【課題を解決するための手段】
【0013】
この目的は、クレーム1に記載のテンプレートによって解決される。更なる実施形態が対応するサブクレームに記載される。
【0014】
本発明によれば、テンプレート(すなわち、サファイアを含む異種基板と、比較的薄いIII−N結晶層とを有するユニットであって、そのようなテンプレートユニットは、その一部が(on its part)後続のIII−N結晶ブール/インゴットまたはIII−N素子製造用の出発生成物としての役割を果たす)において、臨界パラメーターであるテンプレートの曲率および応力の正しい影響が、テンプレートの有利な特性およびその更なる加工にとって特に重要なものとして代替的に認識された。驚くべきことに、これらのパラメーターが注意深く選択される要因によって非常に好ましい影響を受けることができ、これは特に、テンプレート内での位置または層配置に従うマスク材料の付与および層状堆積を含み、それにより、特に本発明のテンプレートを使用する後続の亀裂形成を効果的に妨げることができる、ということが判明した。代替の技術的解決策によれば、本発明に関連し、かつ、テンプレートの更なる加工にとって好ましい設定に関し、以下のことを確認すべきである:(i)後に更に特定される曲率差(K
s−K
e)が、テンプレート製造中の少なくとも1つの成長段階において、≧0、特定的には>0の範囲内にあること、または(ii)成長温度での状況下で製造されたテンプレートは本質的に湾曲(bowed)しない、または反対に(凸状に)湾曲する。本発明によれば、エピタキシャル結晶成長条件下で、全くもしくはほぼ湾曲を呈さない、または反対の(negative)湾曲を呈するため、ごくわずかな内因性応力(更なる加工用の出発状況として有利であることが立証されている)しか呈さないテンプレートを製造することができる。本発明により実験的に示されるように、上述の技術的解決策(i)および(ii)は、テンプレートのIII−N層にドーパントを配合することなく実現可能である。つまり、マスク材料の中間層の成分は別にして、いずれの異種成分もテンプレートには付与されない(「異種」とは、III−N層のIIIおよびN成分以外を意味する)。本発明によれば、テンプレートのIII−N層の形成がマスク材料の中間層の形成と共にin situで行われることに注意を払うことができるため、更に上述の技術的解決策(i)および(ii)を、付与されたサファイア基板の表面構造化とは別個に実現することができる。後者は、すなわちex situで行われる従来のパターニング、例えば、窓の開放、例えば(フォト)リソグラフィーなどによる縞または点および他のマスク構造物の形成、故に、望ましい湾曲挙動を本発明によるようには設定できない従来の場合にも適用する。
【0015】
本発明によるマスクパターンを任意に呈し得るサファイア基板それ自体にこのように任意に付与される表面構造化が行われる場合、更に、追加的に中間層としてのマスク材料が、サファイア基板上もしくはその上に任意に存在するIII−N核形成層上に少なくとも部分的に直接(すなわち、直近)、または、テンプレートの結晶性III−N材料中においてサファイア基板もしくはその上に任意に存在するIII−N核形成層の主表面に対して好適な距離をもって(すなわち、基板またはIII−N核形成層との接触が生じる限り)堆積されることに注目する。更に、寸法も異なる:ex situで行われる表面マスキングおよびパターニングは、μm範囲の厚さ寸法を呈するが、一方、本発明によれば、関連のin situマスク材料の中間層は、典型的には、サブμm範囲の厚さ寸法を呈する。
【0016】
本発明によれば、所望であれば更なる加工にとって好ましい特定の応力値内で意図的に応力を量的に設定することができる。特に、本発明によれば、テンプレートは、応力を受けない(任意には圧縮応力範囲内の応力さえ受けない)ものとなり得る。好ましい実施形態において、これは、本書で述べるようなマスク材料の中間層を好適に付与することによってのみ達成可能である。
【0017】
したがって、本発明の方法は、より有意には本発明の方法の好ましい特徴の観察により、室温で(あるいはまたは更には、成長温度で)のε
XX値ε
XX≦0、特にε
XX<0、さらに加えて特に好適な負のε
XX値を有するテンプレートのIII−N結晶層における歪みを有利に設定することができ、この値は、本発明のテンプレートの更なる加工に対して非常に好ましい効果を有するため、本発明のテンプレートの代替関連生成物の特徴を構成する。
【0018】
