【課題を解決するための手段】
【0008】
装入装置は、Ta又はTa含有量が90質量%、好ましくは95質量%、を超えるTa合金からなる少なくとも1つの領域Aと、Mo、Mo含有量が90質量%、好ましくは95質量%、を超えるMo合金、W、W含有量が90質量%、好ましくは95質量%、を超えるW合金、又はMoとWとの合計含有量が90質量%、好ましくは95質量%、を超えるMo−W合金からなる少なくとも1つの領域Bとを、含有してなる。
装入装置は、有利には、少なくとも1つの領域Aと少なくとも1つの領域Bとからなる。
【0009】
本発明の装入装置により、相反する高寸法安定性特性と交差汚染の防止とを1つの部品において同時に達成することが可能になる。
【0010】
領域Bは、上述のように、Mo、Mo含有量が90質量%、好ましくは95質量%、を超えるMo合金、W、W含有量が90質量%、好ましくは95質量%、を超えるW合金、又はMoとWとの合計含有量が90質量%、好ましくは95質量%、を超えるMo−W合金からなる。これらの材料は、純粋なTa又はTa合金より、遥かに高い高温強度及び耐クリープ性を有しており、その結果、装入装置は、高い使用温度においても優れた寸法安定性を示す。有利なMo合金は、例えば、Mo−0.1〜2質量%の希土類酸化物である。特に有利な希土類酸化物はLa
2O
3である。熱処理により又は使用中に、これらの合金は、粗大な整列積層結晶ミクロ構造を形成し、これにより、取り分け1,300℃を超える温度における優れた耐クリープ性が確保される。他の有利なMo合金は、TZM及びMHCである。TZMは、チタン(Ti)、ジルコニウム(Zr)及び炭素(C)との合金である。典型的なTi量は、約0.3〜0.7質量%であり、典型的なZr量は、0.05〜0.1質量%であり、典型的なC量は、0.15〜0.04質量%である。MHCは、ハフニウム(Hf)及びCとの合金化であり、典型的なHfの量は1〜1.4質量%で、典型的なCの量は0.05〜0.15質量%である。有利なタングステン合金の例は、典型的には0.004〜0.01質量%のカリウム(K)を含有するASKタングステン、典型的には1〜2質量%のLa
2O
3を含有するW−La
2O
3、及び、典型的には1〜2質量%のCe
2O
3を含有するW−Ce
2O
3である。Mo−W合金も、また、有利に使用することができ、Mo含有量及びW含有量は、5〜95質量%の範囲で、有利に選定することができる。
【0011】
領域Aは、純粋なTa又は90質量%、好ましくは95質量%、を超えるTa含有量を有するTa合金よりなる。本発明において、純粋なTaとは、技術的な意味で純粋なTaをいい、典型的なTa含有量は、約99.5〜99.995質量%である。
Ta合金は、有利には、酸化物、炭化物、窒化物、W、Mo及びニオブ(Nb)からなる群から選ばれる1以上の成分を0.001〜10質量%含有していてもよい。W、Mo及びNbは、溶解した形態ではなく分離した粒子として存在するのが有利であり、これにより外部への拡散が減少する。
【0012】
領域Aと領域Bとは、形態的に(Formschluessig)及び/又は物質的に(stoffschluessig)に結合するのが有利である。形態的結合は、結合の構成成分が力の行使なしでは又は加えている力の解除では分離できないことによって特徴づけられる。物質的結合も、また、原子間力及び/又は分子間力によって、部材がともに保持されているので、解放することができない。
【0013】
領域Aは、領域Bに層の形態で適用されるのが特に有利である。このようにして製造された複合材料は、通常、層複合体と称される。領域Aは、形態的結合(例えば、機械的噛み合い効果)により及び/又は物質的に(例えば、相互拡散により)、領域Bに結合される。更に非常に有利な態様では、層複合体は、形態的に及び/又は物質的に相互に結合した3つの層を有する。外側の層は領域Aからなり、中央の層は領域Bからなる。
【0014】
