【発明が解決しようとする課題】
【0005】
ところで、本願発明者の知見によれば、ターボチャージャの運転時において、スクロール流路を形成するタービンハウジングには、タービンハウジング内の温度分布に起因して曲がり変形(熱変形)が発生する。特に、タービンハウジングにおけるスクロール流路形成部が板金製である場合には、大きな曲がり変形が発生しやすい。
【0006】
例えば、
図7〜
図9に示すように、タービンハウジング004が、板金製の第1ハウジング030と板金製の第2ハウジング032の2層構造のハウジングである場合には、スクロール流路014を形成する第1ハウジング030に
図8に示すような温度分布が生じる。
図8に示すように、第1ハウジング030は、軸受ハウジング006側において相対的に低温になる傾向があり、この温度分布に起因して
図7及び
図8に示した矢印A方向への曲がり変形が第1ハウジング030に発生する。
【0007】
このため、
図7〜
図9に示したターボチャージャでは、第1ハウジングの一部であるシュラウドとタービンホイールとのチップクリアランスを十分に大きく取らなければ、上記曲がり変形によって、タービンハウジングの舌部(2層構造の場合は第1ハウジングにおけるスクロール流路の巻き終わり部分)側の位置P1付近でシュラウドがタービンホイールに接触する可能性があった。
【0008】
したがって、斯かる接触を回避するためには、曲がり変形が生じても該接触が生じないように、タービンホイールとシュラウドとのチップクリアランスを大きく取る必要があり、このクリアランスに起因する損失によってタービン効率の向上が妨げられていた。
【0009】
この点、特許文献1に記載のターボチャージャでは、スクロール部本体の熱変形によるチップクリアランスの変化を防止することを目的の一部としているものの、スクロール部本体がシュラウドに直接接続されており、スクロール部本体の熱変形がチップクリアランスの変化に与える影響を低減する効果は限定的であった。このため、タービンホイールとシュラウドとの接触を回避しつつ高いタービン効率を実現することは困難であった。
【0010】
本発明は、上述したような従来の課題に鑑みなされたものであって、その目的とするところは、タービンホイールとシュラウドとの接触を回避しつつ高いタービン効率を実現することを可能とするターボチャージャを提供することである。
【課題を解決するための手段】
【0011】
(1)本発明の少なくとも一実施形態に係るターボチャージャは、エンジンの排気ガスによって回転するよう構成されたタービンホイールと、前記タービンホイールを収容し、前記タービンホイールへ供給する排気ガスが流れるスクロール流路の少なくとも一部を形成するタービンハウジングと、前記タービンホイールのシャフトを回転可能に支持する軸受を収容し、前記タービンハウジングに連結された軸受ハウジングと、前記タービンホイールのブレードの先端に対向する対向面を有し、前記タービンホイールを囲繞するように構成されたシュラウドであって、前記タービンハウジングに対して隙間を存して前記タービンハウジングの内側に設けられたシュラウドと、前記タービンホイールの軸方向において前記スクロール流路よりも前記軸受ハウジング側にて前記タービンハウジングと前記軸受ハウジングの少なくとも一方に支持されたマウントと、前記マウントと前記シュラウドとを接続する接続部と、を備える。
【0012】
上記(1)に記載のターボチャージャによれば、スクロール流路を流れる排気ガスによってタービンハウジングに温度分布が生じてタービンハウジングが曲がり変形(熱変形)しても、シュラウドがタービンハウジングとは別部品で構成されるとともにタービンハウジングに対して隙間を存して設けられているため、シュラウドとタービンホイールとの間のチップクリアランスがタービンハウジングの上記曲がり変形の影響を基本的に受けない。このため、シュラウドとタービンホイールとの間のチップクリアランスを小さくしても、タービンハウジングの上記曲がり変形に起因するシュラウドとタービンホイールとの接触を回避することができる。したがって、タービンホイールとシュラウドとの接触を回避しつつ高いタービン効率を実現することができる。
【0013】
(2)幾つかの実施形態では、上記(1)に記載のターボチャージャにおいて、前記接続部の各々は、前記タービンホイールの軸に垂直な断面形状が翼形状である。
【0014】