従来のおよび通常行われる関連方法はこれまでのところ異なる挙動を示している、または、認識されている有用な関係はここでは明らかにされていない。異種基板とIII−N層との熱膨張係数の差ならびに更なる要因により、例えば標準的な基板サファイアを成長温度で使用する従来の方法において、典型的には、成長表面の凹形湾曲が形成され、次いで更なる結晶成長の過程において、すなわち、III−N層の厚さが増すにつれ、その湾曲も更に増大する。驚くべきことに、テンプレートのIII−N材料層の特定の成長段階において、III−N材料層の更なる成長にもかかわらず、所与の湾曲が著しく減少するように本発明による方法を構成することができる。
【0019】
更に、従来の方法において湾曲が連続して増大した結果として、結晶内の対応する増大する内因性−典型的には引張−応力が増大し、任意には既に更なる成長中、特にテンプレートの更なる使用または更なる加工の間、遅くともエピタキシャル成長温度からの冷却の間、微小亀裂、更には破損までもすぐに引き起こす可能性がある。対照的に、本発明の方法では、制御して設定される内因性−典型的には圧縮−応力をエピタキシャル結晶成長中、意図的に制御することができる、または、曲率をゼロまたはほぼゼロに設定することによって、III−N結晶の後続の成長の間、例えば、III−Nバルク結晶を形成するために−任意には成長を中断しない継続的な成長の間または中断を伴う別個の成長プロセスにおいて−および更には最終的な冷却の間でさえ、亀裂が生じることを回避することができる。
【0020】
このようなIII−N結晶において、更に、材料の品質および/またはIII−N基板に対する加工性を制限する亀裂の発生を回避する。本発明による「亀裂のないIII−N結晶」とは、30mm
2の各画像片を光学顕微鏡で検査したときに、当該結晶が15cm
2の面積に亀裂を呈さないことを示す。
【0021】
更に、本発明によれば、格子定数aの変形(歪み)ε
XXの微視的特性も影響を受ける可能性がある。力学では、変形εは一般に、歪みテンソルと呼ばれ、ε
XXはその第1成分を示す。
結晶格子について、歪みε
XXは以下のように定義される。
ε
XX=(格子定数a−格子定数a
0)/格子定数a
0
式中、aは結晶中の実際の格子定数であり、a
0は理論的な理想格子定数を表し、a
0については、典型的には3.18926±0.00004Aの文献値(literature value)が想定される(V.Darakchieva,B.Monemar,A.Usui,M.Saenger,M.Schubert,Journal of Crystal Growth 310(2008)959−965による)。
【0022】
したがって、実際に存在する結晶格子定数は、外因性応力下での結晶層のエピタキシャル成長により影響を受ける可能性がある。例えば、圧縮応力は、外因性応力により成長中の結晶に移送または付与され、それにより、応力なしでの成長と比較して、格子定数が縮小される可能性がある。よって、内因性応力は結晶内で制御されかつ意図したように増大し、前記応力は、変形および応力の上記特性に好ましい影響を及ぼす。
【0023】
本発明によれば、本発明のテンプレートのIII−N結晶のε
XX値は、好ましくは≦0、より好ましくは<0である。このようなテンプレートは、III−N系の更なるエピタキシャル層を成長させるため、特に厚いIII−N層およびIII−Nブール(バルク結晶)を生成するための出発生成物として非常に適する。
【0024】
本発明を制限することなく、以下に、本発明の態様、更なる実施形態および特定の特徴を説明する一連の項目を示す。
【0025】
1.基板と、少なくとも1つのIII−N結晶層とを含むテンプレートを製造するための方法であって、
基板と、少なくとも1つのIII−N結晶層とを含むテンプレートを製造するための方法であって、IIIがAl、GaおよびInから選択される元素周期表第3主族の少なくとも1つの元素を表し、
サファイアを含む異種基板を付与する工程と、
基板上で結晶性III−N材料を成長させる工程であって、マスク材料を異種基板上に中間層(任意にIII−N核形成層を含む)として、または、結晶性III−N材料において基板からまたは任意に付与されたIII−N核形成層から距離をもって堆積され、次いで、結晶性III−N材料の成長が行われるまたは継続され、マスク材料の中間層と異種基板またはその上に任意に形成される各III−N核形成層との可能な距離が最大で300nmである工程と、
を含み、
結晶成長中、第1の比較的早い時点でのIII−N結晶の成長表面の曲率をK
sと表し、第2の比較的遅い時点でのIII−N結晶の成長表面の曲率をK
eと表すとき、曲率差が、K
s−K
