(58)【調査した分野】(Int.Cl.,DB名)
水銀ポロシメーターで測定した最頻細孔径とメディアン径の比(最頻細孔径/メディアン径)が0.80〜1.30である、請求項1〜3のいずれか1項に記載の多孔性成形体。
前記有機高分子樹脂の良溶媒が、ジメチルスルホキシド(DMSO)、N−メチル−2−ピロリドン(NMP)、ジメチルアセトアミド(DMAC)及びジメチルホルムアミド(DMF)からなる群から選ばれる少なくとも一種である、請求項8又は9に記載の多孔性成形体の製造方法。
【発明を実施するための形態】
【0016】
以下、本発明を実施するための形態(以下、本実施形態と言う。)について、説明するが、本発明は以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
【0017】
〔多孔性成形体〕
本実施形態の多孔性成形体は、有機高分子樹脂及び無機イオン吸着体を含み、水銀ポロシメーターで測定した最頻細孔径が0.08〜0.70μmである。本実施形態の多孔性成形体は、連通孔を有し多孔質な構造を有する。
【0018】
本実施形態の多孔性成形体は、水銀ポロシメーターで測定した最頻細孔径が0.08〜0.70μmであり、0.10〜0.60μmであることが好ましく、0.20〜0.50μmであることがより好ましい。
本実施形態において、最頻細孔径(モード径)とは、水銀ポロシメーターで測定した細孔直径に対して対数微分細孔容積(dV/d(logD)、ここでVは水銀圧入容積、Dは細孔直径を示す。)をプロットした図上において、対数微分細孔容積の値が最大となる細孔直径を意味し、体積基準である。具体的には、実施例に記載の方法により、最頻細孔径を測定することができる。
水銀ポロシメーターは、水銀圧入法によって多孔性材料の細孔の大きさを評価する装置で、ガス吸着法(BET法)では測定ができないような比較的大きな細孔分布(メソポア(数nm)〜マクロポア(数百μm))測定に適している。
本実施形態おいては、水銀ポロシメーターで最頻細孔径を測定することにより、多孔性成形体における有機高分子樹脂からなる多孔構造(骨格構造)の特徴を詳細に測定することができる。また、水銀ポロシメーターでメディアン径及び比表面積を測定することにより、多孔性成形体における有機高分子樹脂からなる多孔構造(骨格構造)の特徴をより詳細に測定することができる。
最頻細孔径が0.08μm以上であれば、リンやホウ素等の吸着対象物が多孔性成形体内部へ拡散するための連通孔の孔径として十分であり、拡散速度が速くなる。最頻細孔径が0.70μm以下であれば、多孔性成形体の空隙が小さくなり、単位体積中に占める無機イオン吸着体の存在量が密になるため、高速通水処理時に多くのイオンを吸着するのに適している。
【0019】
多孔性成形体の外表面開口率は、5%以上30%未満であることが好ましく、7%以上28%以下であることがより好ましく、10%以上25%以下であることがさらに好ましい。
本実施形態において、外表面開口率とは、走査型電子顕微鏡で多孔性成形体の外表面を観察した視野の面積中に占める全ての孔の開口面積の和の割合を意味する。
外表面開口率が5%以上であれば、リンやホウ素等の吸着対象物の多孔性成形体内部への拡散速度が速くなる。外表面開口率が30%未満であれば、多孔性成形体外表面の無機イオン吸着体の存在量が多いため、高速で通液処理しても水中のイオンを確実に吸着できる。
本実施形態においては、10,000倍で多孔性成形体の外表面を観察して外表面開口率を実測する。具体的には、実施例に記載の方法により、外表面開口率を測定することができる。
【0020】
本実施形態の多孔性成形体は、水銀ポロシメーターで測定した最頻細孔径とメディアン径の比(最頻細孔径/メディアン径)が0.80〜1.30であることが好ましく、0.85〜1.25であることがより好ましく、0.90〜1.20であることがさらに好ましい。
本実施形態において、メディアン径とは、積算細孔容積分布における積算細孔容積の最大値と最小値の範囲の中央値に対する細孔直径を意味し、体積基準である。具体的には、実施例に記載の方法により、メディアン径を測定することができる。
最頻細孔径/メディアン径の比が1.0に近いと多孔性成形体の細孔径分布が均一であり、高速通水処理に適している。
多孔性成形体の外表面付近に孔径が小さいち密層(スキン層)が存在する場合、スキン層の内側(成形体の内部方向)には大きな空隙(最大孔径層)が形成しやすい。最頻細孔径/メディアン径の比が0.80〜1.30であることは、多孔性成形体にスキン層が存在していないことを意味する。
【0021】
本実施形態の多孔性成形体は、水銀ポロシメーターで測定した比表面積が10〜100m
2/cm
3であることが好ましく、11〜90m
2/cm
3であることがより好ましく、12〜50m
2/cm
3であることがさらに好ましい。
比表面積が10m
2/cm
3以上であれば、無機イオン吸着体の担持量が多くかつ細孔表面積が大きいため、高速通水時の十分な吸着性能が得られる。比表面積が100m
2/cm
3以下であれば、無機イオン吸着体が強固に担持されるため多孔性成形体の強度が高い。
本実施形態において、比表面積は、次式で定義される。
比表面積(m
2/cm
3)=S(Hg)(m
