特許第6576054号(P6576054)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 新コスモス電機株式会社の特許一覧

<>
  • 特許6576054-定電位電解式ガスセンサ 図000002
  • 特許6576054-定電位電解式ガスセンサ 図000003
  • 特許6576054-定電位電解式ガスセンサ 図000004
  • 特許6576054-定電位電解式ガスセンサ 図000005
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6576054
(24)【登録日】2019年8月30日
(45)【発行日】2019年9月18日
(54)【発明の名称】定電位電解式ガスセンサ
(51)【国際特許分類】
   G01N 27/404 20060101AFI20190909BHJP
【FI】
   G01N27/404 341S
   G01N27/404 341J
   G01N27/404 341R
【請求項の数】4
【全頁数】11
(21)【出願番号】特願2015-44703(P2015-44703)
(22)【出願日】2015年3月6日
(65)【公開番号】特開2016-164509(P2016-164509A)
(43)【公開日】2016年9月8日
【審査請求日】2018年3月2日
(73)【特許権者】
【識別番号】000190301
【氏名又は名称】新コスモス電機株式会社
(74)【代理人】
【識別番号】110001818
【氏名又は名称】特許業務法人R&C
(72)【発明者】
【氏名】近藤 克典
【審査官】 櫃本 研太郎
(56)【参考文献】
【文献】 特表2003−513241(JP,A)
【文献】 特開昭60−111951(JP,A)
【文献】 実開昭62−153568(JP,U)
【文献】 特開2002−048756(JP,A)
【文献】 特開2006−284312(JP,A)
【文献】 米国特許第05336390(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 27/26−27/49
(57)【特許請求の範囲】
【請求項1】
ガスを検知するガス電極として被検知ガスを電気化学反応させる反応極、前記反応極に対する対極および前記反応極の電位を制御する参照極を、電解槽に収容した電解液に接触するように備えた定電位電解式ガスセンサであって、
電解液を収容する電解液収容部に電解液を吸水して保持する複数の保水部材が、前記反応極および前記参照極の間に、前記反応極の側および前記参照極の側に分かれて配設してあり、これらの保水部材を、前記反応極および前記参照極に対して各別に押圧する押え部材を設け
前記押え部材は、弾性変形可能な芯部材と、当該芯部材の両端に配設した有孔の板状部材と、を備えた定電位電解式ガスセンサ。
【請求項2】
前記保水部材は、前記押え部材による押圧力によってその厚みが変動する請求項1に記載の定電位電解式ガスセンサ。
【請求項3】
前記電解槽の側方に開口してガスを導入するガス導入部を備え、
前記芯部材が、前記ガス導入部に対応する位置となるように前記押え部材を配設してある請求項1または2に記載の定電位電解式ガスセンサ。
【請求項4】
前記保水部材は、前記反応極および前記参照極の全面を覆うように配設してある請求項1〜の何れか一項に記載の定電位電解式ガスセンサ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガスを検知するガス電極として被検知ガスを電気化学反応させる反応極、前記反応極に対する対極および前記反応極の電位を制御する参照極を、電解槽に収容した電解液に接触するように備えた定電位電解式ガスセンサに関する。
【背景技術】
【0002】
従来の定電位電解式ガスセンサは、電極を電解液が密に収容される電解槽の電解液収容部内に臨んで設けて構成してあり、例えば電極としては、ガスを検知するガス電極として被検知ガスを電気化学反応させる反応極、当該反応極に対する対極、反応極の電位を制御する参照極の3電極を設けてあり、また、これらが接触自在な電解液を収容した電解槽と、各電極の電位を設定するポテンシオスタット回路等を接続してある。前記3電極の材料としては撥水性を有するガス透過性の多孔質PTFE膜に白金や金、パラジウム等の貴金属触媒等を塗布したものが、電解液としては、硫酸やリン酸等の酸性水溶液等が用いられていた。
【0003】
