【実施例】
【0023】
[実施例1]
【化5】
【0024】
[中間体1cの合成]
反応フラスコ内にそれぞれ化合物1a(240.00g、0.88mol)、化合物1b(496.32g、1.76mol)、Pd(PPh
3)
4(20.35g、17.60mmol)、炭酸カリウム(302.52g、2.20mol)、トルエン(2400mL)、純水(1200mL)を投入する。窒素ガスを三回で抽出した後、加熱し始め、反応液温度が95-105℃に達し、この温度での反応を8-12h保持し、TLC及びHPLCをサンプリングして原料反応を完了する。加熱を停止し、温度が20-30℃に下降したところで抽出してろ過し、ろ過液が有機層と水層とに分けられた後、酢酸エチルで抽出し、有機層を合併し、水洗し、無水硫酸マグネシウムで乾燥し、抽出してろ過し、ろ過液を濃縮して暗い黄色の固体粗生成物を取得する。石油エーテルを再結晶化させ、灰白色の固体産物を取得した。収量が90%、純度が95%であった。
【0025】
[中間体1dの合成]
反応フラスコに相応比例の化合物1c(302g、0.78mol)、B(OEt)
3(142g、0.97mol)、n-BuLi/THF(1.6M、600mL)、無水THF(3000mL)を投入し、窒素ガスを三回で抽出した後、反応液を冷却して-75〜-65oCに下降させ、緩やかにn-BuLi/THF溶液を滴下して入れ、反応液温度を-75〜-65℃に制御し、滴下が完了した後、引き続いてこの温度反応を0.5-1h保持した。その後、所定量のB(OEt)
3を滴下して入れ、反応液温度を-75〜-65℃に制御し、滴下が完了した後、引き続いてこの温度反応を0.5-1h保持した後、反応液を室温に移して自然加温で4-6h反応し、そうして2M稀塩酸を投入し、pH値を2-3に調節し、約1h攪拌した後、反応を停止する。酢酸エステルを投入して、水層を抽出してEAで抽出し、有機層を合併し、無水硫酸マグネシウムで乾燥し、抽出してろ過し、ろ過液を濃縮して灰白色の固体産物を取得した。純度が95%、収量が62.5%であった。
【0026】
[中間体1fの合成]
反応フラスコ内に化合物1d(150g、0.43mol)、化合物1e(500g、0.86mol)、Pd(PPh
3)
4(5.0g、0.44mmol)、炭酸カリウム(130g、0.92mol)、トルエン(1000mL)、純水(500mL)を投入し、窒素ガスを三回で抽出した後、加熱し始め、反応液温度が95-105℃に達した時、この温度反応を8-12h保持し、TLC及びHPLCをサンプリングし、原料反応を完了する。加熱を停止し、温度が20-30℃に下降したところで抽出してろ過し、ろ過液が有機層と水層にわけられた後、酢酸エステルで抽出し、有機層を合併し、無水硫酸マグネシウムで乾燥し、抽出してろ過し、ろ過液を濃縮して暗い黄色の固体の粗生成物を取得する。純度が80%、収量が78.1%であった。
【0027】
[中間体1gの合成]
反応フラスコ内に化合物1f(210g、0.42mol)、NBS(135g、0.71mol)、DMF(5L)を投入する。窒素ガスを三回で抽出した後、加熱し始め、反応液温度が60-65℃に達した時、この温度反応を6-8h保持し、TLC及びHPLCをサンプリングし、原料反応を完了する。加熱を停止し、温度が20-30℃に下降したところで反応液を氷水に入れ、暗い黄色の固体を析出させて、抽出しろ過して黄色の固体が得られ、火干で1gの粗生成物を取得する。粗生成物にDCM/MeOHを投入し、溶液が略混濁した後、引き続いて約30min攪拌し、大量の固体を析出し抽出してろ過し、浅黄色の固体産物を取得した。収量が約54.05%、純度が98.5%であった。
【0028】
1HNMR(300MHz,CDCl
3)δ8.64(d,J=8.8Hz,2H),7.99−7.90(m,4H),7.87(t,J=1.6Hz,1H),7.78(dd,J=9.3,2.3Hz,6H),7.61(ddd,J=8.8,6.5,1.1Hz,2H),7.56−7.48(m,6H),7.46−7.38(m,4H).
【0029】
13CNMR(76MHz,CDCl
3)δ142.67(s),142.03(s),141.26(s),140.69(s),137.83(s),137.52(s),131.87(s),131.24(s),130.44(s),129.09(s),128.80(s),128.38−127.40(m),127.18(s),126.05−125.21(m),123.08(s),77.74(s),77.31(s),76.89(s),30.10(s).
【0030】
[化合物1の合成]
500ml三口フラスコ内に、化合物1g(9.5g、16.92mmol)、化合物1h(6.41g、30.51mmol)、Pd(PPh
3)
4(1.5g、1.3mmol)、炭酸カリウム(5.84g、42.3mmol)、トルエン(150mL)、純水(75mL)を順次投入する。窒素ガスを三回で抽出した後、105℃で反応する。液相を検出して、反応時間を約12h程度とする。反応の開始時、反応液が触媒剤のカーキとなった後、次第に黄色の溶液に変わり、反応を停止した後、上層が澄明な浅黄色で下層が水となる。反応の停止後、濾過して、酢酸エステルで生成物がなくなるまでろ滓を洗浄し、ろ過液を収集し、回転乾燥し、大量の灰白色の固体を析出させ、ろ滓を収集して乾燥し、目的産物を取得する。純度が98%であった。真空で昇華させることにより純度が99.5%の灰白色の固体粉末を取得した。
【0031】
1H-NMR(300MHz,CDCl
3)δ8.10−8.21(d,2H),7.96−7.98(dd,3H),7.87−7.89(m,2H),7.81−7.86(m,4H),7.78−7.81(d,4H),7.62−7.65(m,2H),7.59(s,1H),7.51−7.57(m,5H),7.45−7.48(m,2H),7.36−7.43(m,7H),3.88(s,2H).