2/g)×かさ比重(g/cm
3)
S(Hg)は、多孔性成形体の単位重量あたりの細孔表面積(m
2/g)を意味する。細孔表面積の測定方法は、多孔性成形体を室温で真空乾燥した後、水銀ポロシメーターを用いて測定する。具体的には、実施例に記載の方法により、細孔表面積を測定することができる。
かさ比重の測定方法は、以下のとおりである。
多孔性成形体が、粒子状、円柱状、中空円柱状等であり、その形状が短いものは、湿潤状態の多孔性成形体を、メスシリンダー等を用いて、1mLを1cm
3としてみかけの体積を測定する。その後、室温で真空乾燥して重量を求め、重量/体積として、かさ比重を算出する。
多孔性成形体が、糸状、中空糸状、シート状等であり、その形状が長いものは、湿潤時の断面積と長さを測定して、両者の積から体積を算出する。その後、室温で真空乾燥して重量を求め、重量/体積として、かさ比重を算出する。
【0022】
本実施形態の多孔性成形体は、平均粒径が100〜2500μmで、実質的に球状であることが好ましく、平均粒径は150〜2000μmであることがより好ましく、200〜1500μmであることがさらに好ましい。
本実施形態の多孔性成形体は、球状粒子であることが好ましく、球状粒子として、真球状のみならず、楕円球状であってもよい。
平均粒径が100μm以上であれば、多孔性成形体をカラムやタンク等へ充填した際に圧カ損失が小さいため高速通水処理に適する。平均粒径が2500μm以下であれば、カラムやタンクに充填したときの多孔性成形体の表面積を大きくすることができ、高速で通液処理してもイオンを確実に吸着することができる。
本実施形態において、平均粒径は、多孔性成形体を球状とみなして、レーザー光による回折の散乱光強度の角度分布から求めた球相当径のメディアン径を意味する。具体的には、実施例に記載の方法により、平均粒径を測定することができる。
【0023】
(有機高分子樹脂)
本実施形態の多孔性成形体を構成する有機高分子樹脂は、特に限定されないが、湿式相分離による多孔化手法が可能な樹脂であることが好ましい。
有機高分子樹脂としては、例えば、ポリスルホン系ポリマー、ポリフッ化ビニリデン系ポリマー、ポリ塩化ビニリデン系ポリマー、アクリロニトリル系ポリマー、ポリメタクリル酸メチル系ポリマー、ポリアミド系ポリマー、ポリイミド系ポリマー、セルロース系ポリマー、エチレンビニルアルコール共重合体系ポリマー及び多種類等が挙げられる。
中でも、水中での非膨潤性と耐生分解性、さらに製造の容易さから、エチレンビニルアルコール共重合体(EVOH)、ポリアクリロニトリル(PAN)、ポリスルホン(PS)、ポリエーテルスルホン(PES)及びポリフッ化ビニリデン(PVDF)が好ましい。
有機高分子樹脂は、末端に水酸基を有しているポリエーテルスルホンが好ましい。末端基として水酸基を有していることによって、本実施形態の多孔性成形体において、優れた無機イオン吸着体の担持性能が発揮できる。加えて、疎水性が高い有機高分子樹脂が、末端に水酸基を有しているため親水性が向上し、本実施形態の多孔性成形体を水処理用途に使用してもファウリングが発生しにくい。
【0024】
(無機イオン吸着体)
本実施形態の多孔性成形体を構成する無機イオン吸着体とは、イオン吸着現象又はイオン交換現象を示す無機物質を意味する。
天然物系の無機イオン吸着体としては、例えば、ゼオライト及びモンモリロナイト等の各種の鉱物性物質等が挙げられる。
各種の鉱物性物質の具体例としては、アルミノケイ酸塩で単一層格子をもつカオリン鉱物、2層格子構造の白雲母、海緑石、鹿沼土、パイロフィライト、タルク、3次元骨組み構造の長石、ゼオライト及びモンモリロナイト等が挙げられる。
合成物系の無機イオン吸着体としては、例えば、金属酸化物、多価金属の塩及び不溶性の含水酸化物等が挙げられる。金属酸化物としては、複合金属酸化物、複合金属水酸化物及び金属の含水酸化物等を含む。
【0025】
無機イオン吸着体は、吸着対象物の吸着性能の観点で、下記式(I)で表される少なくとも1種の金属酸化物を含有することが好ましい。
MN
xO
n・mH
2O・・・・・・(I)
上記式(I)中、xは0〜3、nは1〜4、mは0〜6であり、M及びNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb及びTaからなる群から選ばれる金属元素であり、互いに異なる。
金属酸化物は、上記式(I)中のmが0である未含水(未水和)の金属酸化物であってもよいし、mが0以外の数値である金属の含水酸化物(水和金属酸化物)であってもよい。
上記式(I)中のxが0以外の数値である場合の金属酸化物は、含有される各金属元素が規則性を持って酸化物全体に均一に分布し、金属酸化物に含有される各金属元素の組成比が一定に定まった化学式で表される複合金属酸化物である。
具体的には、ペロブスカイト構造、スピネル構造等を形成し、ニッケルフェライト(NiFe
2O
4)、ジルコニウムの含水亜鉄酸塩(Zr・Fe
2O
4・mH
2O、ここで、mは0.5〜6である。)等が挙げられる。
無機イオン吸着体は、上記式(I)で表される金属酸化物を複数種含有していてもよい。
【0026】
