(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、このようなレーザースキャナを搭載した無人ラジコンヘリでは、レーザースキャナのメンテナンス作業を行う際に、無人ラジコンヘリからレーザースキャナを取り外す必要がある。そして、メンテナンス作業が完了した後、再び無人ラジコンヘリに取り付けるようにしている。
【0006】
具体的に、特許文献1の発明では、機体連結フレームの略テーパー状の挿入部を、無人ラジコンヘリの機体側の取付枠に形成されている係止孔に挿入することによって、防振懸架装置全体を取付枠に対して位置決めしている。そして、この状態を保持しながら、蝶ネジのネジを、取付枠のネジ孔にねじ込んだ後、さらに機体連結フレームの横側のネジ孔にネジ留めしている。
【0007】
しかしながら、特許文献1の発明の構成では、機体連結フレームの挿入部を取付枠の係止孔に挿入した後、防振懸架装置全体を作業者が水平姿勢に保持した状態で、蝶ネジのねじ込み作業を行う必要がある。特に、防振懸架装置の重量が重い場合には、作業者一人で防振懸架装置を支え切れないため、複数の作業者で取り付け及び取り外し作業を行う必要があり、作業工数がかかってしまうという問題がある。
【0008】
同様に、レーザー機器等の計測装置を防振懸架装置の取付プレートに取り付け、取り外しする場合にも、作業者が水平姿勢に保持した状態で、ネジのねじ込み作業を行う必要があり、作業工数がかかってしまうという問題がある。
【0009】
本発明は、かかる点に鑑みてなされたものであり、その目的は、飛行ユニットに測量ユニットを取り付ける際の位置決め作業を容易に行うことができるようにする。
【課題を解決するための手段】
【0010】
本発明は、複数のロータユニットが設けられた飛行ユニットと、該飛行ユニットに着脱可能に取り付けられた測量ユニットとを備えた無人飛行体を対象とし、次のような解決手段を講じた。
【0011】
すなわち、第1の発明は、前記測量ユニットは、測量用の計測装置と、該計測装置を支持する支持機構を有し、
前記支持機構には、垂直方向に対して所定角度傾斜した当接面を有する測量側ブラケットが設けられ、
前記飛行ユニットには、前記測量側ブラケットの当接面に対応する当接面を有する飛行側ブラケットが設けられ、
前記測量側ブラケットと前記飛行側ブラケットとは、互いの当接面同士が当接した状態で着脱可能に連結され
、
前記支持機構は、互いに間隔をあけて配設されて前記計測装置を支持する一対の支持フレームと、該一対の支持フレームの両端側に配設されて該支持フレーム同士を連結する一対の連結フレームとを有し、
前記測量側ブラケットが、前記一対の連結フレームに設けられていることを特徴とするものである。
【0012】
第1の発明では、飛行側ブラケットと測量側ブラケットとは、垂直方向に対して傾斜した当接面同士を当接させた状態で、互いに連結されている。
【0013】
このような構成とすれば、飛行ユニットと測量ユニットとを連結させるのにあたって、飛行ユニットを持ち上げた後、測量側ブラケットの当接面の傾斜に沿って、飛行側ブラケットの当接面を移動させて測量側ブラケットに載置させるだけで、飛行ユニットと測量ユニットとの横方向の位置決めを容易に行うことができる。
【0014】
また、飛行ユニットから測量ユニットに向かう振動を、当接面の傾斜方向に分散させることができ、振動を抑えることができる。
【0015】
具体的に、飛行側ブラケット及び測量側ブラケットが垂直方向に延びていた場合には、互いに当接面同士を当接させると、ブラケットの厚み方向、つまり、横方向に激しく振動して横揺れが大きくなる。一方、飛行側ブラケット及び測量側ブラケットが水平方向に延びていた場合には、互いに当接面同士を当接させると、ブラケットの厚み方向、つまり、縦方向に激しく振動して縦揺れが大きくなってしまう。これに対し、本発明では、このような不具合を解消することができる。
【0016】