領域Aは、熱溶射プロセスに依り、簡単な方法で適用できる。熱溶射プロセスには、溶融浴溶射、電弧溶射、プラズマ溶射、フレーム溶射、高速フレーム溶射、爆発溶射、レーザー溶射、PTWA溶射及びコールドガススプレー(略してCGS)が含まれる。CGSは、特に有利なものとして選ばれる。というのは、この場合、スプレーされる材料が溶融されず、非常に純粋であり、それにより、低酸素層を生成することができるからである。熱溶射に関する教科書に詳細に述べられているとおり、当業者は、堆積された層のミクロ構造から、その層が熱溶射プロセスによって製造されたものか否かを疑問の余地なく、結論付けることができる。当業者は、また、CGS層を、他の熱溶射プロセスによって製造された層から、区別することもできる。というのは、CGSの場合、被覆材料は溶融されず、プロセスに関連する酸化が起こらないからである。層を構成する粒子は、少なくとも幾つかの領域において冷間変形されており、比較的(他の熱溶射プロセスに比較して)高い硬度を示す。
【0015】
CGSにおいて、粉末粒子は、非常に高い運動量且つ低い熱エネルギで支持体材料に適用される。高圧下のプロセスガス、例えば窒素(N
2)、空気、ヘリウム(He)又はこれらの混合物、が、先細末広ノズル(超音波ノズルとも称される。)により、減圧される。典型的なノズル形状は、ラバルノズル(ドラバルノズルとも称される。)である。使用されるプロセスガスにより、N
2の場合は900m/秒から、Heの場合は2,500m/秒のガス速度が達成される。被覆材料(純Ta又は90質量%を超えるTa含有量のTa合金)は、例えば、スプレーガンの部分を形成する先細末広ノズルの最も狭い断面部分の上流でガス流に注入され、典型的には300〜1,200m/秒の速度に加速されて領域B(例えば、金属シートで形成された賦形部品)に堆積される。先細末広ノズルの上流でガスを加熱することにより、ガスの流速及び、従って、粒子の速度を増加させることができる。CGSにより、Ta又はTa含有量が90質量%を超えるTa合金をスプレーして稠密で強固に付着した層を得ることができる。個々のTa又はTa合金粒子から複数の層を層状に作りあげることができる。
【0016】
このようにして製造された複合材料は、異なる機能特性を有する領域を有する。領域Bにより、高い高温強度と耐クリープ性とをTaよりも低い材料コストで、確保することができる。Ta又はTa合金からなる被覆(領域A)は、熱処理され又は焼結される材料、例えばTaコンデンサ、と使用中に接触する場合に、有利に適用することができる。これにより、Taコンデンサが装入装置の元素に因り汚染されることを確実に防止することができる。
【0017】
本発明の装入装置は、高使用温度及び高繰り返し回数でも寸法的に安定である。領域Bから領域Aへの又は領域Aから領域Bへの元素の領域間拡散は、驚くべきことに、所与の使用温度/時間において、非常に低いものにすぎず、従って、装入装置の安定性を損なう(カーケンドール孔として知られている)拡散孔が、高温での長時間使用中にも実質的に形成されない。
【0018】
更に、CGSによるTaの塗被効率は、非常に高いので、その結果、実質上、被覆中の材料の損失がない。Ta又はTa合金からなる被覆は、50〜400μm、好適には100〜300μm、特に好適には120〜200μm、の層厚を有するのが有利である。Ta層の厚さは、CGSにより精密に信頼性よく設定することができる。従って、より厚いTa層を有し、より高い応力に曝すことが可能な装入装置の領域を提供することができる。
【0019】
より好ましい態様において、装入装置は、容器又はプレートとして設計される。容器は、好ましくは、領域Aをその内部の少なくとも一部に有する。容器の内側のみが熱処理されるべき材料(例えば、コンデンサ)と接触するので、熱処理されるべき材料の汚染を確実に避けることができる。容器の外側は、有利には、領域Bで作られる。というのは、この領域は、熱処理される材料と接触しないからである。領域Bは、高い寸法安定性を保証する。更に好ましい態様では、容器は、外側及び内側の少なくとも幾つかの領域に領域Aを有する。領域Bは、少なくとも幾つかの領域において領域Aの間に配列されている。この態様により、熱処理されるべき材料が容器の外側と接触したとしても、信頼性よく汚染を防止することができる。領域Bの中央層は、また、容器の高寸法安定性を保証する。
【0020】
容器は、カップとして設計するのが特に好ましい。本発明において、カップは、円筒形側面の高さが低い容器である。より好ましくは、容器又はカップは、中央領域に装入支持装置として機能するスリーブを有している。
【0021】