無機イオン吸着体としては、リン、ホウ素、フッ素及び/又はヒ素の吸着性能に優れているという観点から、下記(a)〜(c)のいずれかの群から選ばれる少なくとも一種を含有することが好ましい。
(a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン及び水和酸化イットリウム
(b)チタン、ジルコニウム、スズ、セリウム、ランタン及びイットリウムからなる群から選ばれる少なくとも一種の金属元素と、アルミニウム、珪素及び鉄からなる群から選ばれる少なくとも一種の金属元素との複合金属酸化物
(c)活性アルミナ
(a)〜(c)群のいずれかの群から選択される材料であってもよく、(a)〜(c)群のいずれかの群から選択される材料を組み合わせて用いてもよく、(a)〜(c)群のそれぞれにおける材料を組み合わせて用いてもよい。組み合わせて用いる場合には、(a)〜(c)群のいずれかの群から選ばれる2種以上の材料の混合物であってもよく、(a)〜(c)群の2つ以上の群から選ばれる2種以上の材料の混合物であってもよい。
無機イオン吸着体は、安価で吸着性が高いという観点から、硫酸アルミニウム添着活性アルミナを含有してもよい。
【0027】
無機イオン吸着体としては、上記式(I)で表される金属酸化物に加え、上記M及びN以外の金属元素がさらに固溶したものは、無機イオンの吸着性や製造コストの観点から、より好ましい。
例えば、ZrO
2・mH
2O(mが0以外の数値である。)で表される水和酸化ジルコニウムに、鉄が固溶したものが挙げられる。
【0028】
多価金属の塩としては、例えば、下記式(II)で表されるハイドロタルサイト系化合物が挙げられる。
M
2+(1−p)M
3+p(OH
−)
(2+p−q)(A
n−)
q/r・・・・・・(II)
上記式(II)中、M
2+は、Mg
2+、Ni
2+、Zn
2+、Fe
2+、Ca
2+及びCu
2+からなる群から選ばれる少なくとも一種の二価の金属イオンである。
M
3+は、Al
3+及びFe
3+からなる群から選ばれる少なくとも一種の三価の金属イオンである。
A
n−は、n価のアニオンである。
0.1≦p≦0.5であり、0.1≦q≦0.5であり、rは1又は2である。
上記式(II)で表されるハイドロタルサイト系化合物は、無機イオン吸着体として原料が安価であり、吸着性が高いことから好ましい。
不溶性の含水酸化物としては、例えば、不溶性のヘテロポリ酸塩及び不溶性ヘキサシアノ鉄酸塩等が挙げられる。
【0029】
本実施形態の多孔性成形体を構成する無機イオン吸着体は、その製造方法等に起因して混入する不純物元素を、本実施形態の多孔性成形体の機能を阻害しない範囲で含有していてもよい。混入する可能性がある不純物元素としては、例えば、窒素(硝酸態、亜硝酸態、アンモニウム態)、ナトリウム、マグネシウム、イオウ、塩素、カリウム、カルシウム、銅、亜鉛、臭素、バリウム及びハフニウム等が挙げられる。
【0030】
〔カラム〕
本実施形態の多孔性成形体を吸着剤として水処理用途に用いる場合、カラムや吸着塔に充填して使用する。カラムや吸着塔に充填して、被処理水を通液して接触させることにより、多孔性成形体の有する接触効率の高さを十分に引き出すことができる。また、本実施形態の多孔性成形体は、吸着剤表面の無機イオン吸着体の存在量が高いため、通水初期からの吸着対象物が漏れ出す(破過する)ことなく、十分な吸着性能で超高速処理を行うことができる。
カラムとは、下部及び上部の少なくとも一方に、多孔性成形体が流出しないように目皿やメッシュのような固液分離手段を備える筒状の容器を意味する。
カラムの材質は、特に限定されるものではないが、例えば、ステンレス、FRP(ガラス繊維入り強化プラスチック)、ガラス及び各種プラスチック等が挙げられる。
耐酸性を考慮して、カラムの内面をゴムやフッ素樹脂ライニングしてもよい。
【0031】
〔多孔性成形体の製造方法〕
本実施形態の多孔性成形体の製造方法は、(1)有機高分子樹脂の良溶媒と無機イオン吸着体を粉砕、混合してスラリーを得る工程、(2)工程(1)で得られたスラリーに有機高分子樹脂及び水溶性高分子を溶解する工程、(3)工程(2)で得られたスラリーを成形する工程、(4)工程(3)で得られた成形品を貧溶媒中で凝固させるまでの間、成形品が接触する空間部の温度と湿度を制御して凝固を促進する工程、及び(5)工程(4)で得られた凝固が促進された成形品を貧溶媒中で凝固させる工程を含む。
【0032】
(工程(1):粉砕・混合工程)
工程(1)において、有機高分子樹脂の良溶媒と無機イオン吸着体を、粉砕、混合してスラリーを得る。
無機イオン吸着体を有機高分子樹脂の良溶媒中で湿式粉砕することにより、無機イオン吸着体を微粒子化できる。その結果、成形後の多孔性成形体に担持された無機イオン吸着体は、二次凝集物が少ないものとなる。
【0033】
<有機高分子樹脂の良溶媒>
工程(1)における有機高分子樹脂の良溶媒としては、多孔性成形体の製造条件において有機高分子樹脂を安定に1質量%を超えて溶解するものであれば、特に限定されるものではなく、従来公知のものを使用できる。
良溶媒としては、例えば、ジメチルスルホキシド(DMSO)、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルアセトアミド(DMAC)及びN,N−ジメチルホルムアミド(DMF)等が挙げられる。
