(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】6573061
(24)【登録日】2019年8月23日
(45)【発行日】2019年9月11日
(54)【発明の名称】析出強化型鋳造合品の溶接補修方法
(51)【国際特許分類】
B23K 9/04 20060101AFI20190902BHJP
C22C 19/03 20060101ALI20190902BHJP
【FI】
B23K9/04 V
C22C19/03 H
【請求項の数】5
【全頁数】8
(21)【出願番号】特願2019-530863(P2019-530863)
(86)(22)【出願日】2019年2月25日
(86)【国際出願番号】JP2019007013
【審査請求日】2019年6月7日
【早期審査対象出願】
(73)【特許権者】
【識別番号】000211307
【氏名又は名称】中国電力株式会社
(74)【代理人】
【識別番号】110000176
【氏名又は名称】一色国際特許業務法人
(72)【発明者】
【氏名】西田 秀高
【審査官】
柏原 郁昭
(56)【参考文献】
【文献】
特開2008−274314(JP,A)
【文献】
特開2017−190688(JP,A)
【文献】
特開2011−136344(JP,A)
【文献】
特開2011−79054(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23K 9/04
B23K 26/342
B23K 31/00
C22C 19/03
(57)【特許請求の範囲】
【請求項1】
析出強化型鋳造合品の損傷部を補修する方法であって、
固溶強化型の合金を含む、前記析出強化型鋳造合品よりも靱性が高い溶接材料を用い、マイクロティグ溶接により前記損傷部を溶接する、析出強化型鋳造合品の溶接補修方法。
【請求項2】
前記マイクロティグ溶接における溶接電流を50A以下とする、請求項1に記載の析出強化型鋳造合品の溶接補修方法。
【請求項3】
前記溶接材料は二重複相ナノ組織金属間化合物合金を含むニッケル基合金である、請求項1に記載の析出強化型鋳造合品の溶接補修方法。
【請求項4】
前記マイクロティグ溶接においては、前記損傷部の露出面を覆うように前記溶接材料を前記損傷部に導入する、請求項1に記載の析出強化型鋳造合品の溶接補修方法。
【請求項5】
前記マイクロティグ溶接を行う前に、前記損傷部を含むようにして前記鋳造合品の一部を切削することにより前記析出強化型鋳造合品の表面に凹部を形成し、形成した凹部に対して前記マイクロティグ溶接を行う、請求項1に記載の析出強化型鋳造合品の溶接補修方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、析出強化型鋳造合品の溶接補修方法に関する。
【背景技術】
【0002】
火力発電設備や原子力発電設備等におけるタービンの動翼、燃焼器、尾筒等の鋳造品は、その素材に析出強化型の超耐熱合金(ニッケル基超耐熱合金等)を用いることで、高温強度を向上させることができる。しかしながら、これらの鋳造品も長期間にわたって高温・高圧条件下におかれると、タービンの起動及び停止の繰り返し等により発生する熱応力が原因となって、表面等に亀裂や損傷が生じることがある。この場合、発電所ではTIG溶接やレーザー溶接等で補修を行うことで対応している。
【0003】
この点、母材の素材を改良することで、補修の効果を上げることが考えられる。例えば、特許文献1には、Al:5at%より大で13at%、V:9.5%以上で17.4at%より小、Nb:0at%以上5at%以下、B:50重量ppm以上1000重量ppm以下、残部は不純物を除きNiからなり、初相L1
2相と(L1
2+D0
22)共析組織との2重複相組織を有するNi
3Al基金属間化合物が記載されている。また、特許文献2には、Niを主成分とし且つAl:2〜9原子%,V:10〜17原子%,(Ta及び/又はW):0.5〜8原子%,Nb:0〜6原子%,Co:0〜6原子%,Cr:0〜6原子%を含む合計100原子%の組成の合計重量に対してB:10〜1000重量ppmを含むNi基金属間化合物合金において、初析L1
2相と(L1
2+D0
22)共析組織とからなる2重複相組織を有するものが開示されている。
【0004】
他方、補修方法としては、特許文献3には、ニッケル基超合金からなるスキーラ付きガスタービン動翼の補修に関して、スキーラの損傷部を切削除去した後、当該部分にニッケル基超合金から肉盛部を溶接によって形成し、肉盛部を、この肉盛部を構成するニッケル基超合金の融点(m℃)の1/2以上の温度であって、融点以下の温度範囲に15℃/分以上500℃/分以下の昇温速度で加熱し、肉盛部に冷却ガスを吹き付け急冷し、その後、肉盛部に対して溶体化処理を行うことが記載されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】国際公開第2007/086185号