また、定電位電解式ガスセンサは、周囲の環境変化に対して反応極の電位を制御して一定に維持することによって、反応極と対極との間に周囲の環境変化に相当する電流を生じさせる。そして、反応極の電位が変化せず、またガス種によって酸化還元電位が異なることを利用することにより、ポテンシオスタット回路の設定電位によってはガスの選択的な検知が可能になる。また、ガス電極に用いる触媒を変えることで、目的とするガスに対して高い選択性を持たすことができる。
【0004】
尚、本発明における従来技術となる上述した定電位電解式ガスセンサは、一般的な技術であるため、特許文献等の従来技術文献は示さない。
【発明の概要】
【発明が解決しようとする課題】
【0005】
このような定電位電解式ガスセンサにおいて、各ガス電極における電極反応等で発生した気泡や、急激な加圧状態における空気の侵入、また急激な温度変化に伴い電解液中に溶解していた空気が発生した場合、これら気泡や空気が各ガス電極の表面に付着して大きく成長すれば、その部分における電極反応が不安定となり、センサの出力値が安定しなくなる虞があった。
【0006】
従って、本発明の目的は、出力値の安定した定電位電解式ガスセンサを提供することにある。
【課題を解決するための手段】
【0007】
上記目的を達成するための本発明に係る定電位電解式ガスセンサは、ガスを検知するガス電極として被検知ガスを電気化学反応させる反応極、前記反応極に対する対極および前記反応極の電位を制御する参照極を、電解槽に収容した電解液に接触するように備えた定電位電解式ガスセンサであって、その第一特徴構成は、電解液を収容する電解液収容部に電解液を吸水して保持する複数の保水部材が、前記反応極および前記参照極の間に、前記反応極の側および前記参照極の側に分かれて配設してあり、これらの保水部材を、前記反応極および前記参照極に対して各別に押圧する押え部材を設け、前記押え部材は、弾性変形可能な芯部材と、当該芯部材の両端に配設した有孔の板状部材と、を備えた点にある。
【0008】
本構成によれば、保水部材を反応極および参照極に接するように配設することができるため、保水部材が保持する電解液を、反応極および参照極に接触させることができる。また、保水部材を反応極および参照極に対して各別に押圧する押え部材を設けることにより、保水部材を反応極および参照極に対して確実に密着させることができる。そのため、これらガス電極の表面に気泡が生じ難くなり、当該ガス電極における電極反応が安定に行われる。従って、本構成であれば出力値の安定したセンサとなる。
【0009】
また、保水部材を押え部材によって押圧できるため、保水部材を反応極および参照極の間に配設し易くなってセンサの組み立て作業効率が向上する。
本構成によれば、反応極および参照極の間の寸法や保水部材の厚さに応じて、芯部材はその弾性力によってある程度、芯部材が収縮する方向に弾性変形することができる。この場合、芯部材は弾性変形可能であるため収縮する方向とは逆の反発力が発生する。この反発力が、芯部材の両端に配設した板状部材を介して、保水部材を反応極および参照極に対して各別に押圧する押圧力となる。
また、板状部材を設けることで、押え部材が保水部材と面接触して押圧力を保水部材のより広い範囲に伝達することができる。さらに板状部材を有孔とすることで、電解液が板状部材の孔を介して保水部材に吸収され易くなる。
【0010】
本発明に係る定電位電解式ガスセンサの第二特徴構成は、前記保水部材は、前記押え部材による押圧力によってその厚みが変動する点にある。
【0011】
本構成によれば、保水部材は、押え部材による押圧力によって最適な厚みに変動して、各ガス電極や押え部材に負荷をかけることなく、反応極および参照極に確実に密着させることができる。また、センサの筐体や押え部材に製造の寸法誤差があったとしても、保水部材が押え部材による押圧力によって最適な厚みに変動して、当該寸法誤差を吸収することができる。
【0015】
本発明に係る定電位電解式ガスセンサの第三特徴構成は、前記電解槽の側方に開口してガスを導入するガス導入部を備え、前記芯部材を、前記ガス導入部に対応する位置となるように前記押え部材を配設した点にある。
【0016】
本構成によれば、押え部材が保水部材を押圧する際、板状部材が平坦であれば芯部材に対応する位置が最も押圧力が強いと考えられる。そのため、芯部材に対応する位置において保水部材は反応極に対して最も確実に密着している。ガス導入部からはサンプリングしたガスが導入されてくるため、本構成のように、芯部材がガス導入部に対応する位置となるように押え部材を配設することで、保水部材が反応極に対して最も確実に密着している位置と、ガス導入部とを一致させることができる。そのため、反応極における電極反応を、気泡の影響を受けることが殆ど無い状態で確実に行うことができる。