良溶媒は1種のみを用いてもよく、2種以上を混合して用いてもよい。
【0034】
<粉砕混合手段>
工程(1)において、スラリーを得るために用いられる粉砕混合手段は、無機イオン吸着体及び有機高分子樹脂の良溶媒を合わせて粉砕、混合できるものであれば、特に限定されるものではない。
粉砕混合手段として、例えば、加圧型破壊、機械的磨砕、超音波処理等の物理的破砕方法に用いられる手段を用いることができる。
粉砕混合手段の具体例としては、ジェネレーターシャフト型ホモジナイザー、ワーリングブレンダー等のブレンダー、サンドミル、ボールミル、アトライタ及びビーズミル等の媒体撹拌型ミル、ジェットミル、乳鉢と乳棒、らいかい器並びに超音波処理器等が挙げられる。
中でも、粉砕効率が高く、粘度の高いものまで粉砕できることから、媒体撹拌型ミルが好ましい。
媒体撹拌型ミルに使用するボール径は、特に限定されるものではないが、0.1〜10mmであることが好ましい。ボール径が0.1mm以上であれば、ボール質量が充分あるので粉砕力があり粉砕効率が高く、ボール径が10mm以下であれば、微粉砕する能力に優れる。
媒体攪拌型ミルに使用するボールの材質は、特に限定されるものではないが、鉄やステンレス等の金属、アルミナやジルコニア等の酸化物類、窒化ケイ素や炭化ケイ素等の非酸化物類の各種セラミック等が挙げられる。中でも、耐摩耗性に優れ、製品へのコンタミネーション(摩耗物の混入)が少ない点で、ジルコニアが優れている。
【0035】
<分散剤>
工程(1)においては、多孔性成形体の構造に影響しない範囲で、粉砕、混合する際、無機イオン吸着体を混合した有機高分子樹脂の良溶媒中に界面活性剤等の公知の分散剤を添加してもよい。
【0036】
(工程(2):溶解工程)
工程(2)においては、工程(1)により得られたスラリーに、有機高分子樹脂及び水溶性高分子を溶解させて、成形用スラリーを得る。
有機高分子樹脂の添加量は、有機高分子樹脂/(有機高分子樹脂+水溶性高分子+有機高分子樹脂の良溶媒)の割合が、3〜40質量%となるようにすることが好ましく、4〜30質量%であることがより好ましい。有機高分子樹脂の含有率が3質量%以上であれば、強度の高い多孔性成形体が得られ、40質量%以下であれば、空孔率の高い多孔性成形体が得られる。
【0037】
<水溶性高分子>
工程(2)における水溶性高分子は、有機高分子樹脂の良溶媒と有機高分子樹脂とに対して相溶性のあるものであれば、特に限定されるものではない。
水溶性高分子としては、天然高分子、半合成高分子及び合成高分子のいずれも使用できる。
天然高分子としては、例えば、グアーガム、ローカストビーンガム、カラーギナン、アラビアゴム、トラガント、ペクチン、デンプン、デキストリン、ゼラチン、カゼイン及びコラーゲン等が挙げられる。
半合成高分子としては、例えば、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルデンプン及びメチルデンプン等が挙げられる。
合成高分子としては、例えば、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルメチルエーテル、カルボキシビニルポリマー、ポリアクリル酸ナトリウム並びにテトラエチレングリコール及びトリエチレングリコール等のポリエチレングリコール類等が挙げられる。
中でも、無機イオン吸着体の担持性を高める点から、合成高分子が好ましく、多孔性が向上する点から、ポリビニルピロリドン及びポリエチレングリコール類がより好ましい。
ポリビニルピロリドンとポリエチレングリコール類の質量平均分子量は、400〜35,000,000であることが好ましく、1,000〜1,000,000であることがより好ましく、2,000〜100,000であることがさらに好ましい。
質量平均分子量が2,000以上であれば、表面開口性の高い多孔性成形体が得られ、1,000,000以下であれば、成形する時のスラリーの粘度が低いので成形が容易になる傾向がある。
水溶性高分子の質量平均分子量は、水溶性高分子を所定の溶媒に溶解し、ゲル浸透クロマトグラフィー(GPC)分析により測定できる。
【0038】
水溶性高分子の添加量は、水溶性高分子/(水溶性高分子+有機高分子樹脂+有機高分子樹脂の良溶媒)の割合が、0.1〜40質量%となるようにすることが好ましく、0.5〜30質量%であることがより好ましく、1〜10質量%であることがさらに好ましい。
水溶性高分子の添加量が0.1質量%以上であれば、多孔性成形体の外表面及び内部に三次元的に連続した網目構造を形成する繊維状の構造体を含む多孔性成形体が均一に得られる。水溶性高分子の添加量が40質量%以下であれば、外表面開口率が適当であり、多孔性成形体の外表面の無機イオン吸着体の存在量が多いため、高速で通液処理してもイオンを確実に吸着できる多孔性成形体が得られる。
【0039】
(工程(3):成形工程)
工程(3)においては、工程(2)により得られたスラリー(成形用スラリー)を成形する。成形用スラリーは、有機高分子樹脂と、有機高分子樹脂の良溶媒と、無機イオン吸着体と、水溶性高分子の混合スラリーである。
