【実施例】
【0043】
実施例1
細胞代謝の連続モニタリング
本明細書で説明されるシステムは、酸素欠乏、神経保護薬の影響などに対応する代謝状態の変化を判断するべく非常に細かいスケールでのNADHレベルの変化の連続モニタリングを可能にする(
図1及び
図5)。
【0044】
ニコチンアミドアデノシンジヌクレオチド(NADH)は、好気性呼吸でのATP産生に関する酸化還元反応に関係する。NADHは、解糖及びクエン酸(TCA)サイクル中にミトコンドリアで産生される。NADHは、ミトコンドリア膜でNAD+に酸化されてこのプロセスにおいてATPを産生する。このプロセスは、限定はされないが卒中に起因する虚血を含む状態では中断される。低酸素状態では、細胞内のNADH蓄積と持続的な酸素欠乏が、結果的に細胞死を引き起こし、NADHの完全な分解につながる場合がある。NADHレベルのこれらの変動は、虚血状態での細胞の生存性及び脆弱性の評価を可能にする。NADHレベルの変動は、NADHからの蛍光発光を測定することによって評価されてもよい。NAD+とNADHとの両方は、UVスペクトルでの強い吸収を有するが、それらは蛍光特徴が異なる。NADHは、遊離状態対その結合状態(シトクロムへの)に応じて波長440/460nm付近の紫/青色バンドにおいて強い蛍光を呈する。この蛍光のリアルタイムの測定は、NADHレベルの変化のモニタリング、NADHの代謝状態の評価、これにより、細胞代謝のモニタリングを可能にする。
【0045】
組織を励起するために、400psのパルス幅(FWHM)で1KHzで作動する、波長350nmで放出するQスイッチNd:YaGレーザ(Teem Photonics PNVM02510)を使用した。パルスあたりの全エネルギーは5μJを越えず、NADHの光退色を防いだ。励起光は、特注の三つ叉に分岐している光プローブを用いて組織に送達された。プローブは、励起光の送達用の600ミクロン中央ファイバが、蛍光を集光するために12本の200ミクロンファイバで取り囲まれたものであった(
図3)。12本の集光ファイバからの一つおきのファイバが一緒に束ねられて2つのチャネルを形成した。1つの集光チャネル/バンドルが100msごとに蛍光スペクトルを測定する分光計(Ocean Optics, Maya)に接続され、他のチャネル/バンドルがビームスプリッタ(デマルチプレクサ)に接続された。ビームスプリッタは波長452nmで有意に遊離蛍光と結合蛍光を分離し、これはMCP−PMTと分光計との両方で記録された。
【0046】
ORで動物を屠殺した後でウサギ脳を取り出し、低温の酸素を豊富に含むクレベリンゲル液中で実験室に輸送した。皮質を分離し、組織の生存を保つために95%のO
2と5%のCO
2との混合ガスを連続的にバブリングしている状態のクレベリンゲル液に入れた。プローブを、
図5に示すように蛍光を記録するために組織上に調整した。組織からの蛍光が平衡化され、横ばいになるまで、ベースラインNADH(結合及び遊離)を記録した。およそ30分後に、ミトコンドリア中のシトクロムへのNADHの結合を阻止する計量された分量の50nMのロテノンを加えた。さらなる濃度のロテノンを10分ごとに加えた。
【0047】
ウサギ脳組織に対するロテノンの種々の濃度の影響を記録した(
図6)。結果は、遊離NADHと結合NADHとの両方の濃度をリアルタイムでマッピングし(〜100ms毎)、外部刺激への応答を記録することができることを示した。
図6は、2時間以上の時間にわたるNADH蛍光レベルの連続プロットを示す。濃度50nMのロテノンを溶液に加えると、NADHの消費及びその後の蓄積の阻止に起因して予想通りにNADHレベルの増加が観察された。ロテノンの濃度が増加するのに伴い、NADH蛍光が予想通りに増加した。80分間で、液体を通して連続的にバブリングされていたガスが止められ、次いで、再開されて、組織におけるNADHの蓄積に対する低酸素症の影響と、酸素供給が復旧した後のその後続する消費の評価を可能にした。これは、本明細書で説明されるTRLIFSシステムが代謝状態をリアルタイムでモニタリングできることを実証した。
【0048】
実施例2
損傷後の組織生存性の判定
虚血性脳卒中後の脳の広い面積にわたってNADHレベルを記録することは、酸素の欠如によりショック状態にあるかもしれないがアポトーシスされなかった、したがって救出できる、生存可能な細胞の数の評価を可能にする。これらの細胞は半影帯として知られる領域の大半をなし、卒中処置の重要な目標は、できるだけ多くのニューロンを救出しつつ半影帯のサイズを減らすことである。半影帯領域全体にわたるNADHのモニタリングは、このために設計された種々の介入の効果の評価を可能にする。