また、支持機構が、一対の支持フレームと一対の連結フレームとで構成されているので、飛行ユニットから計測装置に伝達される振動が、一対の連結フレーム及び一対の支持フレームを介することになるので、計測装置への振動伝達が抑制される。
【0017】
第
2の発明は、
複数のロータユニットが設けられた飛行ユニットと、該飛行ユニットに着脱可能に取り付けられた測量ユニットとを備えた無人飛行体を対象とし、
前記測量ユニットは、測量用の計測装置と、該計測装置を支持する支持機構を有し、
前記支持機構には、垂直方向に対して所定角度傾斜した当接面を有する測量側ブラケットが設けられ、
前記飛行ユニットには、前記測量側ブラケットの当接面に対応する当接面を有する飛行側ブラケットが設けられ、
前記測量側ブラケットと前記飛行側ブラケットとは、互いの当接面同士が当接した状態で着脱可能に連結され、
前記飛行ユニットには、該飛行ユニットの機体を所定の高さ位置に支持する飛行側支持脚が設けられ、
前記測量ユニットには、前記飛行ユニットから取り外された該測量ユニットの前記計測装置を所定の高さ位置に支持する測量側支持脚が設けられていることを特徴とするものである。
【0018】
第
2の発明では、飛行ユニットには飛行側支持脚が設けられ、測量ユニットには測量側支持脚が設けられる。これにより、飛行ユニットと測量ユニットとを分離させてそれぞれ地面に置いたときでも、飛行ユニットの機体と、測量ユニットの計測装置とが、地面に直接触れることがない。
【0019】
第
3の発明は、第
2の発明において、
前記飛行側支持脚の下端部と前記測量側支持脚の下端部とは、前記飛行ユニットに前記測量ユニットが取り付けられた状態で同一平面上に位置していることを特徴とするものである。
【0020】
第
3の発明では、飛行ユニットに測量ユニットを取り付けた状態で、例えば、地面に置くと、飛行側支持脚の下端部と測量側支持脚の下端部がそれぞれ地面に設置されることとなる。これにより、無人飛行体を地上で待機させている間に、飛行側支持脚及び測量側支持脚で無人飛行体の荷重を分散して支持するとともに、無人飛行体の姿勢を安定させることができる
。
【0021】
第4の発明は、
複数のロータユニットが設けられた飛行ユニットと、該飛行ユニットに着脱可能に取り付けられた測量ユニットとを備えた無人飛行体を対象とし、
前記測量ユニットは、測量用の計測装置と、該計測装置を支持する支持機構を有し、
前記支持機構には、垂直方向に対して所定角度傾斜した当接面を有する測量側ブラケットが設けられ、
前記飛行ユニットには、前記測量側ブラケットの当接面に対応する当接面を有する飛行側ブラケットが設けられ、
前記測量側ブラケットと前記飛行側ブラケットとは、互いの当接面同士が当接した状態で着脱可能に連結され、
前記測量ユニットの上部には、該測量ユニットの動作制御を行うコントロールボックスが取り付けられ、
前記飛行ユニットの機体の下部には、互いに間隔をあけて配設されて前記飛行側ブラケットが設けられた一対の下部フレームが取り付けられ、
前記コントロールボックスの上下には、前記飛行ユニットの機体と前記測量ユニットとが位置し、且つ、該コントロールボックスの側方には、前記一対の下部フレームが位置するように、該飛行ユニットと該測量ユニットとが取り付けられていることを特徴とするものである。
【0022】
第
4の発明では、レーザスキャナ等の計測装置の制御を行うコントロールボックスが、飛行ユニットの機体、測量ユニット、及び一対の下部フレームに囲まれて保護されるので、コントロールボックスが損傷を受けにくくなる。
【0023】
第5の発明は、第1乃至第4の発明のうち何れか1つにおいて、
前記飛行ユニットには、該飛行ユニットの位置情報を取得するための第1GPS受信機が設けられ、
前記測量ユニットには、該測量ユニットの位置情報を取得するための第2GPS受信機が設けられ、
前記計測装置は、レーザースキャナで構成され、
前記第2GPS受信機は、前記第1GPS受信機よりも高精度であることを特徴とするものである。