本実施形態の多孔性成形体の形態は、成形用スラリーを成形する方法によって、粒子状、糸状、シート状、中空糸状、円柱状、中空円柱状等の任意の形態を採ることができる。
【0040】
粒子状の形態に成形する方法としては、特に限定されないが、例えば、回転する容器の側面に設けたノズルから、容器中に収納されている成形用スラリーを飛散させて、液滴を形成させる回転ノズル法等が挙げられる。回転ノズル法により、粒度分布が揃った粒子状の形態に成形することができる。
ノズルの径は、0.1〜10mmであることが好ましく、0.1〜5mmであることがより好ましい。ノズルの径が0.1mm以上であれば、液滴が飛散しやすく、10mm以下であれば、粒度分布を均一にすることができる。
遠心力は、遠心加速度で表され、5〜1500Gであることが好ましく、10〜1000Gであることがより好ましく、10〜800Gであることがさらに好ましい。
遠心加速度が5G以上であれば、液滴の形成と飛散が容易であり、1500G以下であえば、成形用スラリーが糸状にならずに吐出し、粒度分布が広くなるのを抑えることができる。粒度分布が狭いことにより、カラムに多孔性成形体を充填した時に水の流路が均一になるため、超高速通水処理に用いても通水初期からイオン(吸着対象物)が漏れ出す(破過する)ことが無いという利点を有している。
【0041】
糸状又はシート状の形態に成形する方法としては、該当する形状の紡口、ダイスから成形用スラリーを押し出し、貧溶媒中で凝固させる方法が挙げられる。
中空糸状の多孔性成形体を成形する方法としては、環状オリフィスからなる紡口を用いることで、糸状やシート状の多孔性成形体を成形する方法と同様にして成形できる。
円柱状又は中空円柱状の多孔性成形体を成形する方法としては、紡口から成形用スラリーを押し出す際、切断しながら貧溶媒中で凝固させてもよいし、糸状に凝固させてから後に切断しても構わない。
【0042】
(工程(4):凝固促進工程)
工程(4)においては、工程(3)により得られた成形品を貧溶媒中で凝固させるまでの間、成形品が接触する空間部の温度と湿度を制御して凝固を促進させる。
工程(4)により、水銀ポロシメーターで測定した最頻細孔径や外表面開口率を調整することができ、無機イオン吸着体の存在量が高い成形体が得られるため、被処理水中のイオン、中でも、リンイオンを超高速除去でき、かつ吸着容量が大きい多孔性成形体を提供することができる。
空間部の温度と湿度は、貧溶媒が貯留される凝固槽と回転容器との空間をカバーで覆い、貧溶媒の温度を調整して制御する。
空間部の温度は20〜90℃であることが好ましく、25〜85℃であることがより好ましく、30〜80℃であることがさらに好ましい。
空間部の温度が20℃以上であれば、多孔性成形体の外表面開口率が高くなり、90℃以下であれば、回転容器に開けたノズルがスラリーで詰まり難く、長時間安定して多孔性成形体を製造することができる。
空間部の湿度は、温度に対する相対湿度で65〜100%であることが好ましく、70〜100%であることがより好ましく、75〜100%であることがさらに好ましい。
相対湿度が65%以上であれば、多孔性成形体の外表面開口率が高くなり、100%以下であれば、回転容器に開けたノズルがスラリーで詰まり難く、長時間安定して成形体を製造することができる。
【0043】
(工程(5):凝固工程)
工程(5)においては、工程(4)で得られた凝固が促進された成形品を貧溶媒中で凝固させて、多孔性成形体を得る。
【0044】
<貧溶媒>
工程(5)における貧溶媒としては、工程(5)の条件において有機高分子樹脂の溶解度が1質量%以下の溶媒を使用することができ、例えば、水、メタノール及びエタノール等のアルコール類、エーテル類並びにn−ヘキサン及びn−ヘプタン等の脂肪族炭化水素類等が挙げられる。中でも、貧溶媒としては、水が好ましい。
【0045】
工程(5)では、先行する工程から良溶媒が持ち込まれ、良溶媒の濃度が、凝固工程開始時と終点で、変化してしまう。そのため、あらかじめ良溶媒を加えた貧溶媒としてもよく、初期の濃度を維持するように水等を別途加えながら濃度を管理して凝固工程を行うことが好ましい。
良溶媒の濃度を調整することで、多孔性成形体の構造(外表面開口率及び粒子形状)を制御できる。
貧溶媒が水又は有機高分子樹脂の良溶媒と水の混合物の場合、凝固工程において、水に対する有機高分子樹脂の良溶媒の含有量は、0〜80質量%であることが好ましく、0〜60質量%であることがより好ましい。
有機高分子樹脂の良溶媒の含有量が80質量%以下であれば、多孔性成形体の形状が良好になる効果が得られる。
貧溶媒の温度は、工程(4)の空間部の温度と湿度を制御する観点から、40〜100℃であることが好ましく、50〜100℃であることがより好ましく、60〜100℃であることがさらに好ましい。
【0046】
(多孔性成形体の製造装置)
本実施形態の多孔性成形体の製造装置は、液滴を遠心力で飛散させる回転容器と、凝固液を貯留する凝固槽と、を備え、回転容器と凝固槽の間の空間部分を覆うカバーを具備し、空間部の温度と湿度を制御する制御手段を備える。
【0047】
液滴を遠心力で飛散させる回転容器は、成形用スラリーを球状の液滴にして遠心力で飛散する機能があれば、特定の構造からなるものに限定されず、例えば周知の回転ディスク及び回転ノズル等が挙げられる。
