【実施例】
【0075】
以下に、本発明を、実施例を用いてより詳細に説明する。以下の実施例は本発明を限定するものではない。
【0076】
[プラスミドの構築]
コントロールtagRFP mRNA(配列番号24)のIVTテンプレート(mRNAの合成用の鋳型DNA)は、T7Fwd5UTR 及びRev120Aのプライマーセットを用いて、プラスミドpSRT-tagRFPからPCR増幅した。最初に、FwdMCS及びRevMCSのプライマーセットを用いて、PCR-based site directed mutagenesisにより、pGEM T-easy (Promega)のマルチクローニングサイトを改変してpAM空ベクターを得た。次に、pCDFDuet-1 (Novagen)をNheI 及び AgeIで消化したDNA断片を平滑末端化し、pAM のDraI で消化したDNA断片に挿入し、pSM空ベクターを生成した。次に、pSRT空ベクターを造るために、オリゴDNAのペアであるCode5UTR 及びComp5UTRをアニーリングしてEcoRI-NcoIサイトに挿入し、次いで、アニーリングしたCode3UTR及びComp3UTR を、 XbaI-HindIII サイト(あるいは「部位」)に挿入した。最後に、tagRFPのコード配列を適切なプライマーセットを用いてPCR増幅して、NcoI及びBglIIで消化し、pSRTのNcoI及びBglIIサイトに挿入し、pSRT-tagRFPを得た。
【0077】
蛍光蛋白質に、核局在化シグナルであるM9を融合するために、hmAG1、hmKO2、tagBFPのコード領域を適当なプライマーセットを用いて増幅し、pSRT-tagRFPのtagRFP領域を置換した。次いで、M9配列をp4LambdaN22-3mEGFP-M9(参考文献[4])からのプライマーセットFwdM9及びRevSV40を用いて増幅し、BamHI及びBglIIで消化し、BglIIサイトに挿入した。プライマー及びオリゴヌクレオチドの配列は、以下の表1に示す。
【0078】
【表1A】
【表1B】
【0079】
[IVTテンプレートDNAの構築]
蛍光蛋白質の蛋白質コード領域、コントロール5’UTR及び3’UTR配列は、プラスミドあるいはオリゴDNAからの適当なプライマーを用いて、PCR増幅した。いくつかの5’UTR断片を、プラスミドから生成した。表2に示したDNA断片のペアは、アニールされ、18nt-2xFr15-ECFP (参考文献[3])のBamHI-AgeI サイトに挿入した。次いで、プライマーセットT7FwdA 及びRev5UTRを用いて、5’ UTRを増幅した。
【0080】
【表2】
【0081】
【表3】
【0082】
【表4】
【0083】
IVTのテンプレートを生成するために、それぞれ、10pmolの5’UTR断片及び3’UTR断片、及び50ngのレポーター蛋白質の蛋白質コード領域を、表2に示したT7FwdA及びRev120Aのプライマーセットを用いてPCR増幅して、連結した。表3に示した、他の5’UTRは、オリゴDNAから合成し、PCRで作製した5’ UTR 断片に替えて、2回目のPCRに添加した。コントロールmRNAまたはスクリーニングライブラリ調製するために、2回目のPCRでは、T7FwdA に替えて、それぞれ、T7Fwd5UTRまたはT7FwdBを使用した。3’UTRにmiRNAの標的配列を4コピー含むmRNAのIVTテンプレートは、表4に示したオリゴDNAを3’UTRのPCR断片の代わりに使用し、Rev120Aに替えて、Rev120A-2を使用してPCR増幅し、連結した。PCR産物は、MinElute PCR purification kit (QIAGEN)を用いて、製造者の指示に従って精製した。精製の前に、プラスミドから増幅されたPCR産物を、Dpn I (Toyobo)を用いて、37 °Cで30分消化した。プライマーの配列は、表1に示す。
【0084】
[mRNAの合成及び生成]
miRNA応答性レポーターmRNAは、修正されたプロトコル(下記の参考文献[1]を参照)において、MegaScript T7 kit (Ambion)を用いて調製した。この反応にいて、ウリジン三リン酸及びシチジン三リン酸に替えて、シュードウリジン-5’-三リン酸及び5-メチルシチジン-5’-三リン酸(TriLink BioTechnologies)をそれぞれ用いた。IVT(mRNA合成)反応の前に、グアノシン-5’-三リン酸は、Anti Reverse Cap Analog (New England Biolabs)で5倍希釈した。反応混合液を37度で4時間インキュベートして、TURBO DNase (Ambion)を添加した後、37度でさらに30分インキュベートした。得られたmRNAは、FavorPrep Blood / Cultured Cells total RNA extraction column (Favorgen Biotech) で精製し、Antarctic Phosphatase (New England Biolabs)を用いて、37度で30分インキュベートした。その後、RNeasy MiniElute Cleanup Kit (QIAGEN)により、さらに精製した。
【0085】
[miRNA応答性mRNAのスクリーニング]