【0024】
第5の発明では、第2GPS受信機で、レーザー計測装置で測定した位置情報を入手し、その位置でのレーザー式計測装置の測定情報のデータとして残し、第1GPS受信機では、飛行ユニットの位置情報を入手して、飛行ユニットの位置を補正するようにする。したがって、第2GPS受信機が、第1GPS受信機より精度の高い位置情報を検出することで、レーザー式計測装置の測定情報の位置情報をより高精度で得られる。
【発明の効果】
【0025】
本発明によれば、飛行ユニットと測量ユニットとを連結させるのにあたって、飛行ユニットを持ち上げた後、測量側ブラケットの当接面の傾斜に沿って、飛行側ブラケットの当接面を移動させて測量側ブラケットに載置させるだけで、飛行ユニットと測量ユニットとの横方向の位置決めを容易に行うことができる。
【発明を実施するための形態】
【0027】
以下、本発明の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
【0028】
図1に示すように、無人飛行体10は、飛行ユニット20と、飛行ユニット20に着脱可能に取り付けられた測量ユニット30とを備えている。飛行ユニット20は、機体21と、機体21に揚力及び推力を発生させる複数のロータユニット25とを有する。
【0029】
機体21には、径方向外方に向かって放射状に延びる4本のパイプ状のロータアーム22が設けられている(
図1では2本のみ図示)。ロータアーム22の先端部には、ロータユニット25が取り付けられている。ロータユニット25は、プロペラ26と、プロペラ26を回転させるロータモータ27とを有する。ロータユニット25は、4本のロータアーム22の先端部において上下方向に離れて2つずつ、合計8つ設けられている(
図1では4つのみ図示)。
【0030】
8つのロータユニット25は、ロータモータ27の回転数を略同一とすることで、無人飛行体10を上昇させる揚力を発生させ、機体21を水平姿勢に維持することができる。また、8つのロータユニット25のうち前後又は左右のロータモータ27の回転数を変えて機体21を傾けることで、機体21を前後又は左右に移動する推力を発生させることができる。
【0031】
なお、本実施形態では、4本のロータアーム22の先端部に8つのロータユニット25を取り付けた構成について説明したが、ロータアーム22の本数及びロータユニット25の個数については、特に限定するものではない。例えば、6本のロータアーム22の先端部に6つのロータユニット25を取り付けた構成であってもよい。ロータアーム22には、第1GPS受信機29が取り付けられている。第1GPS受信機29は、GPS衛星から位置情報を受信して、図示しない制御部に送信する。
【0032】
機体21の上部には、飛行ユニット20用のバッテリー11が搭載されている。機体21の下部には、
図1で左右方向に間隔をあけて一対の下部フレーム23が設けられている。下部フレーム23は、
図1で紙面奥行方向に延びるパイプ状の部材で構成されている。
【0033】
1つのロータアーム22には、第1GPS受信機29が取り付けられている。機体21には、飛行ユニット20用の図示しない電子コンパス、ジャイロセンサ、制御部等が設けられており、制御部は、各種センサからの出力に基づいてロータユニット25の動作を制御する。第1GPS受信機29で得られた位置情報に基づいて、無人飛行体10の飛行位置を補正するようになっている。
【0034】
一対の下部フレーム23の両端部には、下方に延びる4本の飛行側支持脚28がそれぞれ取り付けられている。飛行側支持脚28は、機体21を所定の高さ位置に支持しており、無人飛行体10が地上で待機しているときに機体21が地面に触れないようにしている。
【0035】
また、一対の下部フレーム23の両端側で且つ飛行側支持脚28よりも内側には、4つの飛行側ブラケット45が設けられている。飛行側ブラケット45は、測量ユニット30の後述する測量側ブラケット46に対して着脱可能に連結される。なお、飛行側ブラケット45の詳細については後述する。