回転ディスクは、成形用スラリーが回転するディスクの中心に供給され、回転するディスクの表面に沿って成形用スラリーが均一な厚みでフィルム状に展開し、ディスクの周縁から遠心力で滴状に分裂して微小液滴を飛散させるものである。
回転ノズルは、中空円盤型の回転容器の周壁に多数の貫通孔を形成するか、または周壁に貫通させてノズルを取付け、回転容器内に成形用スラリーを供給すると共に回転容器を回転させ、その際に貫通孔又はノズルから遠心力により成形用スラリーを吐出させて液滴を形成するものである。
【0048】
凝固液を貯留する凝固槽は、凝固液を貯留できる機能があれば、特定の構造からなるものに限定されず、例えば周知の上面開口の凝固槽や、回転容器を囲むように配置した筒体の内面に沿って凝固液を重力により自然流下させる構造の凝固槽等が挙げられる。
上面開口の凝固槽は、回転容器から水平方向に飛散した液滴を自然落下させ、上面が開口した凝固槽に貯留した凝固液の水面で液滴を捕捉する装置である。
回転容器を囲むように配置した筒体の内面に沿って凝固液を重力により自然流下させる構造の凝固槽は、凝固液を筒体の内面に沿わせて周方向にほぼ均等な流量で流出させ、内面に沿って自然流下する凝固液流中に液滴を捕捉して凝固させる装置である。
【0049】
空間部の温度と湿度の制御手段は、回転容器と凝固槽の間の空間部を覆うカバーを具備し、空間部の温度と湿度を制御する手段である。
空間部を覆うカバーは、空間部を外部の環境から隔離して、空間部の温度及び湿度を現実的に制御し易くする機能があれば、特定の構造からなるものに限定されず、例えば箱状、筒状及び傘状の形状とすることができる。
カバーの材質は、例えば、金属のステンレス鋼やプラスチック等が挙げられる。外部環境と隔離する点で、公知の断熱剤で覆うこともできる。カバーには、一部開口部を設けて、温度及び湿度を調整してもよい。
【0050】
空間部の温度及び湿度の制御手段は、空間部の温度と湿度を制御する機能があればよく、特定の手段に限定されず、例えば、電気ヒーター及びスチームヒーター等の加熱機並びに超音波式加湿器及び加熱式加湿器等の加湿器が挙げられる。
構造が簡便であるという点で、凝固槽に貯留した凝固液を加温して、凝固液から発生する蒸気を利用して空間部の温度と湿度を制御する手段が好ましい。
【0051】
〔多孔性成形体の用途〕
本実施形態の多孔性成形体は、通液速度(SV)120といった超高速で処理する分野で使用することができる。特に、リン、ホウ素、ヒ素、フッ素等のイオンの吸着剤として金属メッキや医薬品製造等の製造プロセス水用途において好適に利用できる。その中でも、リンイオンの吸着剤として使用することがより好適である。
本実施形態の多孔性成形体は、多孔性成形体の内部に連通孔が三次元網目状にち密に発達しており、接触効率が高く、さらに破過するまでの吸着容量が多い。
接触効率が高いことを活かし、水処理用途、特に、金属メッキや医薬品製造等に使用する水用途において利用できる。
本実施形態の多孔性成形体は、その他にも、各種吸着剤、脱臭剤、抗菌剤、吸湿剤、食品の鮮度保持剤、酵素固定担体、クロマトグラフィーの担体等の用途や、血液処理等の医療用途において用いることができる。
本実施形態において、例えば、無機イオン吸着体にゼオライトを用いた場合は、脱臭剤として利用できる。
無機イオン吸着体がゼオライトであり、さらに、該ゼオライトに銀を担持した場合には抗菌剤として利用できる。該ゼオライトにパラジウムや白金を担持させた場合には、エチレンを吸着することから鮮度保持剤として使用できる。該ゼオライトに銀又は銅を担持させた場合は、硫化水素やアンモニア、メチルメルカプタンといった悪臭ガスを吸着、分解できることから脱臭剤として利用できる。
【実施例】
【0052】
以下、本実施形態を実施例及び比較例を挙げて説明するが、本発明はこれらに限定されるものではない。多孔性成形体の物性は、以下の方法により測定した。
【0053】
〔走査型電子顕微鏡による多孔性成形体の観察〕
走査型電子顕微鏡(SEM)による多孔性成形体の観察は、目立製作所製のSU−70型走査型電子顕微鏡で行った。
多孔性成形体試料をカーボン粘着テープ/アルミナ試料台に保持し、導電処理としてオスミウム(Os)コーティングして外表面SEM観察試料とした。
【0054】
〔水銀ポロシメーターで測定した最頻細孔径及びメディアン径〕
多孔性成形体を室温で真空乾燥した後、水銀ポロシメーター((株)島津製作所製、島津オートポアIV9500型)で測定した。
【0055】
〔外表面開口率〕
走査型電子顕微鏡(SEM)を用いて撮影した多孔性成形体の外表面の画像を、画像解析ソフト(旭化成エンジニアリング(株)製、A像くん(商品名))を用いて解析して求めた。さらに詳しく説明すると、得られたSEM像を濃淡画像として認識し、色が濃い部分を開口部、色が薄い部分を多孔構造(骨格構造)となるように、しきい値を手動で調整し、開口部分と骨格部分に分割して、その面積比を求めた。しきい値決定の誤差を少なくするため、10枚の画像で同じ測定を行い、平均値を算出した。
【0056】
〔水銀ポロシメーターで測定した比表面積〕
多孔性成形体を室温で真空乾燥した後、水銀ポロシメーター((株)島津製作所製、島津オートポアIV9500型)を用い、多孔性成形体の単位質量あたりの細孔表面積S(Hg)(m