上記(2)に記載のターボチャージャによれば、上記(1)に記載のターボチャージャにおいて、タービンホイールの軸に垂直な断面形状が翼形状である接続部によって、シュラウドとマウントとの間を流れる排気ガスが整流されるため、より高いタービン効率を実現することができる。
【0015】
(3)幾つかの実施形態では、上記(1)又は(2)に記載のターボチャージャにおいて、前記シュラウドと前記タービンハウジングとの前記隙間をシールするシールリングを更に備える。
【0016】
上記(3)に記載のターボチャージャによれば、上記(1)又は(2)に記載のターボチャージャにおいて、シュラウドとタービンハウジングとの上記隙間からの排気ガスの漏れを上記シールリングによって抑制することができる。これにより、上記隙間からの排気ガスの漏れに起因するタービン効率の低下を抑制することができるため、より高いタービン効率を実現することができる。
【0017】
(4)幾つかの実施形態では、上記(1)乃至(3)の何れか1項に記載のターボチャージャにおいて、前記マウントは、前記タービンハウジングと前記軸受ハウジングとに挟持されている。
【0018】
上記(4)に記載のターボチャージャによれば、ターボチャージャが本来的に備えるタービンハウジングと軸受ハウジングとによってマウントを挟持することにより、簡易な構成で上記(1)乃至(3)に記載のターボチャージャを実現することができる。
【0019】
(5)幾つかの実施形態では、上記(4)に記載のターボチャージャにおいて、前記マウントは、環状の平板であり、前記マウントの外周側部分は、前記タービンハウジングと前記軸受ハウジングとに挟持されている。
【0020】
上記(5)に記載のターボチャージャによれば、環状の平板の厚さを適切に設定することにより、接続部及びシュラウドを支持するためのマウントの剛性を確保しつつ、環状の平板の片面を利用してスクロール流路の一部を形成することができる。また、環状の平板の片面を利用してスクロール流路の一部を形成した場合であっても、環状の平板の厚さ方向とタービンホイールの軸方向が一致していれば、タービンホイールの軸方向のマウントの熱伸び量を小さくすることができるため、タービンホイールとシュラウドの間のチップクリアランスの変動を抑制することができる。
【0021】
(6)幾つかの実施形態では、上記(5)に記載のターボチャージャにおいて、前記タービンハウジングと前記軸受ハウジングとを締結するボルトを更に備え、前記マウントの外周側部分は、前記ボルトの軸力によって前記タービンハウジングと前記軸受ハウジングとに挟持されている。
【0022】
上記(6)に記載のターボチャージャによれば、タービンハウジングと軸受ハウジングとをボルトによって締結することでマウントがタービンハウジング及び軸受ハウジングに取り付けられるため、ボルトの締結力を適切に設定することにより、簡易な構成でマウントをタービンハウジング及び軸受ハウジングに固定することができる。
【0023】
(7)幾つかの実施形態では、上記(4)に記載のターボチャージャにおいて、前記マウントは、前記タービンホイールの軸方向に延在する筒状部と、前記筒状部から前記筒状部の外周側に突出する突出部と、を含み、前記マウントの突出部は、前記タービンハウジングと前記軸受ハウジングとに挟持されている。
【0024】
上記(7)に記載のターボチャージャによれば、筒状部の軸方向長さに応じた位置でマウントをタービンハウジングと軸受ハウジングとにより挟持することができる。
【0025】
(8)幾つかの実施形態では、上記(7)に記載のターボチャージャにおいて、前記タービンハウジングに設けられたフランジと前記軸受ハウジングに設けられたフランジとを挟持することにより連結する挟持部材を更に備え、前記マウントの突出部は、前記挟持部材の挟持力によって前記タービンハウジングと前記軸受ハウジングとに挟持されている。
【0026】
上記(8)に記載のターボチャージャによれば、タービンハウジングと軸受ハウジングとを挟持部材によって挟持することでマウントがタービンハウジング及び軸受ハウジングに取り付けられるため、挟持部材の挟持力を適切に設定することにより、簡易な構成でマウントをタービンハウジング及び軸受ハウジングに固定することができる。
【0027】
(9)幾つかの実施形態では、上記(1)乃至(8)の何れか1項に記載のターボチャージャにおいて、前記マウントは、環状部材であり、前記軸受ハウジングに形成された環状の段差部にインローで嵌合する嵌合部を有する。
【0028】