【0036】
図2にも示すように、測量ユニット30は、レーザー式計測装置である測量用のレーザースキャナ31(計測装置)と、一対の支持フレーム32と、一対の支持フレーム32同士を連結する一対の連結フレーム33とを有する。一対の支持フレーム32及び一対の連結フレーム33は、レーザースキャナ31を支持する支持機構を構成している。
【0037】
レーザースキャナ31は、地上に向かってレーザー光を照射することで、地形の三次元データをレーザー計測するものである。レーザースキャナ31には、加速度センサや電子コンパスを有する慣性計測装置34(IMU)が取り付けられている。
【0038】
また、測量ユニット30には、測量ユニット30用の第2GPS受信機35が設けられている。第2GPS受信機35は、一対の支持フレーム32の上部に跨がって取り付けられた載置板35aから立設する支柱35bによって、飛行ユニット20よりも上方位置に支持されている。載置板35aは、後述する第1プレート41と同じ剛性を有するカーボン繊維強化プラスチック(CFRP)で構成されている。
【0039】
このように、レーザースキャナ31、慣性計測装置34、及び第2GPS受信機35を測量ユニット30に搭載させたことで、飛行ユニット20と測量ユニット30とを分離させた場合でも、その位置関係が変わることはない。つまり、飛行ユニット20と測量ユニット30とを着脱させるたびに、レーザースキャナ31、慣性計測装置34、及び第2GPS受信機35の位置調整を行う必要が無い。
【0040】
特に、レーザースキャナ31で測定した測定情報を、第2GPS受信機35で入手した位置情報と関連付けたデータとして残し、第1GPS受信機29では、無人飛行体10の位置情報を入手して、無人飛行体10の位置を補正するようにする。このように、第1GPS受信機29と第2GPS受信機35との位置情報を使い分けている。使い分けている理由は以下の通りである。
【0041】
第2GPS受信機35では、精度が高いほど、レーザースキャナ31で測定した測定情報の位置を高精度に示すことができるので、高精度にすることが好ましい。そして、この第2GPS受信機35の高精度の位置情報に基づいて、微々たる位置の差異を補正すると、無人飛行体10の位置が安定せずに微細な動きを繰り返し、その結果、振動や誤作動を引き起こす可能性が高くなる。そのために、第2GPS受信機35の位置情報に基づいては、無人飛行体10の位置を補正しないで、第1GPS受信機29の位置情報に基づいて、位置補正をするようになっている。この場合に、無人飛行体10の第1GPS受信機29の位置情報は、第2GPS受信機35の位置情報よりも、測定精度を緩和して微細な補正をしないで済むようにしている。その結果、第2GPS受信機35が、第1GPS受信機29に比較して高精度の位置情報を検出するようになっている。
【0042】
レーザースキャナ31の側部には、2つのカメラ36が取り付けられている。カメラ36は、斜め下方を撮影可能な姿勢で、レーザースキャナ31に取り付けられている。
【0043】
一対の支持フレーム32は、パイプ状の部材で構成され、
図2で左右方向に間隔をあけて配設されている。一対の支持フレーム32の下部には、繊維強化樹脂材(FRP)で構成された第1プレート41が配設されている。具体的には、第1プレート41には、カーボン繊維が含まれているFRP、すなわち、カーボン繊維強化プラスチック(CFRP)が用いられている。特に、CFRPは、軽量で高剛性であり、且つ振動減衰性が高いので、第1プレート41として、好適な複合材である。
【0044】
第1プレート41は、支持フレーム32を挟み込むクランプ部材43を介して、支持フレーム32に取り付けられている。第1プレート41の下面には、レーザースキャナ31が取り付けられている。これにより、レーザースキャナ31と支持フレーム32との間に、防振部材としての第1プレート41が介在された状態となる。