【0017】
本発明に係る定電位電解式ガスセンサの第四特徴構成は、前記保水部材を、前記反応極および前記参照極の全面を覆うように配設した点にある。
【0018】
本構成によれば、保水部材によって反応極および参照極の全面においてこれらガス電極の表面に気泡を生じ難くすることができるため、より出力値の安定したセンサとすることができる。
【図面の簡単な説明】
【0019】
図1】本発明の定電位電解式ガスセンサを示す概略図である。
図2】押え部材の概略図である。
図3】開口装着部材を示す概略図である。
図4】被検知ガスとして酸素ガス(21vol%)を検知したときにおいて、気泡の影響の有無を調べたグラフである。
【発明を実施するための形態】
【0020】
以下、本発明の実施形態を図面に基づいて説明する。
図1に示すように、定電位電解式ガスセンサXは、ガスを検知するガス電極10として被検知ガスを電気化学反応させる反応極11、当該反応極11に対する対極12、反応極11の電位を制御する参照極13を、電解槽30に収容した電解液20に接触するように備えている。この定電位電解式ガスセンサXは、電解槽30の側方に開口してガスを導入するガス導入部32と、電解槽30の側方に開口してガスを排出するガス排出部33と、を備えている。
【0021】
反応極11、対極12及び参照極13は、撥水性を有する多孔質のガス透過膜14の表面に、公知の電極材料より作製したペーストを塗布・焼成して形成してある。ガス透過膜14は、例えば疎水性でガスを透過する性質を有するものであればどのような膜でもよく、例えば耐薬品性を有する多孔質PTFE(ポリテトラフルオロエチレン)膜などを使用することができる。反応極11と参照極13とは対向して配置してあり、また、ガス排出部33の側から順に対極12および参照極13を配設してある。反応極11と参照極13との間の空間が電解液20を収容する電解液収容部31となる。電解液20は硫酸やリン酸等の酸性水溶液等を使用することができるが、これらに限定されるものではない。被検知ガスはガス導入部32よりセンサの内部に導入され、反応極11上で反応する。
【0022】
それぞれのガス電極10、ガス透過膜14、溶存酸素遮断膜41、干渉ガス遮断膜42、Oリング15aおよびガスケット15bは電解槽30の蓋部材16によって固定される。溶存酸素遮断膜41は、電解液20に溶存する酸素(溶存酸素)を遮断するために、反応極11における電解液20の側に設けてある。また、干渉ガス遮断膜42は、干渉ガスを遮断するため対極12および参照極13の間に設けてある。
反応極11、対極12及び参照極13は、触媒および疎水性樹脂を含むガス拡散電極からなり、触媒としては、白金(Pt)、金(Au)、ルテニウム(Ru)、酸化ルテニウム(RuO2)、パラジウム(Pd)、白金担持カーボン(Pt/C)などが好適に用いられ、疎水性樹脂としては多孔質PTFE膜などが好適に用いられる。
【0023】
電解槽30の一端には、0.5〜1mm程度の小径とした内圧調整孔17が形成されている。内圧調整孔17における電解液収容部31の側には、多孔質シート18が配設してある。電解液収容部31は、小径の流路31aを介して大径の二つの収容部31bを有する態様とする。当該流路31aを2〜4mm程度の小径とした場合、電解液20の表面張力で電解液20が一方の収容部31bから他方の収容部31bに逆流し難くなる。筐体を構成する電解槽30および蓋部材16は、耐食性を有する合成樹脂、例えば硬質塩化ビニル或いはニッケル合金等の金属で構成すればよい。
【0024】
電解液収容部31には、電解液20を吸水して保持する保水部材37を配設することが可能である。
【0025】
このような定電位電解式ガスセンサXは、被検知ガスの反応によって反応極11上で生じた電子に基づく電流を検知自在な電流測定部と、反応極11の電位制御自在な電位制御部とを備えたガス検知回路(図外)に接続して、ガス検知装置として用いられる。本発明の定電位電解式ガスセンサXは、例えば酸素ガスや、シラン、ホスフィン、ゲルマン、アルシン、ジボランなどの水素化物ガスの検知や、一酸化炭素、硫化水素等の毒性ガスの検知に用いられる。本実施形態では、被検知ガスとして酸素ガスを検知する場合について説明する。
【0026】
(保水部材)
本実施形態では、反応極11および参照極13の間に、複数の保水部材37を、反応極11の側および参照極13の側に分かれて配設する。このとき、これらの保水部材37を、反応極11および参照極13に対して各別に押圧する押え部材50を設ける(図1,2)。押え部材50が保水部材37を反応極11および参照極13に対して各別に押圧する押圧力は、押え部材50の材質や形状によって設定することができる。