e≧0となる、
ことを特徴とする方法。
(K
s−K
e)の範囲は、>0であるのが好ましい。
当該基板は異種基板として形成される。すなわち、それはテンプレートのIII−N材料とは異なる材料であり、特に、異種基板はサファイアを含む、またはサファイアからなる。
当該マスク材料は、好適には基板材料およびIII−N材料とは異なる材料として定義され、その上でIII−N成長が阻害され、妨害されまたは防止される。マスク材料の例が更に以下に記載される。「比較的早い」および「比較的遅い」という用語は、結晶成長中の第1または第2の時点を示し、III−N結晶層の全結晶成長の開始および終了時点であり得るが、またIII−N結晶層の全結晶成長の特定段階を定義し得るにすぎない。後者の場合、湾曲挙動が第1時点の前または、第2時点の後でどうであるかは問わない。比較的早い第1時点は、例えばマスク材料の中間層のコーティングの時点であるが、これに限定されず、比較的遅い第2時点は、例えばテンプレートの製造段階の終了時点であるが、やはりこれに限定されない。各時点のあり得る変形は、K
s−K
eの特定された関係を順守しない(non−observance)場合と比較して、形成されるIII−N結晶の歪み/応力、ならびに/または、成長温度および/もしくは室温でのテンプレートの湾曲挙動もしくは湾曲状態に好ましい影響を及ぼすという共通点を有する。
「中間層」という用語は、より広範な意味で、一般にはマスク材料を含み、任意にはマスク材料に加えてIII−N材料などの更なる材料を含む、または材料を含まない空隙を呈する材料層として理解されるべきである。「中間層」の厚さは可変であるが、一般には薄い〜非常に薄い、好適にはナノメートル範囲(例えば、最大で50nm、好ましくは5nm未満)またはサブナノメートル範囲(例えば、最大で1nm未満、特に最大で1単分子層(monolayer)未満(すなわち、0.2〜0.3nm以下))である。
「基板上での」中間層のマスク材料の堆積は、サファイアまたはサファイア上にある任意のIII−N核形成層の表面に直接隣接していることを意味し、「基板から距離をもって」は、この表面からマスク材料の中間層の配置/位置の距離を表す。
【0026】
2.曲率差(K
s−K
e)が少なくとも5km
−1であり、好ましくは少なくとも10km
−1であり、より好ましくは少なくとも20km
−1であり、特に50km
−1である、項目1に記載の方法。
【0027】
3.テンプレートが、1または複数の更なるIII−N結晶層をコーティングするために、任意にはIII−Nバルク結晶を製造するために更に使用される、項目1または2に記載の方法。
本発明によれば、製造されるテンプレートは、曲率差K
s−K
eを観察することによって好ましい影響を受けるので、III−N結晶の成長表面の更なる湾曲挙動は、更なる半導体材料の任意の後続のコーティングまたはエピタキシャル成長の間には特定されない。
【0028】
4.III−N単結晶を製造する方法であって、
IIIがAl、GaおよびInから選択される元素周期表第3主族の少なくとも1つの元素を表し、
aa)サファイアを含む出発基板と、III−N結晶層とを含むテンプレートを付与する工程であって、成長温度範囲内にあるテンプレートが全くもしくは本質的に湾曲されないか、または反対に(negatively)湾曲される工程と、
bb)エピタキシャル結晶成長を行うことによって、aa)によるテンプレート上に更なるIII−N結晶を形成し、任意にはIII−Nバルク結晶を生成する工程と、
cc)任意に、III−N単結晶またはIII−Nバルク結晶と異種基板とを分離する工程と、
を含むことを特徴とする方法。
本発明によれば、規定されかつ制限された高さレベルでマスク材料の中間層を異種基板上に意図的に配置することによって、テンプレートが、初期状態において(すなわち、工程bb)による更なる成長が生じる前)、加熱中に、所望の好ましい湾曲していない状態または(圧縮を受けてもしくは凸形に)反対に湾曲している状態とされることが好ましい。この点に関し、「中間層」という用語については上記項目1および2を参照。この方策が規定された条件にとって十分でないまたは個々に十分でない場合、テンプレートのIII−N層の成長の限られた段階中に成長温度の変動(異種基板としてのサファイアの選択に基づく低下)が生じ、それによって関係K
s−K
e≧0に対する補助的および/または代替的な寄与が与えられたという点で、更なる追加のパラメーターを観察かつ設定することができる。
「成長温度」という用語は、所望のIII−N結晶の堆積、特にエピタキシャル成長が可能となる温度を言う。