【0045】
一対の支持フレーム32には、下方に延びる4本の測量側支持脚38がそれぞれ取り付けられている。測量側支持脚38は、レーザースキャナ31を所定の高さ位置に支持しており、測量ユニット30が飛行ユニット20から取り外されて地上に置かれた場合でも、レーザースキャナ31が地面に触れないようにしている。
【0046】
ここで、飛行側支持脚28の下端部と測量側支持脚38の下端部とは、飛行ユニット20に測量ユニット30が取り付けられた状態で同一平面上に位置している。つまり、無人飛行体10を地面に置いたときに、4本の飛行側支持脚28と、4本の測量側支持脚38とが、全て地面に設置されることとなる。
【0047】
これにより、無人飛行体10を地上で待機させている間に、飛行側支持脚28及び測量側支持脚38で無人飛行体10の荷重を分散して支持するとともに、無人飛行体10の姿勢を安定させることができる。
【0048】
また、後述するように、レーザースキャナ31やパーソナルコンピュータ14が、飛行側支持脚28及び測量側支持脚38で囲まれているので、不慮の事故等で比較的大きな障害物に衝突した場合でも、これらの飛行側支持脚28及び測量側支持脚38が折れ曲がったりすることで、レーザースキャナ31やパーソナルコンピュータ14への衝突時の衝撃を緩和することができる。
【0049】
一対の支持フレーム32の上部には、測量ユニット30用のコントロールボックス12と、バッテリー13とが搭載されている。一対の支持フレーム32の下部には、レーザースキャナ31に並んでパーソナルコンピュータ14が配設されている。コントロールボックス12は、レーザースキャナ31やカメラ36の動作制御を行う。
【0050】
コントロールボックス12は、上側に飛行ユニット20の機体21が配置され、下側に測量ユニット30のレーザースキャナ31が配置され、側方には、測量ユニット30の支持フレーム32や連結フレーム33、飛行ユニット20の下部フレーム23が配置されることで、外部からの損傷を受けないように保護される位置に配置されている。
【0051】
パーソナルコンピュータ14は、レーザースキャナ31やカメラ36で取得したデータを記録して処理する。なお、レーザースキャナ31で得られる情報量が多いので、一旦、パーソナルコンピュータ14のメモリー(図示せず)に記憶させて、後から取り出すようにしているが、多量な情報でも、無線で送信できるようになれば、パーソナルコンピュータ14に蓄積せずに、直接送るようにしても良い。
【0052】
一対の連結フレーム33は、一対の支持フレーム32の両端側に配設されるとともに、一対の支持フレーム32に跨がるように、
図2で左右方向に延びている。連結フレーム33と支持フレーム32との間には、繊維強化樹脂材(FRP)で構成された第2プレート42が配設されている。具体的には、第2プレート42には、カーボン繊維が含まれているFRP、すなわち、カーボン繊維強化プラスチック(CFRP)が用いられている。特に、CFRPは、軽量で高剛性であり、且つ振動減衰性が高いので、第2プレート42として、好適な複合材である。
【0053】
第2プレート42は、支持フレーム32を挟み込むクランプ部材43を介して支持フレーム32に取り付けられる一方、連結フレーム33を挟み込むクランプ部材43を介して連結フレーム33に取り付けられている。これにより、支持フレーム32と連結フレーム33との間に、防振部材としての第2プレート42が介在された状態となる。
【0054】
ここで、第1プレート41と第2プレート42とは、互いに剛性が異なり、固有振動数が異なる繊維強化樹脂材で構成されている。具体的に、第1プレート41と第2プレート42とは、封入する繊維の量や、繊維の編み込みパターンを変えることによって、互いに振動特性が異なるように、剛性が異なるものとすることができる。
【0055】