【0027】
本構成では、当該保水部材37を反応極11および参照極13に接するように配設することができるため、保水部材37が保持する電解液20を、反応極11および参照極13に接触させることができる。また、保水部材37を反応極11および参照極13に対して各別に押圧する押え部材50を設けることにより、保水部材37を反応極11および参照極13に対して確実に密着させることができる。そのため、これらガス電極10の表面に気泡が生じ難くなり、当該ガス電極10における電極反応が安定に行われる。従って、本構成であれば出力値の安定したセンサとなる。
【0028】
また、保水部材37を押え部材50によって押圧できるため、保水部材37を反応極11および参照極13の間に配設し易くなってセンサの組み立て作業効率が向上する。
【0029】
保水部材37は、押え部材50による押圧力によってその厚みが変動するように構成すればよい。本構成においても、保水部材37は、電解液20を保持できる吸水性の部材とすればよく、保水性の繊維(例えばガラス繊維、セラミックス繊維など)、吸水性の高分子等、特に限定されることなく使用することができる。
【0030】
これにより、保水部材37は、押え部材50による押圧力によって最適な厚みに変動して、各ガス電極10や押え部材50に負荷をかけることなく、反応極11および参照極13に確実に密着させることができる。また、センサの筐体や押え部材50に製造の寸法誤差があったとしても、保水部材37が押え部材50による押圧力によって最適な厚みに変動して、当該寸法誤差を吸収することができる。
【0031】
また、保水部材37は、反応極11および参照極13の全面を覆うように配設すればよい。
【0032】
これにより、保水部材37によって反応極11および参照極13の全面においてこれらガス電極10の表面に気泡を生じ難くすることができるため、より出力値の安定したセンサとすることができる。
【0033】
押え部材50は、弾性変形可能な芯部材51と、当該芯部材51の両端に配設した有孔の板状部材52と、を備えるように構成してある。押え部材50は、耐薬品性を有する硬質塩化ビニル等の樹脂によって作製することができるが、これに限定されるものではない。このような樹脂で製造することで、芯部材51を弾性変形可能に構成することができる。
【0034】
本構成であれば、反応極11および参照極13の間の寸法や保水部材37の厚さに応じて、芯部材51はその弾性力によってある程度、芯部材51が収縮する方向に弾性変形することができる。この場合、芯部材51は弾性変形可能であるため収縮する方向とは逆の反発力が発生する。この反発力が、芯部材51の両端に配設した板状部材52を介して、保水部材37を反応極11および参照極13に対して各別に押圧する押圧力となる。
【0035】
本実施形態では、板状部材52に四つの板状部材開口部52aを設けてあるが、これに限定されるものではない。板状部材開口部52aの数は、電解液20の表面張力や、保水部材37の吸水性等を勘案して適宜設定すればよい。
【0036】
このように板状部材52を設けることで、押え部材50が保水部材37と面接触して押圧力を保水部材37のより広い範囲に伝達することができる。また、板状部材52を有孔とすることで、電解液20が板状部材開口部52aを介して保水部材37に吸収され易くなる。
【0037】
また、芯部材51を弾性変形可能に構成するため、芯部材51をバネ材で構成してもよい。
【0038】
押え部材50は、芯部材51が、ガス導入部32に対応する位置となるように配設するのがよい。
【0039】
押え部材50が保水部材37を押圧する際、板状部材52が平坦であれば芯部材51に対応する位置が最も押圧力が強いと考えられる。そのため、芯部材51に対応する位置において保水部材37は反応極11に対して最も確実に密着している。ガス導入部32からはサンプリングしたガスが導入されてくるため、本構成のように、芯部材51がガス導入部32に対応する位置となるように押え部材50を配設することで、保水部材37が反応極11に対して最も確実に密着している位置と、ガス導入部32とを一致させることができる。そのため、反応極11における電極反応を、気泡の影響を受けることが殆ど無い状態で確実に行うことができる。
【0040】
(開口装着部材)
ガス導入部32およびガス排出部33の少なくとも何れか一方には、金属酸化物により作製してピンホール34aを形成してある筒部材34を、樹脂製の弾性部材35に圧入した開口装着部材36を備えてある(図3)。