【0049】
組織を励起するために、400psのパルス幅(FWHM)で1KHzで作動する、波長350nmで放出するQスイッチNd:YaGレーザ(Teem Photonics PNVM02510)を使用した。パルスあたりの全エネルギーは5μJを越えず、NADHの光退色を防いだ。励起光は、特注の三つ叉に分岐している光プローブを用いて組織に送達された。プローブは、励起光の送達用の600ミクロン中央ファイバが、蛍光を集光するために12本の200ミクロンファイバで取り囲まれたものであった。12本の集光ファイバからの一つおきのファイバが一緒に束ねられて2つのチャネルを形成した。1つの集光チャネル/バンドルが100msごとに蛍光スペクトルを測定する分光計(Ocean Optics, Maya)に接続され、他のチャネル/バンドルがビームスプリッタ(デマルチプレクサ)に接続された。
【0050】
脳の動脈に凝血塊を注入することによってウサギ脳に卒中が引き起こされた、ウサギ脳卒中モデルを用いた。ウサギは、神経系の損傷をテストした後で屠殺した。脳を取り出し、低温O
2飽和クレベリンゲル液中で実験室に輸送した。実験室で、梗塞を生じた皮質を脳の残りから分離し、95%のO
2と5%のCO
2との混合ガスをバブリングしている状態のクレベリンゲル液に入れた。皮質の縁からの単一の読取値を記録し、プローブを
図7に示すように皮質の表面の上で動かした。組織サンプルから蛍光強度を記録した。組織サンプルをTTC(2,3,5−トリフェニルテトラゾリウム)の溶液に浸し、次いで、生存可能な細胞に吸収されたとき、その細胞が赤くなった。TTCは、現在のところ、細胞の生存性をテストするための最も基準になる検査である。TTCにより染色された組織を記録した蛍光強度と比較した。
【0051】
健康な組織(
図7の赤色に染まった領域)から死んだ組織(
図7の染まっていない領域)へのNADH自己蛍光の滑らかな勾配が観察された。TTC染色で見られるように、生存可能な脳組織から死んでいる脳組織への急激な変化ではなく、蛍光強度(
図7)は徐々に変化し、死んでいると示された領域における生存可能な細胞の存在を示すことも注目された。
【0052】
実施例3
血漿中の薬剤/代謝産物レベルを判定するための蛍光の使用
いくつかの抗がん剤は、高い投与量で有毒であり、より低い投与量でそれらの有効性を失う。薬剤が最も効果的である薬剤のこの最適血漿濃度(治療濃度域)は、身長、体重、代謝、及び民族の多様性に起因して患者間で異なる。これらの多様性があるにもかかわらず、現在のところ、薬剤投与量は、患者の体重及び標準化された薬物動態プロファイルに基づいて計算される。血漿薬剤レベルを判定する迅速かつ低価格な方法は、個々の患者の投与量の最適化を可能にする。薬剤の血漿レベルは、蛍光分光法を用いて検出されてもよい。メトトレキサートなどの抗がん剤のうちのいくつかは蛍光特性を有することが知られている。本明細書で、出願人らは、本明細書で説明されるTRLIFSシステムを用いて、寒天(
図8)中のメトトレキサート(MTX)の濃度を変化させることが、結果的にMTXの蛍光の対応する変化を生じたことを示した。
【0053】
寒天ゲルを励起するために、400psのパルス幅(FWHM)で1KHzで作動する、波長350nmで放出するQスイッチNd:YaGレーザ(Teem Photonics PNVM02510)を使用した。パルスあたりの全エネルギーは、NADHの光退色を防ぐ5μJを越えなかった。励起光は、特注の三つ叉に分岐している光プローブを用いてゲルに送達された。プローブは、励起光の送達用の600ミクロン中央ファイバが、蛍光を集光するために12本の200ミクロンファイバで取り囲まれたものであった。12本の集光ファイバからの一つおきのファイバが一緒に束ねられて2つのチャネルを形成した。1つの集光チャネル/バンドルが100msごとに蛍光スペクトルを測定する分光計(Ocean Optics, Maya)につながり、他のチャネル/バンドルがビームスプリッタ(デマルチプレクサ)に接続された。
【0054】