本発明の装入装置は、特に有利に、高温炉で使用することができる。本発明において、高温炉とは、1,000℃を超える温度で運転される炉をいう。
【0022】
本発明の目的は、また、装入装置を製造するプロセスに依り達成される。
【0023】
本発明のプロセスは、少なくとも下記の工程を有する。
−Mo、Mo含有量が90質量%、好ましくは95質量%、を超えるMo合金、W、W含有量が90質量%、好ましくは95質量%、を超えるW合金、又はMo+Wの合計含有量が90質量%、好ましくは95質量%、を超えるMo−W合金からなる少なくとも1つの領域Bを含有してなる主要部分を準備する工程、及び
−Ta、又はTa含有量が90質量%、好ましくは95質量%、を超えるTa合金からなる層(領域A)を、前記主要部分が少なくとも部分的にこの層を備えるように、熱溶射により領域Bに塗被する工程。
【0024】
本発明のプロセスは、下記の特性の少なくとも1つを有する装入装置を製造するのに好ましく用いられる。
−領域A及び領域Bは、形態的に及び/又は物質的に結合される。
−領域A及び領域Bは、層複合体を形成する。
−前記層複合体は、領域A/領域B/領域Aの層配列を有する。
−装入装置は、容器又はプレートである。
−装入装置の内側は少なくとも部分的に領域Aで構成される。
−装入装置の外側は少なくとも部分的に領域Bで構成され、内側は少なくとも部分的に領域Aで構成される。
−装入装置の外側は少なくとも部分的に領域Bで構成され、内側は少なくとも部分的に領域Aで構成される。
−装入装置の外側及び内側は少なくとも部分的に領域Aで構成される。領域Bの層は、領域Aの層の間に配列される。
−容器は、カップとして設計される。
−領域Bは、Mo、Mo−0.1〜2質量%のLa
2O
3、TZM又はMHCで構成される。
−領域Aは、純Taからなる。
−領域Aは、溶射された層として存在し、領域Bは、変形された金属シート又はプレートとして存在する。
【0025】
特に有利な熱溶射プロセスは、CGSである。好ましい変形態様において、5バールを超える、好ましくは10バールを超える、特に好ましくは20バールを超える(例えば20〜60バールの)圧力を有するプロセスガスが、先細末広ノズル中で加速され、Ta又はTa含有量が90質量%を超えるTa合金からなる粉末(塗被材料)が先細ノズルの上流で、先細ノズル中に又は先細ノズルの下流で、プロセスガス中に注入され、加速され、主要部分上に堆積される。例として示された60バールの上限値は、現在利用可能なプラントに基づく。将来、より高いガス圧力が可能なプラントが利用可能となれば、前記制限値は、対応して移動し得る。塗被材料は、典型的には、300〜800m/秒の速度に加速される。プロセスガスは、先細末広ノズルの上流で加熱されるのが有利である。その結果、ノズル中でのガスの膨張、ガスの流速及び従って粒子速度を増大させることができる。
【0026】
本発明のプロセスは、その低いプロセス温度の故に、好適には、また、酸化物、炭化物、窒化物、W、
Mo及びニオブ(Nb)からなる群から選ばれる1以上の成分0.001〜10質量%を含有するTa合金の製造を可能にする。溶射操作の後、W、Mo及びNbは、Taマトリクス中に個別の粒子として存在する。セラミックス又は金属(例えば、W及びMo)の硬い構成成分は、層厚に好ましい効果をもたらす。というのは、前もって堆積された層の構成成分が硬い粒子の衝突によって圧縮されるからである。
【0027】
これらの成分の導入により、また、Ta層の高温強度及び耐クリープ性を向上させることができる。セラミック成分は、1,300℃を超える、特に好ましくは1,800℃を超える、融点を有するのが有利である。
【0028】
CGSにおける溶射距離は、好ましくは20〜60mm、特に好ましくは30〜50mmである。所望の層厚は、スプレーパスの回数を適宜選定することにより設定することができる。更に、領域Bは、有利には、変形した材料からなる。というのは、それにより、高い高温強度と耐クリープ性が達成されるからである。特に有利な変形プロセスは、圧延である。従って、変形された材料は、有利には圧延されたプレート又は圧延された金属シートである。プレート又は金属シートは、更に成形プロセスに依り加工して賦形された部品(例えば容器又はカップ)とするのが有利である。