【特許文献2】特開2009−215649号公報
【特許文献3】特開2013−68085号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところが、特許文献3に代表されるような溶接作業は、非常に煩雑で未だ効率が悪いのが現状である。例えば、鋳造品の溶接後の熱処理に際して、部品を工場に運搬して行うことが必要となるが、大型の部品であることから時間もコストもかかる。また、同文献では溶接にレーザー溶接を行うことが想定されているが、そのような溶接では亀裂が再発生することが多く、歩留まりが良くない。
【0007】
本発明はこのような現状に鑑みてなされたものであり、その目的は、析出強化型鋳造合品を確実かつ効率的に補修することが可能な析出強化型鋳造合品の溶接補修方法を提供することにある。
【課題を解決するための手段】
【0008】
前述の目的を達成するための本発明の一つは、析出強化型鋳造合品の損傷部を補修する方法であって、固溶強化型の合金を含む、前記析出強化型鋳造合品よりも靱性が高い溶接材料を用い、マイクロティグ溶接により前記損傷部を溶接する。
【0009】
本発明者は、固溶強化型の合金を含む、母材たる析出強化型鋳造合品よりも靱性が高い溶接材料を、母材が析出強化型鋳造合品の場合に用いることで、補修時及び補修後の溶接部に熱応力がかかってもこれを緩衝させる(外部に逃がす)ことができるため、母材の熱応力に対する耐久性を有意に高めることができ、従来行っていた熱処理も不要となるという知見を得た。さらに本発明者は、この場合の溶接をマイクロティグ溶接で行うことにより、補修時の溶接部の近傍における温度勾配を比較的小さく保ち、溶接部の熱応力の発生及びこれに起因する母材の強度低下を抑制することができることに想到した。このように、本発明の溶接補修方法によれば、溶接材料及び溶接方法を適切に組み合わせることで、析出強化型鋳造合品を確実かつ効率よく補修することができる。
【0010】
なお、本発明においては、例えば、前記マイクロティグ溶接における溶接電流を50A以下とする。
【0011】
このように、マイクロティグ溶接の溶接電流を50A以下とすることで、補修時及び補修後の補修部位及びその周囲の損傷(例えば、補修部位の割れや亀裂の再発生)を確実に防ぐことができる。
【0012】
なお、本発明においては、例えば、前記溶接材料は二重複相ナノ組織金属間化合物合金を含むニッケル基合金である。
【0013】
このように、まず溶接材料がニッケル基合金を含むことで、ニッケルは靱性(延性)が高いため、補修時及び補修後において、補修部位及びその周囲の損傷(例えば、補修部位の割れや亀裂の再発生)防ぐ効果が確実に得られる。また、二重複相ナノ組織を有することで、高温に強く、耐摩耗性、耐食性を良好に保つ効果も得られる。
【0014】
なお、本発明においては、例えば、前記マイクロティグ溶接においては、前記損傷部の露出面を覆うように前記溶接材料を前記損傷部に導入する。
【0015】
このように、鋳造合品の損傷部の露出面を覆うように溶接を行うことで、補修時及び補修後において、母材の損傷部と溶接の境界において局所的な変形や損傷が発生して母材の再補修が必要となるような事態を防ぐことができる。
【0016】
なお、本発明においては、例えば、前記マイクロティグ溶接を行う前に、前記損傷部を含むようにして前記鋳造合品の一部を切削することにより前記鋳造合品の表面に凹部を形成し、形成した凹部に対して前記マイクロティグ溶接を行う。
【0017】
このように、マイクロティグ溶接を行う前に、損傷部を含む部分を切削して凹部(開先)を形成することで、損傷部分が除去された状態でマイクロティグ溶接を行うことができるので、母材で発生した損傷に起因する、補修時及び補修後の補修部位及びその周囲の損傷(例えば、補修部位の割れや亀裂の再発生)を防ぐことができる。
【発明の効果】
【0018】
本発明によれば、析出強化型鋳造合品を確実かつ効率的に補修することができる。
【図面の簡単な説明】
【0019】
【
図1】
図1は、火力発電所等に設けられるガスタービンの構成部品の一例を示した図である。
【
図2】
図2は、本実施形態に係る、鋳造合品の溶接補修方法の手順の一例を示す図である。
【
図3】
図3は、開先形成工程の一例を示す図である。
【
図4】
図4は、溶接工程の一例を説明する図である。
【