【0029】
5.テンプレート用に、異種基板として厚さ(d
sapphire)がおよそ430μm(つまり、±20μm)のサファイアと、III−N結晶層として厚さ(d
GaN)7μm(つまり、±0.5μm)のGaNとが使用または設定され、III−N結晶において、成長表面でのテンプレートの曲率(K
T)が、
(i)成長温度では、0〜−150km
−1の範囲内、好ましくは−25〜−75km
−1の範囲内で特定される、および/または
(ii)室温では、<−200km
−1の範囲内、好ましくは−200〜−400km
−1の範囲内、より好ましくは−300〜−350km
−1の範囲内で特定され、
異なる層厚(d
sapphire/d
GaN)を使用または設定するとき、曲率値が以下の範囲内でストーニーの方程式に類似する各層厚に応じる:
K
T(dGaN;dsapphire)=K
T(7μm;430μm)x(430μm/d
sapphire)
2x(d
GaN/7μm)
前述の項目の1つに記載の方法。
【0030】
6.テンプレートのIII−N単結晶が、室温で−2〜−6mの範囲内の曲率半径を呈する、前述の項目の1つに記載の方法。
【0031】
7.結晶性III−N材料において圧縮応力が生成される、前述の項目の1つに記載の方法。
圧縮応力は、主にサファイア基板または核形成層から距離を持たずにまたは意図的に特定された距離をもってマスク材料の中間層を堆積させることによって作成される。
【0032】
8.テンプレートのIII−N単結晶が、室温でσ
XX<−0.70GPaの圧縮応力を呈する、前述の項目の1つに記載の方法。
【0033】
9.マスク材料の中間層が、異種基板から300nm、好ましくは250nm未満、より好ましくは100nm未満、より好ましくは最大で50nmの最大距離をもって堆積される、前述の項目の1つに記載の方法。
【0034】
10.マスク材料の中間層が、異種基板上のIII−N核形成層上に堆積され、次いでIII−N結晶成長が行われる、前述の項目の1つに記載の方法。
この実施形態において、凝集(coalescence)が終了し、その後テンプレートのIII−N単結晶の実際の成長が始まる前に、マスク材料の中間層が異種基板のIII−N核形成層上に直接およびその直上に堆積されることが好ましい。
【0035】
11.マスク材料が、同一の反応器において、異種基板上またはテンプレートのIII−N層中にテンプレートの製造中in situで堆積される、および/または、マスク材料の堆積直後にIII−N成長プロセスが継続される、前述の項目の1つに記載の方法。
【0036】
12.テンプレートにおけるマスク材料が平面に均質に分配されるが、好ましくは不連続的に堆積される、前述の項目の1つに記載の方法。この可能な実施形態によれば、テンプレートにおけるマスク材料は本質的には平面に存在するが、堆積の形状は様々であり得る。マスク材料の層は完全な層を形成し得るが、別法としておよび好ましくは、途断を呈し、層中に不連続的に分配される。特に、それは網状構造の形態および/またはマスク材料のナノプレートレットまたはナノアイランドの形態(マスク材料を有するナノマスク)で存在し得、不連続的なマスク層における微視的またはナノ寸法の空隙から、III−Nの後続の成長が続いて起こり得る。マスク材料の層の厚さもまた可変である。異なる可能な堆積形態は、形成されるIII−N結晶における歪み/応力に対して、ならびに/または、成長温度および/もしくは室温でのテンプレートの湾曲挙動または状態に対してそれぞれ好ましい影響を共通に有する。所望の形態は適切なパラメーター、例えば相当する出発材料の流量、反応器の圧力、堆積温度またはマスク材料の堆積時間によって好適に設定できる。
13.1.5μmの距離をもって第2SiN
xマスクが堆積されない、または第2SiN
xマスクが全く堆積されない、前述の項目の1つに記載の方法。
【0037】
14.テンプレートにおいて、マスク材料の単一層のみが堆積される、前述の項目の1つに記載の方法。
【0038】
15.マスク材料が、III−N堆積が阻害または防止される材料である、前述の項目の1つに記載の方法。
【0039】
16.マスク材料が、Si
xN
y(式中、xおよびyはそれぞれ独立して化学量論的または非化学量論的SiN化合物、特定的にはSi
3N
4を導く正数を示す)、TiN、Al
xO
y(式中、xおよびyはそれぞれ独立して化学量論的または非化学量論的AlO化合物、特定的にはAl
2O
3を導く正数を示す)、Si
xO
y(式中、xおよびyはそれぞれ独立して化学量論的または非化学量論的SiO化合物、特定的にはSiO