2/g)を求めた。
次に、水で湿潤状態の多孔性成形体を、メスシリンダーを用いて、タッピングを行って、みかけの体積V(cm
3)を測定した。その後、室温で真空乾燥して、多孔性成形体の乾燥質量W(g)を求めた。
多孔性成形体の比表面積は、次式から求めた。
比表面積(m
2/cm
3)=S(Hg)(m
2/g)×かさ比重(g/cm
3)
かさ比重(g/cm
3)=W/V
前記式中、S(Hg)は多孔性成形体の単位質量あたりの表面積(m
2/g)であり、Wは多孔性成形体の乾燥質量(g)、Vはそのみかけの体積(cm
3)である。
【0057】
〔多孔性成形体の平均粒径及び無機イオン吸着体の平均粒径〕
多孔性成形体の平均粒径及び無機イオン吸着体の平均粒径は、レーザー回折/散乱式粒度分布測定装置(HORIBA社製のLA−950(商品名))で測定した。分散媒体は水を用いた。無機イオン吸着体に水和酸化セリウムを使用したサンプルの測定時は、屈折率に酸化セリウムの値を使用して測定した。同様に、無機イオン吸着体に水和酸化ジルコニウムを使用したサンプルを測定する時は、屈折率に酸化ジルコニウムの値を使用して測定した。
【0058】
〔リン吸着量〕
リン酸三ナトリウム(Na
3PO
4・12H
2O)を蒸留水に溶解し、リン濃度9mg−P/Lの液を作製し、硫酸でpH7に調製した液を吸着原液とした。
メスシリンダーを用いてタッピングを繰り返して秤量した多孔性成形体8mLを、カラム(内径10mm)に充填して、吸着原液を960mL/hr(SV120)と240mL/hr(SV30)の速度で通液した。
カラムからの流出液(処理液)を30分毎にサンプリングして、該処理水中のリン濃度を測定して、0.5mg−P/L(ppm)超過時までのリン吸着量(吸着量 g−P/L−多孔性成形体)を求めた。
リン酸イオン濃度は、HACH社製リン酸測定装置フォスファックス・コンパクト(商品名)を用いて測定した。
通液速度がSV120の時のリン吸着量が、2.0(g−P/L−多孔性成形体)以上であれば、多孔性成形体の吸着容量が大きく、リン吸着剤として良好であると判断した。
【0059】
〔実施例1〕
N−メチル−2−ピロリドン(NMP、三菱化学(株))220gと、平均粒径30μmの水和酸化セリウム粉末(岩谷産業(株))200gを、直径5mmφのステンレス製ボール1.5kgを充填した容積1Lのステンレス製ボールミルポットに投入し、75rpmの回転数で150分間粉砕・混合処理を行い黄色のスラリーを得た。得られたスラリーに、ポリビニルピロリドン(PVP、BASFジャパン(株)、Luvitec K30 Powder(商品名))4gと、アクリロニトリル91.5質量%、アクリル酸メチル8.0質量%、メタリルスルホン酸ソーダ0.5質量%からなる極限粘度[η]=1.2の共重合体(有機高分子樹脂、PAN)10gを加えて、溶解槽中にて、60℃に加温して撹拌羽根を用いて撹拌・溶解し、均一な成形用スラリー溶液を得た。
得られた成形用スラリー溶液を60℃に加温し、側面に直径4mmのノズルを開けた円筒状回転容器の内部に供給し、この容器を回転させ、遠心力(15G)によりノズルから液滴を形成させた。回転容器と凝固槽の間の空間部をポリプロピレン製のカバーで覆い空間部の温度を50℃、相対湿度を100%に制御し、液滴を飛行させ、水に対するNMPの含有量が50質量%の凝固液を80℃に加温して貯留した、上面開口の凝固槽中に液滴を着水させ、成形用スラリーを凝固させた。
さらに、洗浄、分級を行い、球状の多孔性成形体を得た。
得られた多孔性成形体の表面を示す電子顕微鏡写真(倍率10,000倍)を
図1に示した。
【0060】
〔実施例2〕
凝固液の温度を60℃とし、空間部の温度を37℃、相対湿度を100%に制御したこと以外は実施例1に記載の方法と同様にして、球状の多孔性成形体を得た。
【0061】
〔実施例3〕
水和酸化セリウム粉末の仕込み量を200gから300gへ増量したこと以外は実施例1に記載との方法と同様にして、球状の多孔性成形体を得た。
【0062】
〔実施例4〕
水和酸化セリウム粉末の仕込み量を200gから150gへ減量したこと以外は実施例1に記載の方法と同様にして、球状の多孔性成形体を得た。
【0063】
〔実施例5〕
円筒状回転容器の側面に備えたノズルの直径を4mmから3mmに細くしたノズルを用いて多孔性成形体を成形すること以外は実施例3に記載の方法と同様にして、球状の多孔性成形体を得た。
【0064】
〔実施例6〕
円筒状回転容器の側面に備えたノズルの直径を4mmから5mmに太くしたノズルを用いて多孔性成形体を成形すること以外は実施例3に記載の方法と同様にして、球状の多孔性成形体を得た。
【0065】
〔実施例7〕
有機高分子樹脂の良溶媒をジメチルスルホキシド(DMSO、関東化学(株))160g、有機高分子樹脂をエチレンビニルアルコール共重合体(EVOH、日本合成化学工業(株)、ソアノールE3803(商品名))20g、水和酸化セリウム粉末の仕込み量を250gとし、さらに凝固液を水、ノズル直径を5mmとしたこと以外は実施例1に記載の方法と同様にして、球状の多孔性成形体を得た。
【0066】
〔実施例8〕