上記(9)に記載のターボチャージャによれば、接続部を介してマウントに支持されたシュラウドの軸心と、軸受に支持されたシャフトの軸心とを、簡易な構成で一致させることができる。
【0029】
(10)幾つかの実施形態では、上記(1)乃至(9)の何れか1項に記載のターボチャージャにおいて、前記タービンホイールを収容するとともに前記スクロール流路の少なくとも一部を形成する板金製の第1ハウジングを前記タービンハウジングが含み、前記シュラウドは、前記第1ハウジングに対して前記隙間を存して前記第1ハウジングの内側に設けられている。
【0030】
タービンホイールを収容するとともにスクロール流路の少なくとも一部を形成する板金製の第1ハウジングをタービンハウジングが含む場合、第1ハウジングを含むタービンハウジング全体が鋳物で構成されている場合と比較して、第1ハウジングには、スクロール流路を流れる排気ガスの影響で大きな曲がり変形(熱変形)が発生しやすい。このような場合に、上記(10)に記載のように、シュラウドを板金製の第1ハウジングに対して隙間を存して第1ハウジングの内側に設けることにより、斯かる曲がり変形の影響をシュラウドが基本的に受けなくなる。このため、シュラウドとタービンホイールとの間のチップクリアランスを小さくしても、板金製の第1ハウジングの上記曲がり変形に起因するシュラウドとタービンホイールとの接触を回避することができる。したがって、タービンホイールとシュラウドとの接触を回避しつつ高いタービン効率を実現することができる。
【0031】
(11)幾つかの実施形態では、上記(10)に記載のターボチャージャにおいて、前記タービンハウジングは、前記第1ハウジングを収容する板金製の第2ハウジングを更に有する2層構造のハウジングである。
【0032】
上記(11)に記載のターボチャージャによれば、タービンハウジングが2層構造のハウジングであるため、何らかの要因でタービンホイールが破損して破片が飛散しても、1層構造の場合と比較して、タービンハウジング4外への破片の飛散をより確実に防ぐことができる。
【0033】
(12)幾つかの実施形態では、上記(11)に記載のターボチャージャにおいて、前記タービンホイールを通過した排気ガスを案内するように、前記第2ハウジングと一体で構成された出口案内筒と、前記第1ハウジングが前記出口案内筒に対して前記タービンホイールの軸方向にスライド可能となるように、前記第1ハウジングと前記出口案内筒の隙間をシールするピストンリングと、を更に備える。
【0034】
上記(11)に記載のようにタービンハウジングが第1ハウジングと第2ハウジングを含む2層構造のハウジングである場合には、スクロール流路の少なくとも一部を形成する第1ハウジングの方が、第2ハウジングよりも相対的に温度が上昇して熱伸び量が大きくなる。このため、何も工夫しなければ、第1ハウジングと第2ハウジングの接続部分に応力が集中して破損が生じる恐れがある。このため、上記(12)に記載のターボチャージャでは、第2ハウジングと一体で構成された出口案内筒に対して、第1ハウジングが軸方向にスライド可能となるように、第1ハウジングと出口案内筒の隙間をシールするピストンリングを備えている。これにより、第1ハウジングと出口案内筒との隙間からの排気ガスの漏れを抑制しつつ、第1ハウジングと第2ハウジングとの熱伸び量の差に起因する破損を回避することができる。
【0035】
(13)幾つかの実施形態では、上記(10)に記載のターボチャージャにおいて、前記タービンハウジングは、1層構造のハウジングであり、前記シュラウドの板厚は、前記第1ハウジングの板厚より大きい。
【0036】
上記(13)に記載のようにタービンハウジングが1層構造のハウジングである場合であっても、シュラウドの板厚を第1ハウジングの板厚より大きくすることにより、第1ハウジングの板厚をシュラウドの板厚より大きくする場合と比較して、タービンホイールが破損したときに、タービンホイールの破片を少ない材料で効果的に受け止めることができる。
【0037】
(14)幾つかの実施形態では、上記(13)に記載のターボチャージャにおいて、前記シュラウドの板厚は、前記第1ハウジングの板厚の2倍以上である。
【0038】
上記(14)に記載のターボチャージャによれば、第1ハウジングの板厚をシュラウドの板厚より大きくする場合と比較して、タービンホイールが破損したときに、タービンホイールの破片を少ない材料でより効果的に受け止めることができる。