第1プレート41と第2プレートとは、振動特性が異なるように剛性を変えているので、飛行ユニット20からレーザースキャナ31に向かう振動は、第1プレート41と第2プレート42とで減衰されて、お互いが共振して振動が増幅するのを抑えて、レーザースキャナ31の振動が抑制でき、計測データの精度を向上させることができる。
【0056】
本実施形態では、第2プレート42の方を、第1プレート41よりも剛性が高くなるように設定している。つまり、第2プレート42の方が、第1プレート41よりも固有振動数が高くなっている。なお、曲げ強度については、第1プレート41と第2プレート42とで略同等とするために、第1プレート41の板厚を第2プレート42の板厚よりも厚くしている。
【0057】
また、封入する繊維の量や、繊維の編み込みパターンを変えることによって、振動特性の周波数領域を任意に設定できるので、レーザースキャナ31の振動特性や装置全体の振動特性に応じて、第1プレート41及び第2プレート42の振動特性を選定することができ、レーザースキャナ31の振動を抑制できる。
【0058】
一対の連結フレーム33の両端部には、4つの測量側ブラケット46が設けられている。飛行ユニット20と測量ユニット30とは、飛行側ブラケット45と測量側ブラケット46とを着脱可能に連結することで、互いに連結されている。以下、飛行側ブラケット45及び測量側ブラケット46の構成について説明する。
【0059】
図3及び
図4に示すように、無人飛行体10は、飛行ユニット20と測量ユニット30とを分離可能な構成となっている。これにより、無人飛行体10を測量現場に搬送する際に分離して持ち運びやすく、また、レーザースキャナ31が故障した場合でも、測量ユニット30のみをメンテナンスできるようになっている。
【0060】
測量ユニット30の連結フレーム33には、垂直方向に対して所定角度傾斜した当接面を有する測量側ブラケット46が設けられている。飛行ユニット20の下部フレーム23には、測量側ブラケット46の当接面に対応する当接面を有する飛行側ブラケット45が設けられている。
【0061】
測量側ブラケット46は、垂直方向に対して所定角度傾斜した姿勢で連結フレーム33に取り付けられた傾斜板46aと、傾斜板46aの上面に積層されて当接面を形成する当接板46bとを有する。測量側ブラケット46には、板厚方向に貫通する貫通孔46cが形成されている。
【0062】
傾斜板46a及び当接板46bは、測量ユニット30の内方側に向かって斜め下方に傾斜している。傾斜板46aは、連結フレーム33を挟み込むクランプ部材43を介して、連結フレーム33に取り付けられている。
【0063】
傾斜板46a及び当接板46bは、互いに剛性が異なり、固有振動数が異なる繊維強化樹脂材で構成されている。傾斜板46a及び当接板46bは、図示しない締結ボルト及び締結ナットで共締めしたり、接着剤で接着することにより、積層された状態で固定されている。
【0064】
飛行側ブラケット45も同様に、垂直方向に対して所定角度傾斜した姿勢で下部フレーム23に取り付けられた傾斜板45aと、傾斜板45aの下面に積層されて測量側ブラケット46の当接面に対応する当接面を形成する当接板45bとを有する。傾斜板45a及び当接板45bは、飛行ユニット20の内方側に向かって斜め下方に傾斜している。
【0065】
飛行側ブラケット45には、板厚方向に貫通する貫通孔45cが形成されている。傾斜板45aは、下部フレーム23を挟み込むクランプ部材43を介して、下部フレーム23に取り付けられている。
【0066】
傾斜板45a及び当接板45bは、互いに剛性が異なり、固有振動数が異なる繊維強化樹脂材で構成されている。傾斜板45a及び当接板45bは、図示しない締結ボルト及び締結ナットで共締めしたり、接着剤で接着することにより、積層された状態で固定されている。
【0067】
そして、