図5】
図5は、本発明者らが実施した補修溶接試験の結果を示す図である。
【発明を実施するための形態】
【0020】
本発明の実施の形態について、図面を参照しつつ説明する。
まず、
図1は、火力発電所等に設けられるガスタービンの構成部品の一例を示した図である。ガスタービン10は、例えば、複数の、ニッケル−コバルト系の耐熱合金で構成される。具体的には、ガスタービン10は、燃焼器副室22及び燃焼器主室24を備え、燃料を圧縮空気と混合して燃焼させる燃焼器20と、燃焼器20で発生した燃焼ガスや水蒸気等が流通する尾筒30(トランジションピース)と、尾筒30から流入した燃焼ガス等の熱エネルギーを回転エネルギーに変換するタービン室40とを備えて構成される。タービン室40には、燃焼ガス等を整流する静翼42と、燃焼ガス等を圧縮し回転エネルギーに変換する動翼44とが、交互に複数配置される。なお、これらの各構成部品は、本実施形態では、金属材料に対して主に時効熱処理等による析出強化を行った析出強化型鋳造合品であるものとする。
【0021】
このようなガスタービン10の構成部品に対しては、ガスタービン10の起動及び停止の繰り返しに起因した熱応力が発生し、各構成部品の表面付近に亀裂により損傷が発生しやすい。そこで、このような表面に発生した亀裂に対する溶接補修を例に、本実施形態に係る鋳造合品の溶接補修方法を説明する。
【0022】
図2は、本実施形態に係る、鋳造合品の溶接補修方法の手順の一例を示す図である。
まず、後述するマイクロティグ溶接を行う前に、発生した亀裂を含む部分を切削することにより凹部(開先)を形成する開先形成工程を実施する(s11)。
【0023】
図3は、開先形成工程の一例を示す図である。同図に示すように、亀裂50が発生したガスタービンの構成部品5の表面55に対して、ドリルやエンドミル等を用いることで、亀裂50を含むように構成部品5の表面55に凹部51(開先)を形成する。これにより、亀裂50全体を除去する。なお、凹部51は、例えば、その断面形状がV字状又はU字状の空間となるような空間とする。
【0024】
次に、
図2に示すように、開先形成工程で形成した凹部51に対してマイクロティグ(Micro Tungsten Inert Gas)溶接を行うことで、凹部51を充填する溶接工程を実施する(s13)。
【0025】
ここで、
図4は、溶接工程の一例を説明する図である。溶接工程では、溶接材料53を含む溶接棒57及び溶接トーチ54を用いることにより、凹部51の形成により母材(構成部品5)の内部が露出した露出面52上に、露出面52を確実に全面的に覆うように溶接を行う(s11)。
【0026】
溶接に用いる溶接棒57の素材(溶接材料53)は、固溶強化型の金属を含む、母材である構成部品5よりも靭性が高い合金とする。このような合金としては、例えば、ニッケル基合金がある。
【0027】
さらに、この溶接材料53は、二重複相ナノ組織金属間化合物合金を含むニッケル基合金である。すなわち、ニッケルにアルミニウム及びバナジウムを所定割合で加えて鋳造凝固することで、ナノレベルで、D0
22相(Ni
3Al)とL1
2相(Ni
3V)を有する共析組織を形成したニッケル基合金である。なお、アルミニウム及びバナジウムの添加割合、また、その他の微量元素(ホウ素等)の添加割合は特に限定されるものではない。
【0028】
溶接工程における溶接方法は、具体的には、例えば以下のように実施する。まず、凹部51に対する入熱量(溶接トーチ54による、単位時間あたりの熱エネルギー供給量)については、凹部51に、通常のマイクロティグ溶接で使用される程度の大きさの溶接電流で入熱を行うと、凹部51に大きな熱応力が発生し、その結果、母材たる構成部品5に割れが生じるおそれがあるので、溶接電流はそれよりも低めに設定する必要がある。例えば、溶接電流は50A以下とすることが好ましい。
【0029】
なお、溶接トーチ54の移動速度(溶接速度)については、その移動速度が速すぎると、入熱部とその周囲との温度差(熱拡散に起因する温度差)が生じ易いため、母材である構成部品5の割れの原因となる。そこで、溶接トーチ54の移動速度は速くしすぎないことが重要である。これにより、凹部51に対して満遍なく必要な熱供給を行うことができる。
【0030】
以上のような溶接方法で溶接を行うことにより、凹部51に対応する略同一形状の溶接部を形成し、構成部品5に生じた亀裂を補修する。
【0031】
<溶接補修試験>