【0041】
開口装着部材36はガス導入部32およびガス排出部33の少なくとも何れか一方に備えればよく、本実施形態ではガス導入部32およびガス排出部33の両方に設けた場合について説明する。開口装着部材36は、筐体を構成する蓋部材16に形成した貫通孔16aに挿入して当該蓋部材16に固定してある。
【0042】
本実施形態の開口装着部材36は、筒部材34が貫く柱状部36aと、当該柱状部36aの一端側に設けた板状部36bと、当該柱状部36aの他端側に設けた返し部36cと、を備える。板状部36bによって開口装着部材36を筐体(蓋部材16)と面接触させて確実に固定することができる。また、返し部36cによって開口装着部材36が筐体(蓋部材16)に形成した貫通孔16aから抜け落ちるのを防止することができる。開口装着部材36は、当該貫通孔16aに対して圧入するように挿入すればよい。
【0043】
筒部材34を構成する金属酸化物は、例えばアルミナ、ジルコニア等のセラミックスが挙げられるが、これらに限定されるものではない。筒部材の長寸は0.5〜6.0mmであり、好ましくは1.5〜5.5mmとするのがよい。また、ピンホール34aの孔径が8〜200μmであり、好ましくは12〜125μmとするのがよい。
【0044】
筒部材34の形状は円柱状とするのがよいが、これに限定されるものではなく、角柱状等の態様であってもよい。
【0045】
弾性部材35は、弾性を有する材料、例えばパッキンに使用されるゴム状の弾性材料、熱可塑性エラストマー等、によって形成すればよい。弾性部材35に筒部材34の外径よりも小さい孔径の貫通孔35aを形成しておき、当該貫通孔35aに筒部材34を圧入する。
【0046】
筒部材34に設けるピンホール34aは、一つでもよいし、複数設けてもよい。ピンホール34aの数については、センサ内に導入したい被検知ガスの量に応じて適宜設定すればよい。本実施形態では、それぞれの筒部材34に、一つのピンホール34aが形成してある場合について説明する。
【0047】
(結露・圧力緩和膜)
開口装着部材36を蓋部材16に形成した貫通孔16aに挿入した状態で、開口装着部材36を両側から覆うように、結露を防ぐ結露・圧力緩和膜40を配設する。即ち、結露・圧力緩和膜40は、ガス導入部32およびガス排出部33を覆うように配設してある。本実施形態では結露・圧力緩和膜40はガス導入部32およびガス排出部33の両方を覆う態様であるが、結露・圧力緩和膜40はガス導入部32およびガス排出部33において、少なくともガス導入部32を覆う態様であればよい。
【0048】
結露・圧力緩和膜40は、ガスを透過して液体を透過しない性質を有するものであればどのような膜でもよく、多孔質PTFE膜などを使用することができる。
【0049】
本実施形態の結露・圧力緩和膜40は厚さ0.2mm程度で、その特性は、例えば透気度がガーレー値で200〜700程度、空孔率が35〜45%、WEP(水の侵入圧力)が196kPa以上、好ましくは500kPaとするのがよい。
【0050】
また、本実施形態では、透気度の異なる二枚の結露・圧力緩和膜40のセットを、ガス導入部32およびガス排出部33において、少なくともガス導入部32に配設する場合について説明する。
【0051】
結露・圧力緩和膜40は、単層の膜としてもよいし、透気度が同じ二枚の膜を重ねて構成してもよいし、透気度の異なる二枚の膜を重ねて構成してもよい。
例えば結露・圧力緩和膜40を二枚重ねにして少なくともガス導入部32に配設する場合、上述した透気度およびWEPを有する膜を二枚としてもよいし、一方の膜を上述した透気度およびWEPを有する膜とし、他方の膜を上述した透気度およびWEPより低い値の膜としてもよい。当該他方の膜は、一方の膜を押えて密着させることができ、さらに反応極11から電解液20が漏出するのを防止できるもの(例えば撥水性を有する態様)であればよい。二枚重ねにした場合の二枚の膜の配設順序としては、適宜設定してもよいが、例えばガス導入部32であれば、反応極11、他方の膜、一方の膜、筒部材34(ピンホール34a)のようにすることができる。このように二枚重ねとした結露・圧力緩和膜40を、開口装着部材36の外側および内側にそれぞれ配設(図1)してもよいし、外側および内側の何れか一方のみに配設してもよいが、何れか一方のみに配設する場合は外側に配設するのが好ましい。
【0052】
(溶存酸素遮断膜)
上述した溶存酸素遮断膜41は、電解液20に溶存する酸素(溶存酸素)を遮断するために、反応極11における電解液20の側に設けてある。溶存酸素遮断膜41は、反応極11における電解液20の側の全面に設けるとよい。