寒天ゲル中でMTXのシリアル希釈(25μg/mlから25ng/mlへ)を調製した。UV光に曝されたときのMTXは、さらなる蛍光型に変換される。UV光に曝されると、蛍光型が蓄積する。蛍光型を検出するために、飽和レベルに達するまで低蛍光型から蛍光型への変換を生じさせた。最終的な蛍光強度を記録し、濃度と比較した。20分のUV露光後のMTXの蛍光強度は、
図9に示すように寒天ゲル中のMTXの濃度の良好な指標である。
【0055】
実施例4
腫瘍の検出
レーザ誘起蛍光分光法(LIFS)は、インビボ診断のための有望な新しい付加的な技術を表す。蛍光分光法は、組織内の内因性フルオロフォア(標識なし)を励起し、発光を記録することに関係する。蛍光分光法は、定常状態又は時間分解蛍光分光法の2通りで採用される。時間分解測定は、蛍光強度の減衰を寿命の観点から分解し、したがって、蛍光強度の減衰の基礎となる動態についてのさらなる情報を提供する。時間分解測定はまた、蛍光強度に影響する場合がある組織内因性フルオロフォア(例えば血液)による吸収、光退色、又は任意の他の状態などの因子から独立している。別個の蛍光分子の弛緩動態の差異を反映する蛍光減衰特徴を測定することによって、時間分解測定は、重なるスペクトルを分解する能力を有し、蛍光測定の特異性を向上させる。
【0056】
出願人は、患者において、本明細書で説明されるTR−LIFSシステムが、手術中に神経膠腫(高グレードと低グレードとの両方)を周囲の正常な脳組織から区別することができることを示す。この研究は、手術中に神経外科医−神経病理医チームが腫瘍と正常な脳とを迅速に見分ける能力を高めるためのTR−LIFSの可能性を確立するためである。
【0057】
機器装備:スペクトル分解される蛍光寿命測定を可能にする機器構成で実験を行った。装置の光学系及び電子機器回路のレイアウトの概略が
図1に示される。簡単にいえば、これは、a)励起光源として使用したパルスQスイッチNd:YaGレーザ(Teem Photonics、モデルTeem Photonics PNVM02510、λ=350nm、パルス幅=400ps FWHM、パルスレート=1KHz)、b)特注の滅菌可能な三つ叉に分岐している光ファイバプローブ(ニュージャージー州、Fiberguide)、c)随意的な高速前置増幅器(英国Photek製、モデルPA200−10、2GHz)を伴うゲートマルチチャンネルプレート光電子増倍管(MCP−PMT、英国Photek製、モデル210、立ち上がり時間=80ps)、e)デジタイザ(ADQ−108、SPDevices、Sveden、7Gサンプル/秒)、及びf)ラップトップコンピュータ、g)
図1に示す特注のデマクサ及び周辺電子装置、からなるものであった。機器は、個々のデバイスを収納するように内部が改造された標準内視鏡カート(70×70×150cm3)に収容されているので移動することができた。高電圧供給源及び前置増幅器電源などの使用される電子装置からのノイズレベルを確実に非常に低くするために、すべての機器は、医療グレードの絶縁トランス(Toroid(登録商標) ISB−170A)を用いて主電源から遮蔽される。
【0058】
送達カテーテル:特注の二叉に分岐している滅菌可能なプローブで光の送達及び集光を行った。プローブは、開口数(NA)0.11のノンソラライジング(non−solarizing)シリカ/シリカステップインデックス型ファイバからなるものであった(ニュージャージー州ニュージャージー、Fiberguide)。これは、12本のコア直径200μmのファイバの集光リングによって取り囲まれるコア直径600μmの中央励起ファイバを有するものであった。すべての集光ファイバを一緒に束ね、組み合わせて、単一の600ミクロンのファイバにした。励起ファイバと集光ファイバとの中心間分離は480μmであった。プローブは、剛性ステンレス鋼管からなる7cmの遠位部以外は、その全長(3メートル)にわたって可撓性であった。これは、プローブの設置及び顕微操作を容易にした。両側部に2つのスリットを有するスペーサをプローブの遠位端の前に追加した。これは、組織から一定の距離を保ちつつプローブが組織と接触することを可能にした。スペーサ上の2つのスリットは、外科医がクリアな視界を維持するために吸引管を適用することを可能にした。レーザ光は、標準SMAコネクタでプローブの照射チャネルに連結され、一方、集光チャネルの遠位端は、分光器への連結を容易にするために直線形に形成された。組織の励起後に、放出された蛍光を収集し、バンドル1によってデマクサの入口スリットに誘導し、バンドル2を介して分光計に誘導した。次いで、シグナルをMCP−PMTによって検出し、高速前置増幅器によって増幅し、最終的にデジタルオシロスコープによって8ビット分解能でデジタル化した。システムの全時間分解能はおよそ150psであった。