有機高分子樹脂をポリエーテルスルホン(住友化学(株)、スミカエクセル5003PS(商品名)、OH末端グレード)30g、水溶性高分子をポリエチレングリコール(PEG35,000、メルク(株))4g、水和酸化セリウム粉末の仕込み量を100gとし、さらに凝固液を水、ノズル直径を5mmとしたこと以外は実施例1に記載の方法と同様にして、球状の多孔性成形体を得た。
【0067】
〔実施例9〕
無機イオン吸着体として、水和酸化ジルコニウム粉末(第一稀元素(株)、R水酸化ジルコニウム(商品名))を70℃の乾燥機中で恒量乾燥したものを使用したこと以外は実施例1に記載の方法と同様にして、球状の多孔性成形体を得た。
【0068】
〔実施例10〕
無機イオン吸着体として、水和酸化ジルコニウム粉末(第一稀元素(株)、R水酸化ジルコニウム(商品名))を70℃の乾燥機中で恒量乾燥したものを使用し、さらにノズル直径を4mmにしたこと以外は実施例7に記載の方法と同様にして、球状の多孔性成形体を得た。
【0069】
〔実施例11〕
無機イオン吸着体として、水和酸化ジルコニウム粉末(第一稀元素(株)、R水酸化ジルコニウム(商品名))を70℃の乾燥機中で恒量乾燥したものを使用し、さらにノズル直径を4mmにしたこと以外は実施例8に記載の方法と同様にして、球状の多孔性成形体を得た。
【0070】
〔実施例12〕
凝固液の温度を50℃とし、空間部の温度を31℃、相対湿度を80%に制御したこと以外は実施例1に記載の方法と同様にして、球状の多孔性成形体を得た。
【0071】
〔
参考例13〕
N−メチル−2−ピロリドン(NMP、三菱化学(株))154gと、平均粒径30μmの水和酸化セリウム粉末(岩谷産業(株))300gを、直径5mmφのステンレス製ボール1.5kgを充填した容積1Lのステンレス製ボールミルポットに投入し、75rpmの回転数で150分間粉砕・混合処理を行い黄色のスラリーを得た。得られたスラリーに、ポリエーテルスルホン(住友化学(株)、スミカエクセル5003PS(商品名)、OH末端グレード)15gを加えて、溶解槽中にて、60℃に加温して撹拌羽根を用いて撹拌・溶解し、均一な成形用スラリー溶液を得た。
得られた成形用スラリー溶液を60℃に加温し、側面に直径4mmのノズルを開けた円筒状回転容器の内部に供給し、この容器を回転させ、遠心力(15G)によりノズルから液滴を形成させた。回転容器と凝固槽の間の空間部をポリプロピレン製のカバーで覆い空間部の温度を30℃、相対湿度を70%に制御し、液滴を飛行させ、水に対するNMPの含有量が10質量%の凝固液を40℃に加温して貯留した、上面開口の凝固槽中に液滴を着水させ、成形用スラリーを凝固させた。
さらに、洗浄、分級を行い、球状の多孔性成形体を得た。
【0072】
〔
参考例14〕
N−メチル−2−ピロリドン(NMP、三菱化学(株))160g、有機高分子樹脂をポリエーテルスルホン(住友化学(株)、スミカエクセル5003PS(商品名)、OH末端グレード)30g、水溶性高分子をポリエチレングリコール(PEG35,000、メルク(株))4g、水和酸化セリウム粉末の仕込み量を100gとしたこと以外は実施例1に記載の方法と同様にして、球状の多孔性成形体を得た。
【0073】
〔実施例15〕
凝固液の温度を60℃とし、空間部の温度を37℃、相対湿度を90%に制御したこと以外は実施例14に記載の方法と同様にして、球状の多孔性成形体を得た。
【0074】
〔比較例1〕
回転容器と凝固槽の間の空間部をポリプロピレン製のカバーで覆ないこと以外は実施例2に記載の方法と同様にして、球状の多孔性成形体を得た。この時の空間部の温度は26℃、相対湿度は63%だった。
【0075】
〔比較例2〕
特許文献3(国際公開第2011/062277号)の実施例1を参考にして多孔性成形体を得た。
回転容器と凝固槽の間の空間部をポリプロピレン製のカバーで覆わず、さらに凝固液の温度を60℃にしたこと以外は実施例8に記載の方法と同様にして、球状の多孔性成形体を得た。この時の空間部の温度は26℃、相対湿度は63%だった。
【0076】
〔比較例3〕
特許文献1(国際公開第2005/056175号)の実施例2を参考にして多孔性成形体を得た。
回転容器と凝固槽の間の空間部をポリプロピレン製のカバーで覆わず、さらに凝固液の温度を60℃にしたこと以外は実施例7に記載の方法と同様にして、球状の多孔性成形体を得た。この時の空間部の温度は26℃、相対湿度は63%だった。
【0077】
実施例1〜15及び比較例1〜3で得られた多孔性成形体の物性を表1及び表2に示した。
実施例1〜15の結果より、空間部にカバーを設置した造粒装置を用いて、空間部の温度と相対湿度を高く制御して製造すると、外表面開口率が適当で外表面付近の無機イオン吸着体の存在量が多いため、高速通水(SV120)時のリン吸着量が高い多孔性成形体が得られることがわかった。
また、比較例1〜3の結果から、空間部にカバーが無い従来技術の造粒装置を用いて製造した多孔性成形体は、高速通水(SV120)時のリン吸着量が低いことがわかった。
【0078】
【表1】
【0079】
【表2】
【0080】
本出願は、2015年11月11日出願の日本特許出願(特願2015−221666号)に基づくものであり、その内容はここに参照として取り込まれる。