図5に示すように、測量側ブラケット46と飛行側ブラケット45とは、互いの当接面同士を当接させた状態で、締結ボルト47の軸部を測量側ブラケット46の貫通孔46c及び飛行側ブラケット45の貫通孔45cに挿通させ、締結ボルト47及び締結ナット48で共締めすることにより、互いに着脱可能に連結されている。
【0068】
なお、測量側ブラケット46又は飛行側ブラケット45のどちらか一方のみを、剛性の異なる傾斜板と当接板とを積層させた構成としてもよい。
【0069】
以上のように、本実施形態に係る無人飛行体10によれば、飛行ユニット20と測量ユニット30とを連結させるのにあたって、飛行ユニット20を持ち上げた後、測量側ブラケット46の当接面の傾斜に沿って、飛行側ブラケット45の当接面を移動させて測量側ブラケット46に載置させるだけで、飛行ユニット20と測量ユニット30との横方向の位置決めを容易に行うことができる。
【0070】
また、飛行ユニット20と測量ユニット30とを分離する場合には、締結ボルト47及び締結ナット48の螺合を解除して、締結ボルト47及び締結ナット48を外すことで、飛行ユニット20と測量ユニット30とを分離できる状態になる。このときに、締結ボルト47及び締結ナット48を外しても、測量側ブラケット46の当接面と飛行側ブラケット45の当接面同士が当接させた状態であり、且つ飛行ユニット20が飛行側支持脚28で、測量ユニット30が測量側支持脚38で支えられているので、飛行ユニット20と測量ユニット30とを別途支える必要は無く、分離作業が簡単に行える。すなわち、この状態で、飛行ユニット20を持ち上げれば、お互いを分離できるので、作業が容易である。また、このときに、測量ユニット30を持って動かさなくても良いので、レーザースキャナ31の損傷、位置情報の誤差も、生じにくい。
【0071】
また、複数のロータユニット25の駆動によって飛行ユニット20側で生じた振動が、測量ユニット30のレーザースキャナ31に向かう際に、まず、第2プレート42で減衰された後、剛性の異なる第1プレート41においても減衰されることとなる。これにより、レーザースキャナ31が共振するのを抑えて、計測データの精度を向上させることができる。
【0072】
すなわち、第1プレート41と第2プレート42とで、振動特性が異なるように剛性を変えているので、飛行ユニット20からレーザースキャナ31に向かう振動は、第1プレート41と第2プレート42との高い減衰能で減衰され、且つ共振による振動増幅が抑制されて、レーザースキャナ31への振動伝達が抑制でき、計測データの精度を向上させることができる。
【0073】
なお、本実施形態では、測量側ブラケット46の傾斜板46a及び当接板46bを測量ユニット30の内方側に向かって斜め下方に傾斜させ、飛行側ブラケット45の傾斜板45a及び当接板45bを飛行ユニット20の内方側に向かって斜め下方に傾斜させているが、この形態に限定するものではない。例えば、測量側ブラケット46の傾斜板46a及び当接板46bを測量ユニット30の外方側に向かって斜め下方に傾斜させ、飛行側ブラケット45の傾斜板45a及び当接板45bを飛行ユニット20の外方側に向かって斜め下方に傾斜させた構成であってもよい。
【0074】
また、飛行ユニット20から測量ユニット30に向かう振動を、飛行側ブラケット45及び測量側ブラケット46の当接面の傾斜方向に分散させることができ、振動を抑えることができる。そして、飛行ユニット20と測量ユニット30とを連結させるのにあたって、測量側ブラケット46の当接面の傾斜に沿って、飛行側ブラケット45の当接面を移動させるだけで、飛行ユニット20と測量ユニット30との横方向の位置決めを容易に行うことができる。
【0075】
また、飛行側ブラケット45を、剛性の異なる傾斜板45a及び当接板45bを積層させた構成とするとともに、測量側ブラケット46を、剛性の異なる傾斜板46a及び当接板46bを積層させた構成とすることで、飛行ユニット20から測量ユニット30に向かう振動を、繊維強化樹脂製の傾斜板45a,46a及び当接板45b,46bにおいても減衰させることができる。