【0053】
溶存酸素遮断膜41は、イオン導電性および透水性を有し、かつ酸素ガスを透過させないイオン交換膜を使用すればよい。具体的には、溶存酸素遮断膜41は、ナフィオン(登録商標:デュポン社製)、アシプレックス(登録商標:旭化成社製)、フレミオン(登録商標:旭硝子社製)などを使用することができるが、これに限定されるものではない。例えば、ナフィオンはプロトン伝導性および透水性を有し、かつ耐酸化性に優れている。
【0054】
溶存酸素遮断膜41はイオン導電性および透水性を有するため、H+およびH2O分子は、電解液20の側から溶存酸素遮断膜41を介して反応極11に移動することができるため、定電位電解式ガスセンサXにおける電極反応の場を反応極11の表面とすることができる。
【0055】
溶存酸素遮断膜41は、反応極11に熱圧着させることができる。溶存酸素を遮断するには、反応極11に溶存酸素遮断膜41を構成する成分を含有する溶液を塗布し乾燥させた状態でも効果はあるが、更に溶存酸素遮断膜41を熱圧着させるように形成することで、より効果的となる。
【0056】
具体的には、当該熱圧着は、反応極11の表面に溶存酸素遮断膜41を構成する成分を含有する溶液を塗布し(塗布工程)、当該溶液を塗布し乾燥させた後、リード線を反応極11に載置した状態で溶存酸素遮断膜41を積層し、溶存酸素遮断膜41を積層(積層工程)した後、120〜140℃、好ましくは130℃、1〜4MPaで熱圧着(熱圧着工程)したものである。
【0057】
溶存酸素遮断膜41をナフィオンとした場合、反応極11の表面にナフィオン溶液を塗布する(塗布工程)。ナフィオン溶液の濃度は5〜20wt%で、溶媒は低級アルコールと純水(15〜34%)の混合物、または、純水とすればよい。
【0058】
このようにリード線を反応極11に載置した状態でナフィオンを積層することにより、リード線および反応極11との集電を確実にすることができる。
【0059】
(干渉ガス遮断膜)
上述した干渉ガス遮断膜42は、干渉ガスを遮断するため対極12および参照極13の間に設けてある。干渉ガスは、サンプリングガス中に被検知ガスと共存し、被検知ガス検知の指示値に影響を及ぼす気体のことをいう。干渉ガス遮断膜42は、例えばイオン導電性および透水性を有し、かつ干渉ガスを透過させないイオン交換膜を使用すればよいがこのような膜に限定されず、PET、PP、PE等の膜も使用することができる。具体的には上述したナフィオン等を使用することができるが、これに限定されるものではない。
【0060】
参照極13および干渉ガス遮断膜42には、それぞれ細孔13a,42aを形成し、当該細孔13a,42aを介して電解液20が対極12の側に流通するように構成してある。このとき、電解液20を吸水して保持する保水部材37を、対極12および干渉ガス遮断膜42の間に配設するとよい。細孔13a,42aの孔径は約2mm程度とすればよい。
【実施例】
【0061】
本発明の定電位電解式ガスセンサXおよび従来の定電位電解式ガスセンサ(比較例)において、それぞれの性能の比較を行った。本発明の定電位電解式ガスセンサXは保水部材37および押え部材50を備え、従来の定電位電解式ガスセンサは保水部材37および押え部材50を備えない態様とした。本発明の定電位電解式ガスセンサXは二つのセンサを使用し、被検知ガスとして酸素ガス(21vol%)を検知したときにおいて、気泡の影響の有無を調べた。結果を図4に示した。
【0062】
この結果、従来の定電位電解式ガスセンサにおいて、100日以上の長期に亘るセンシングでは、対極の表面に気泡が発生する場合があり、酸素ガスを検知したときの指示値が安定しない場合があった。一方、本発明の定電位電解式ガスセンサXでは、酸素ガスを検知したときの指示値は安定しており、ガス電極10の表面に気泡が生じ難く、また、発生したとしても保水材中に分散され、気泡固まりとして残存しないため、対極を始めとする各ガス電極10に対して気泡による直接的な影響は認められなかった。
【産業上の利用可能性】
【0063】
本発明は、ガスを検知するガス電極として被検知ガスを電気化学反応させる反応極、前記反応極に対する対極および前記反応極の電位を制御する参照極を、電解槽に収容した電解液に接触するように備えた定電位電解式ガスセンサに利用できる。
【符号の説明】
【0064】
X 定電位電解式ガスセンサ
10 ガス電極
11 反応極
12 対極
13 参照極
20 電解液
30 電解槽
31 電解液収容部
37 保水部材
50 押え部材
51 芯部材
52 板状部材
図1
図2
図3
図4