に応じて適切に変化するようにすることができる。この結果、エンジンからのトルクが伝達される回転要素に対して、高い振動減衰性能を発揮できる回転数領域を拡大することができる。
【0129】
こうした本開示の第2の振動減衰装置において、前記第1捩れ剛性機構(530)の捩れ剛性は、前記エンジン(EG)の回転数が大きいほど正側に大きくなる、ものとしてもよい。
【0130】
この場合、前記第1捩れ剛性機構(530)は、前記回転要素(511)における第1位置で該回転要素(511)と回り対偶をなすと共に静止状態のときに重心が前記第1位置よりも前記振動減衰装置(520)の径方向の外側に位置する第1質量体(531)を有し、前記第1質量体(531)の重心は、前記回転要素(511)の揺動量が増加するにつれて前記径方向の内側に移動すると共に前記回転要素(511)の揺動量が減少するにつれて前記径方向の外側に移動し、前記第2捩れ剛性機構(540)は、前記回転要素(511)における前記第1位置よりも前記径方向の外側の第2位置で該回転要素(511)と回り対偶をなすと共に静止状態のときに重心が前記第2位置よりも前記径方向の内側に位置する第2質量体(541)を有し、前記第2質量体(541)の重心は、前記回転要素(511)の揺動量が増加するにつれて前記径方向の外側に移動すると共に前記回転要素(511)の揺動量が減少するにつれて前記径方向の内側に移動する、ものとしてもよい。
【0131】
この場合、前記回転要素(511)は、所定方向に延在するように形成されたガイド穴(511h)を有し、前記第1位置は、前記ガイド穴(511h)よりも前記径方向の内側に位置し、前記第2位置は、前記ガイド穴(511h)よりも前記径方向の外側に位置し、前記連結機構(550)は、一端部が前記第1質量体(531)と回り対偶をなす第1リンク(551)と、一端部が前記第2質量体(541)と回り対偶をなす第2リンク(552)と、前記ガイド穴(511h)に沿って移動すると共に前記第1リンク(551)の他端部および前記第2リンク(552)の他端部と回り対偶をなすピボット(555)と、を有する、ものとしてもよい。
【0132】
この場合、前記第1リンク(551)は、前記第1質量体(531)の重心の位置で該第1質量体(531)と回り対偶をなし、前記第2リンク(552)は、前記第2質量体(541)の重心の位置で該第2質量体(541)と回り対偶をなし、前記第1位置と前記第1質量体(531)の重心との距離および前記第2位置と前記第2質量体(541)の重心との距離は、共に第1距離であり、前記第1質量体(531)の重心と前記ピボッ
ト(555)との距離および前記第2質量体(541)の重心と前記ピボット(555)との距離は、共に前記第1距離の半分の第2距離である、ものとしてもよい。
【0133】
以上、本開示を実施するための形態について説明したが、本開示はこうした実施形態に何等限定されるものではなく、本開示の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。