2を導く正数を示す)、WSiおよびWSiNからなる群から選択される、前述の項目に記載の方法。
マスク材料の堆積において、マスク材料は、好ましくはガス相からの各元素の相当する反応種から反応器内においてin situで直接堆積され、好ましくはその直後にテンプレートの実際のIII−N結晶の堆積が開始または継続される。
【0040】
17.異種基板がサファイアからなる、前述の項目の1つに記載の方法。
【0041】
18.テンプレートのIII−N結晶の湾曲が、成長温度を変更することによって少なくとも1つの成長段階において更に変化する、前述の項目の1つに記載の方法。
【0042】
19.テンプレートのIII−N結晶の少なくとも1つの堆積段階において、先のIII−N堆積の温度と比較して低下された成長温度で成長が生じる、前述の項目の1つに記載の方法。
【0043】
20.温度低下が、少なくとも10℃、好ましくは少なくとも20℃、好ましくは20〜50℃の範囲内にあり、より好ましくは25〜40℃の範囲内にあり、および特に好ましくは30℃である、項目19に記載の方法。
【0044】
21.付与された基板が研磨された表面を有する、前述の項目の1つに記載の方法。
【0045】
22.付与された基板が、リソグラフィー、または湿式化学エッチングもしくは乾式化学エッチング(例えば、ICP)によって構造化された表面を呈する、前述の項目の1つに記載の方法。
【0046】
23.テンプレートまたはその上にエピタキシャル成長されたIII−N結晶上に、相当する更なるIII−N層またはIII−N結晶を製造するための、少なくとも1つのおよび任意にはそれ以上のGaN、AlN、AlGaN、InN、InGaN、AlInNまたはAlInGaN層が堆積される、前述の項目の1つに記載の方法。
【0047】
24.テンプレートのIII−N結晶層ならびにその上にエピタキシャル成長されたIII−N結晶が同一のIII−N材料から構成される、前述の項目の1つに記載の方法。
【0048】
25.異種基板上のIII−N結晶層ならびにその上にエピタキシャル成長されたIII−N結晶がそれぞれ二成分系を形成する、前述の項目の1つに記載の方法。
【0049】
26.マスク材料の中間層の堆積後、0.1〜10μmの範囲内にある合計厚さ、好ましくは3〜10μmの範囲内にある厚さを有するIII−N結晶の形成のための、更なるin situ結晶成長が生じ、テンプレートが得られ、マスク材料の中間層を含むテンプレートのIII−N層の合計厚さが計算される、前述の項目の1つに記載の方法。
【0050】
27.MOVPEが成長方法として使用される、前述の項目の1つに記載の方法。
【0051】
28.テンプレート上で、III−N単結晶が、少なくとも1mm、好ましくは少なくとも5mm、より好ましくは少なくとも7mmおよび最も好ましくは少なくとも1cmの層厚で成長される、前述の項目の1つに記載の方法。
【0052】
29.少なくともテンプレート形成完了後の工程において、任意には開始からおよび全結晶成長工程において、結晶成長がHVPEにより行われる、前述の項目の1つに記載の方法。
【0053】
30.結晶成長完了後、成長されたIII−N単結晶と異種基板とが、自己分離によって、好ましくは結晶成長温度からの冷却中に互いに分離される、前述の項目の1つに記載のIII−N単結晶を製造する方法。
【0054】
31.結晶成長完了後、成長されたIII−N単結晶とサファイアを含む異種基板とが、研削、挽切またはリフトオフ法によって互いに分離される、前述の項目の1つに記載のIII−N単結晶を製造する方法。
【0055】
32.III−N結晶ウエハーを製造する方法であって、
IIIがAl、GaおよびInの群から選択される元素周期表第3主族の少なくとも1つの元素を表し、
a)項目3〜31の1つに記載の方法を実施することによってIII−Nバルク結晶を形成する工程、および
b)バルク結晶を個別に分けることによってウエハーを形成する工程、
を含む方法。
【0056】
33.サファイアを含む基板と、少なくとも1つのIII−N結晶層とを含むテンプレートであって、IIIがAl、GaおよびInの群から選択される元素周期表第3主族の少なくとも1つの元素を表し、テンプレートの異種基板より上の領域またはテンプレートのIII−N結晶層においてマスク材料が中間層として付与され、テンプレートのIII−N結晶層において、室温での値ε
XXがε
XX<0である、テンプレート。
【0057】