本発明者らは、以上の溶接方法を用いた、鋳造合品の溶接補修試験を行った。すなわち、本試験では、損傷部を有するガスタービンの燃焼器(材料は、ハステロイ(登録商標)X)を試験母材として、高濃度ニッケル溶接棒によるマイクロティグ溶接(溶接電流は50A以下を維持した)を実施することで、損傷部の溶接補修を行った。この溶接補修後、引張試験及び高温疲労試験を行うことで、損傷の無い状態の試験母材(以下、単に母材という)と溶接補修後の母材(以下、補修後部材という)との状態を比較した。
【0032】
図5は、本発明者らが実施した溶接補修試験の結果を示す図である。引張試験(900℃大気中)では、母材の0.2%耐力は178.1MPaであったのに対して補修後部材の0.2%耐力は170.3MPaであった。また、母材の引張強さは187.2MPaであったのに対して補修後部材の引張強さは177.7MPaであった。すなわち、引張り強さに関して、補修後部材は母材とほぼ同等の強度を有していた。
【0033】
また、高温疲労試験(900℃大気中。荷重制御は15〜150MPa(応力換算)。)では、母材の破断繰り返し数は555サイクルであったのに対して補修後部材の(溶接部に対する)破断繰り返し数は377サイクルであった。すなわち、高温疲労に対する耐久性に関して、補修後部材は母材の7割程度の耐久性を有しており、実機の運用に充分に耐えることが可能であることがわかった。
【0034】
以上に説明したように、本実施形態の析出強化型鋳造合品の溶接補修方法によれば、固溶強化型の合金を含む、母材たる析出強化型鋳造合品よりも靱性が高い溶接材料を、母材が析出強化型鋳造合品の場合に用いることで、補修時及び補修後の溶接部に熱応力がかかってもこれを緩衝させる(外部に逃がす)ことができるため、母材の熱応力に対する耐久性を有意に高めることができ、従来行っていた熱処理も不要となる。さらに、この場合の溶接をマイクロティグ溶接で行うことにより、補修時の溶接部の近傍における温度勾配を比較的小さく保ち、溶接部の熱応力の発生及びこれに起因する母材の強度低下を抑制することができることに想到した。このように、本実施形態の溶接補修方法によれば、溶接材料及び溶接方法を適切に組み合わせることで、鋳造合品を確実かつ効率よく補修することができる。
【0035】
また、本実施形態の鋳造合品の溶接補修方法では、マイクロティグ溶接の溶接電流を50A以下とすることで、補修時及び補修後の補修部位及びその周囲の損傷(例えば、補修部位の割れや亀裂の再発生)を確実に防ぐことができる。
【0036】
また、本実施形態の鋳造合品の溶接補修方法では、溶接材料は二重複相ナノ組織金属間化合物合金を含むニッケル基合金であることで、ニッケルは靱性(延性)が高いため、補修時及び補修後において、補修部位及びその周囲の損傷(例えば、補修部位の割れや亀裂の再発生)防ぐ効果が確実に得られる。また、二重複相ナノ組織を有することで、高温に強く、耐摩耗性、耐食性を良好に保つ効果も得られる。
【0037】
また、本実施形態の鋳造合品の溶接補修方法では、鋳造合品の損傷部の露出面を覆うように溶接を行うことで、補修時及び補修後において、母材の損傷部と溶接部の境界において局所的な変形や損傷が発生して母材の再補修が必要となるような事態を防ぐことができる。
【0038】
また、本実施形態の鋳造合品の溶接補修方法では、マイクロティグ溶接を行う前に、損傷部を含む部分を切削して凹部(開先)を形成することで、損傷部分が除去された状態でマイクロティグ溶接を行うことができるので、母材で発生した損傷に起因する、補修時及び補修後の補修部位及びその周囲の損傷(例えば、補修部位の割れや亀裂の再発生)を防ぐことができる。
【0039】
以上の実施形態の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれる。
【0040】
例えば、本実施形態では、亀裂補修において、マイクロティグ溶接を行う前に開先を形成するものとしたが、開先を形成することなく、鋳造合品の損傷部に直接肉盛溶接を行ってもよい。また、亀裂以外の損傷、例えば鋳造合品の摩耗(減肉)等に対しても、鋳造合品の損傷部に直接肉盛溶接を行ってもよい。また、本実施形態に係る溶接補修方法は、ガスタービン10の構成部品(燃焼器20、尾筒30、静翼42、動翼44)をはじめとするな、耐熱合金部材の溶接補修一般に対して適用することができる。
【符号の説明】
【0041】
5 構成部品、10 ガスタービン、20 燃焼器、22 燃焼器副室、24 燃焼器主室、30 尾筒、40 タービン室、42 静翼、44 動翼、50 亀裂、51 凹部、52 露出面、53 溶接材料、54 溶接トーチ、55 表面、56 粉末、57 溶接棒
【要約】
析出強化型鋳造合品の損傷部を補修する方法であって、固溶強化型の合金を含む、前記析出強化型鋳造合品よりも靱性が高い溶接材料53を用い、マイクロティグ溶接により前記損傷部を溶接する。