【0059】
光ファイバプローブは、前述のようにプローブの集光効率を最適化するために、かつ、プローブを組織の上で安定させるために、スペーサの助けにより、露出された脳組織試験片の3mm上に位置決めした。各サンプルの時間分解発光を、7つの別個の波長域(355(<365nm))、365〜410nm、415〜450nm、450〜490nm、500〜560nm、560〜600nm、及び>600nm)スペクトル範囲で記録した。サンプルを励起するためのレーザの(ファイバの先端での)エネルギー出力は5.0μJ/パルスに調整した。分光分析後に、正確な部位での組織の生検を行い、病理学検査に送った。
【0060】
各生検サンプルを10%緩衝ホルマリン中に固定した。組織サンプルをスライド上に固定し、H&Eで染色した。すべての生検試験片は、病理学者によって調べられ、元の蛍光分光法測定結果と相互に関連付けられた。組織学的に、神経膠腫は、WHOのグレード分けに基づいて、低グレード:乏突起膠腫、オリゴデンドロアストロサイトーマ、びまん性星細胞腫(WHOグレードII)、中グレード:退形成性星細胞腫(WHOグレードIII)、及び高グレード:退形成性乏突起膠腫、退形成性乏突起星細胞腫、及び多形性膠芽腫(グレードIII〜IV)に分類された。この研究での分光学的分類の目的上、神経膠腫は、低グレード神経膠腫(LGG)(グレードI及びII)及び高グレード神経膠腫(HGG)(グレードIII及びIV)としてグループ分けされた。
【0061】
TR−LIFSデータ分析:TR−LIFSとの関連で、固有蛍光インパルス応答関数(IRF)、h(n)は、蛍光減衰の真の動態を説明する。IRFは、測定された蛍光過渡応答からの測定された入力レーザパルスの数値逆重畳によって回収された。逆重畳のためにラゲール展開技術を用いた。ラゲール展開技術は、一連の理由のために、より従来型の多指数関数的曲線の当てはめを越えて選択された。これは蛍光IRのより速い逆重畳を可能にする。ラゲールの基本は正規直交であるため、これは、減衰関数の独自の完全な展開を提供する。この技術はまたノンパラメトリックであり、したがって、減衰の関数式の優先的な仮定を必要としない。その結果、これは、生体組織などの未知の複雑な弛緩動態を有する蛍光システムの近似を可能にする。この方法は、実験的な入力・出力データからの動的システムの固有特性の直接回収を可能にする。この技術は、IRFを展開し、ラゲール展開係数(LEC)を推定するのに正規直交ラゲール関数を用いる。正規化された蛍光スペクトルは、離散的な強度値をピーク発光での強度値で割ることによって得られた。さらに、蛍光減衰の時間的な動態を特徴付けるために、2組のパラメータ、すなわち、1)IRFがその最大値に減衰する補間された時間として計算される平均寿命(τ
λ)、及び、2)対応するLECの正規化された値、を用いた。したがって、発光波長λ
Eの関数としての各サンプルからの蛍光の完全な説明は、離散的な波長での分光学的パラメータの組のバリエーションによって与えられた(発光強度I
λ、蛍光発光の平均寿命τ
fλ、及びラゲール係数LEC
f)。この蛍光減衰を特徴付けるための分析的手法は、我々の研究グループによって最近開発され、他で詳細に説明された。出願人らは、寿命及びラゲール係数値を回収することができた。
【0062】
上述の種々の方法及び技術は、本願を実行する多くの方法を提供する。もちろん、必ずしも説明されたすべての目的又は利点が本明細書で説明される任意の特定の実施形態に従って達成することができるとは限らないことが理解される。したがって、例えば、方法は、必ずしも本明細書で教示又は提案される他の目的又は利点を達成せずに、本明細書で教示される1つの利点又は利点の群を達成する又は最適化する様態で行うことができることを当業者は認識するであろう。種々の代替が本明細書で説明される。いくつかの好ましい実施形態が1つの、別の、又はいくつかの特徴を特異的に含み、一方、他の実施形態が1つの、別の、又はいくつかの特徴を特異的に除外し、一方、さらに他の実施形態が1つの、別の、又はいくつかの有利な特徴を含むことによって特定の特徴を緩和することが理解される。
【0063】