34.サファイアを含む基板と、少なくとも1つのIII−N結晶層とを含むテンプレートであって、IIIがAl、GaおよびInの群から選択される元素周期表第3主族の少なくとも1つの元素を表し、テンプレートの異種基板より上の領域またはテンプレートのIII−N結晶層においてマスク材料が中間層として付与され、テンプレートのIII−N結晶層において、成長温度での値ε
XXがε
XX≦0である、テンプレート。
【0058】
35.テンプレートのIII−N結晶層において、室温での値ε
XXが、0>ε
xx≧−0.003の範囲内、特に−0.0015>ε
xx≧−0.0025の範囲内、特に−0.0020≧ε
xx≧−0.0025の範囲内に設定される、項目33または34に記載のテンプレート。
【0059】
36.テンプレートのIII−N結晶層において、成長温度での値ε
XXが、0>ε
xx>−0.0006の範囲内、好ましくは−0.0003>ε
xx>−0.0006の範囲内にある、項目33〜35の1つに記載のテンプレート。
【0060】
37.0.1〜10μm、好ましくは2〜5μmの範囲内にあるIII−N単結晶の層厚を有するテンプレートの形態において、マスク材料の中間層を含んで計算される、項目33〜36の1つに記載のテンプレート。
【0061】
38.室温でのIII−N単結晶が、σ
XX<−0.70GPaの圧縮応力を有する、項目33〜37の1つに記載のテンプレート。
【0062】
39.テンプレート用に、異種基板として厚さ(d
sapphire)がおよそ430μm(つまり、±20μm)のサファイアと、III−N結晶層として厚さ(d
GaN)がおよそ7μm(つまり、±0.5μm)のGaNとが使用または設定され、III−N結晶において、テンプレートの曲率(K
T)が、
(i)成長温度では、0〜−150km
−1の範囲内、好ましくは−25〜−75km
−1の範囲内で特定される、および/または
(ii)室温では、−200〜−400km
−1の範囲内、より好ましくは−300〜−400km
−1、より好ましくは−300〜−350km
−1の範囲内で特定され、
異なる層厚(d
sapphire/d
GaN)を使用または設定するとき、曲率値がストーニーの方程式に基づく以下の式で各層厚に応じて特定される:
K
T(dGaN;dsapphire)=K
T(7μm;430μm)x(430μm/d
sapphire)
2x(d
GaN/7μm)
項目33〜38の1つに記載のテンプレート。
【0063】
40.IIIがGaを表し、成長方向の結晶が、0.31829nm<a<0.318926nmの範囲内の格子定数を呈する、項目33〜39の1つに記載のテンプレート。
【0064】
41.サファイアを含む基板が除去される、項目33〜40の1つに記載のテンプレート。
【0065】
42.項目1〜32に記載の方法の1つに従って製造されるまたはそれにおいて使用される、項目33〜41の1つに記載のテンプレート。
【0066】
41.その後任意に個々のIII−Nウエハーに分離されるより厚いIII−N層またはIII−N結晶ブールもしくはバルク結晶を製造するための、項目32に従って製造されるIII−Nウエハーの使用または項目33〜42の1つに記載のテンプレートの使用。
【0067】
44.半導体素子、電子または光電子素子を製造するための、項目32に従って製造されるIII−Nウエハーの使用または項目33〜42の1つに記載のテンプレートの使用。
【0068】
45.電力成分、高周波成分、発光ダイオードおよびレーザーを製造するための項目44に記載の使用。
【0069】
46.特定の曲率値および/または特定の応力を設定した後、基板上に少なくとも1つの更なるIII−N結晶層を堆積させるべくテンプレートの曲率値および/または応力を制御するための、サファイアを含む基板と、III−N結晶層とを含むテンプレートにおける中間層としてのマスク材料の使用であって、IIIがAl、GaおよびInの群から選択される元素周期表第3主族の少なくとも1つの元素を表す、使用。
【0070】
47.特定の曲率値および/または特定の応力が、更なるIII−N層の後続の更なる成長における亀裂形成を回避する、項目46に記載の使用。
【0071】
現在示された温度は、特記されない限り、加熱装置で設定された相当する温度すなわち各工程用に名目上設定された温度(工程(process)温度)を言う。テンプレート/ウエハーでの温度は、典型的には僅かに低く、反応器の種類に応じて異なり得るが、例えば最大で75K低い。実施例で使用される反応器の種類について、テンプレート/ウエハーでの温度は、工程温度よりも約30〜50K低い(LayTec社(ドイツ、ベルリン)製のin situ測定装置EpiTTで測定)。