【0032】
[実施例2]
[化合物3の合成]
【化6】
【0033】
500ml三口フラスコ内に、化合物1g(9.5g、16.92mmol)、化合物3a(7.25g、30.46mmol)、Pd(PPh
3)
4(1.5g、1.3mmol)、炭酸カリウム(5.84g、42.3mmol)及びトルエン(150mL)、純水(75mL)を順次投入する。窒素ガスを三回で抽出した後、105℃で反応する。液相の検出により、反応時間を約12h程度とする。反応の開始時、反応液が触媒剤のカーキとした後、次第に黄色の溶液に変わり、反応を停止した後、上層が澄明な浅黄色で下層が水となる。反応の停止後、ろ過して、酢酸エステルで生成物がなくなるまでろ滓を洗浄し、ろ過液を収集して回転乾燥し、大量の灰白色の固体を析出させた後、ろ滓を収集して乾燥し、目的産物を取得する。純度が98%であった。真空で昇華させることにより純度99.7%の灰白色の固体粉末を取得した。
【0034】
1H-NMR(300MHz,CDCl
3)δ8.1−8.2(d,2H),7.96−7.99(dd,3H),7.88−7.89(m,2H),7.81−7.86(m,4H),7.78−7.81(d,4H),7.61−7.65(m,2H),7.59(s,1H),7.51−7.56(m,5H),7.46−7.48(m,2H),7.35−7.43(m,7H),1.61(s,6H).
【0035】
[実施例3]
[化合物89の合成]
【化7】
【0036】
反応容器内に、化合物1g(10.0g、17.8mmol)、化合物89a(7.1g、19.6mmol)、Pd(PPh
3)
4(432.2mg、0.35mmol)、K
2CO
3(6.14g、44.5mmol)、トルエン(300mL)及び水(150mL)を順次投入し、その機器の酸素を除去すると共に窒素ガスを入れて保護し、更に100℃に加熱して反応させたまま一晩保持する。DCM:PE=1:5の比率のドットプレートを使用し、産物のドットが波長365nmの紫外光で強烈な青色光を発し、Rf値が0.2程度であった。反応液をシリカゲルで抽出してろ過した後、ろ滓を酢酸エステルで(100mL)二回洗浄し、分液し、酢酸エステルで(100mL)で水層を一回で抽出し、有機層を合併した後、水(200mL)で有機相を一回洗浄した。回転乾燥により溶剤を除去した。粗生成物を120mlDCM/MeOHで再結晶化させ、抽出ろ過して黄色の固体粉末を13.1g取得した。その純度が98.7%で、収量が92.2%であった。真空で昇華させることで純度99.7%の浅黄色の固体粉末を取得した。m/z=797.
【0037】
図2及び
図3から分かるように、化合物89の水素スペクトラム及び炭素スペクトラムがその構造と完全に合致する。
図4の化合物89の高速液体クロマトグラムから分かるように、本発明による合成方法で調製された産物が高純度で得られた。
図5の化合物89の熱重量(TGA)分析のグラフから分かるように、この化合物の分解温度が摂氏400度を超えており、その高い熱安定性を示している。
【0038】
[実施例4]
[有機電界発光素子1の調製]
[本発明の有機電子材料によるOLED調製]
先ず、透明導電ITOガラス基板10(上面に陽極20を有する)が洗浄溶液及び脱イオン水、アルコール、アセトン及び脱イオン水により順次洗浄した後、酸素等のイオンで30秒処理した。
また、ITOで厚さ10nmのHAT-CN6を正孔注入層30として蒸発コーティングした。
【0039】
そうして、NPBを蒸発コーティングして、厚さ30nmの正孔伝送層40を形成した。
更に、正孔伝送層の上には、30nmの厚さの化合物3を発光層50として蒸発コーティングした。
【0040】
その後、発光層に厚さ15nmのTPBiを電子伝送層60として蒸発コーティングした。
最後に、それぞれ15nmのBPhen:Liを電子注入層70として、150nmのAlを素子陰極80として蒸発コーティングした。
調製された素子は、20mA/cm
2の作動電流密度での電圧が3.58Vであり、電流効率が3.21cd/Aに達し、1000cd/m
2の輝度でCIEy座標が0.0853となり、青色光を発射した。
【0041】
[素子の構造式]
【化8】
【0042】
[実施例5]
[有機電界発光素子2の調製]
その調製方法は、実施例4と同様に、化合物3を化合物89に変換することで、有機電界発光素子を調製した。
調製した素子は、20mA/cm
2の作動電流密度での電圧が3.84Vであり、電流効率が2.83cd/Aに達し、1000cd/m
2の輝度でCIEy座標が0.0888となり、青色光を発射した。
【0043】
[比較例1]
その方法は、実施例4と同様に、化合物3を以下の化合物TATに変換することで、比較用有機電場発光素子を作製した。
【0044】
TAT構造式
【化9】
【0045】
作製された素子は、20mA/cm
2の作動電流密度で電圧が4.00Vであり、電流効率が2.46cd/Aに達し、1000cd/m
2の輝度でCIEy座標が0.0952となり、青色光を発射した。
【0046】
実施例4及び5は、本発明の材料の具体的な応用であり、本発明は作製された素子が青色光を発射し、その効率及び輝度が比較例よりも高くなった。そのため、本発明による材料が高い安定性を備え、本発明で調製された有機電界発光素子が高い効率及び光純度を備えた。