さらに、当業者は、異なる実施形態からの種々の特徴の適用可能性を認識するであろう。同様に、前述の種々の要素、特徴、及びステップ、並びにこうした要素、特徴、又はステップのそれぞれに関する他の公知の均等物を、本明細書で説明される原理に係る方法を実施するために当業者が種々の組み合わせで用いることができる。種々の要素、特徴、及びステップのうちのいくつかが特異的に含まれ、他のものが様々な実施形態において特異的に除外されることになる。
【0064】
本願は特定の実施形態及び実施例との関連で開示されているが、本願の実施形態が具体的に開示された実施形態を越えて他の代替的な実施形態及び/又はその使用及び修正及び均等物に延長されることが当業者によって理解されるであろう。
【0065】
いくつかの実施形態では、本願の特定の実施形態の説明との関連で(特に、以下の請求項の一部との関連で)用いられる「a」、「an」、及び「the」という冠詞及び類似の言及は、単数形と複数形との両方をカバーすると解釈することができる。本明細書での値の範囲の列挙は、その範囲内に入る各別個の値を個々に言及する簡潔な方法として役立つことだけを意図している。本明細書で他に指定のない限り、個々のそれぞれの値は、本明細書で個々に列挙されたかのように本明細書に組み込まれる。本明細書で説明されるすべての方法は、本明細書で他に指定のない限り或いは文脈によって明らかに相反しない限り、任意の適切な順序で行うことができる。特定の実施形態に関して本明細書で提供されるいずれかの及びすべての例又は例示的な言語(例えば、「など」)の使用は、本願をよりよく説明することだけを意図しており、別段に特許請求される本願の範囲に制限を課さない。本明細書での文言のいずれも、本願の実施に必須のどのような特許請求されない要素を示すようにも解釈されるべきではない。
【0066】
本願を実施するための発明者に既知のベストモードを含む本願の好ましい実施形態が本明細書で説明される。上記の説明を読めば当業者にはこれらの好ましい実施形態のバリエーションが明らかとなるであろう。当業者は、こうしたバリエーションを適宜用いることができると考えられ、本願は、本明細書で具体的に説明される以外の様態で実施することができる。したがって、本願の多くの実施形態は、準拠法によって認められる本願に付属の請求項で列挙される事項のすべての修正及び均等物を含む。さらに、本明細書で他に指定のない限り或いは文脈によって明らかに相反しない限り、そのすべての可能なバリエーションでの上述の要素の任意の組み合わせが本願によって包含される。
【0067】
本明細書で引用される文献、本、仕様書、刊行物、文書、物、及び/又は同様のものなどのすべての特許、特許出願、特許出願の公開、及び他の資料は、これに関連する任意の実行ファイルヒストリ、本明細書と一致しない又は矛盾するそのいずれか、若しくは本明細書に現在又は後で関連する請求項の最も広い範囲に関して制限する影響を有する場合があるそのいずれかを除いて、あらゆる目的のためにこの引用によりそれらの全体が本明細書に組み込まれる。単なる例として、説明、定義、及び/又は組み込まれた資料のいずれかに関連し、かつ本明細書に関連する用語の使用間に任意の不一致又は矛盾が存在することがあり、本明細書での説明、定義、及び/又は用語の使用が優先するものとする。
【0068】
本明細書で開示される本願の実施形態は本願の実施形態の原理の例証であることが理解される。採用することができる他の修正は本願の範囲内とすることができる。したがって、単なる例として、限定ではないが、本願の実施形態の代替的な構成を本明細書での教示に従って用いることができる。したがって、本願の実施形態は、図示及び説明されたものに正確に限定されない。
【0069】
参考文献
Butte, P.V, Fang, Q., Jo, J.A., Yong, W.H., Pikul, B.K., Black, K.L., & Marcu, L.(n.d.).Intraoperative delineation of primary brain tumors using time−resolved fluorescence spectroscopy.Journal of Biomedical Optics, 15(2), 027008.doi:10.1117/1.3374049
Butte, P.V, Pikul, B.K., Hever, A., Yong, W.H., Black, K.L., & Marcu, L.(2005).Diagnosis of meningioma by time−resolved fluorescence spectroscopy.Journal of Biomedical Optics, 10(6), 064026.doi:10.1117/1.2141624
Butte, P.V., Mamelak, A.N., Nuno, M., Bannykh, S.I., Black, K.L., & Marcu, L.(2010).Fluorescence lifetime spectroscopy for guided therapy of brain tumors.NeuroImage, 54, S125-S135.doi:10.1016/j.neuroimage.2010.11.001
Marcu, L., Jo, J.a, Butte, P.V, Yong, W.H., Pikul, B.K., Black, K.L., & Thompson, R.C.(2004).Fluorescence lifetime spectroscopy of glioblastoma multiforme.Photochemistry and Photobiology, 80, 98-103.doi:10.1562/2003−12−09−RA−023.1
Yong, W.H., Butte, P.V, Pikul, B.K., Jo, J.A., Fang, Q., Papaioannou, T., ... Marcu, L.(2006).Distinction of brain tissue, low grade and high grade glioma with time−resolved fluorescence spectroscopy.Frontiers in Bioscience: A Journal and Virtual Library, 11(4), 1255-63.Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16368511
Jo, J.a, Fang, Q., Papaioannou, T., & Marcu, L.(2004).Fast model−free deconvolution of fluorescence decay for analysis of biological systems.Journal of Biomedical Optics, 9(4), 743-52.doi:10.1117/1.1752919
Lakowicz, J.R.(2006).Principles of fluorescence spectroscopy (3rd ed., p.xxvi, 954 p.).New York: Springer.Retrieved from http://www.loc.gov/catdir/enhancements/fy0824/2006920796−b.html
Pogue, B.W., Pitts, J.D., Mycek, M.a, Sloboda, R.D., Wilmot, C.M., Brandsema, J.F., & O'Hara, J.a.(2001).In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy.Photochemistry and Photobiology, 74(6), 817-24.Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11783938
Schneckenburger, H.(1992).Fluorescence decay kinetics and imaging of NAD(P)H and flavins as metabolic indicators.Optical Engineering, 31(7), 1447.doi:10.1117/12.57704
Sun, Y., Phipps, J., Elson, D.S., Stoy, H., Tinling, S., Meier, J., ... Marcu, L.(2009).Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma.Opt Lett, 34(13), 2081-2083.doi:183277 [pii]