miRNA応答性mRNAのスクリーニングは3ステップで行った。第1のステップでは、miRNA応答性reporter hmAG1 mRNA を、コントロールhmKO2 mRNAと共導入して、活性が細胞により大きく異なる8つのmiRNAを選択した。第2のステップでは、4つのmiRNA応答性レポーターmRNAの組み合わせ表を作成して、試験した。この組み合わせ表では、8つのmiRNAから選ばれた、どの2つのmiRNAのペアについても、4種類のマーカー蛍光蛋白質から選ぶことができる、あらゆる2つの組み合わせが網羅されるようにした。第3のステップでは、新たに4つのmiRNA応答性レポーターmRNAを組み合わせて、いくつかのセットについて、試験した。
【0086】
[細胞培養]
HeLa細胞及びMCF-7細胞は、10% Fetal Bovine Serum (FBS) 及び 1% Antibiotic Antimycotic Solution (Sigma)を含むダルベッコ改変イーグル培地(DMEM)-F12及びRPMI 1640でそれぞれ培養した。293FT細胞(invitrogen)は、10% FBS, 2 mM L-Glutamine (invitrogen), 0.1 mM Non-Essential Amino Acids (invitrogen), 1 mM Sodium Pyruvate (Sgima), 0.5% Penicillin-Streptomycin (invitrogen)を添加したDMEM中で成長させた。細胞を混合した実験においては、それぞれの細胞をHeLa細胞と同じ培地で調製し、同数の細胞を混合して播種した。
【0087】
IMR-90細胞(ATCC)は、10% FBS 、1% Penicillin-Streptomycin-Glutamine (Gibco)を添加したイーグル基礎培地中の、ゼラチンコートしたプレート上で培養した。正常ヒト肺線維芽細胞(NHLF; Lonza)は、製造者の指示に従って培養した。IMR-90は20継代以内、NHLFは10継代以内のものを用いた。IMR-90細胞をin vitroで分化させるために、これらの細胞を低血清培地 (0.01% FBS)中で48時間飢餓状態とし、低血清培地中で、10 ng/mLのhuman TGF-β1 (哺乳類由来; PeproTech)の存在下あるいは非存在下、24時間刺激した。次いで、上記で設計、調製したmiRNA応答性レポーターmRNAでトランスフェクトした。トランスフェクションの4時間後、培地をトランスフェクションのときと同じ培地に交換した。
【0088】
[miRNA応答性レポーターmRNAによるトランスフェクション]
培養細胞(HeLa, 293FT, MCF-7, IMR-90)は24ウェルプレートに播種し、翌日に、合成したmRNAを導入した。NHLFは24ウェルプレートに播種し、その日に、合成したmRNAを導入した。導入には、1μLのStemFect (Stemgent)を用いて、製造者の指示に従って実施した。翻訳効率の測定においては、それぞれ100ngの、各種miRNAに応答するレポーターEGFP mRNAと、コントロールtagRFP (Evrogen) mRNAとをそれぞれの細胞に共導入した。ただし、mRNAの設計を比較した実験(実施例3、
図6)では、2pmolのmirVana miRNA inhibitor (Applied Biosciences)の存在下で翻訳効率を決定した。
【0089】
インヒビターアッセイにおいては、0.1〜1pmolのmiRNAインヒビター、または、25〜200ngのレポーターmRNA(クリックビートルルシフェラーゼCBRluc (Promega)の遺伝子をORFに含み、レポーターEGFPと同じ5’UTRを有する)が、2つのレポーターmRNAとともに共導入された。導入の24時間後、Accuri C6 (BD Biosciences) を用いたフローサイトメトリー法で細胞を測定した。各細胞における二種類のレポーター蛋白質の蛍光強度の比を計算し、プロットした。翻訳効率は、miRNAに応答したEGFPの平均強度を、フローサイトメトリーにより測定したコントロールtagRFPの平均強度で割ることにより決定した。
【0090】
二つのmiRNA応答性レポーターmRNAを用いて細胞を分離するために、100ngのEGFPを発現するレポーターmRNA、及び125ngのhmKO2 (Amalgaam) を発現するレポーターmRNAを細胞またはその混合物に共導入した。IMR-90細胞の最初のスクリーニングでは、50ngのレポーターhmAG1 (Amalgaam) mRNA、及び80ngのコントロールhmKO2 mRNAを細胞にトランスフェクトした。分化させたIMR-90細胞及びNHLF細胞については、hmAG1 mRNA及びhmKO2 mRNAsを2倍にした。3つのmRNAの共導入においては、40ngのhmAG1 mRNA、10ngのhmKO2 mRNA、200ngのtagBFP (Evrogen) mRNAを、4つのmRNAの共導入においては、これらの3つに加えて、250ngのhdKeimaRed (Amalgaam) mRNAを用いた。CBG68luc mRNA(配列番号31)は、hmAG1 mRNA, hmKO2 mRNA 及びtagBFP mRNAを希釈するために用いた。培地はトランスフェクションの4時間後に交換した。
【0091】
[フローサイトメトリー]
トランスフェクションの24時間後に細胞を培養皿から分離し、メッシュを通して、フローサイトメトリーにより分析した。2つのmRNAによる共導入の分析には、FL1 (530/30 nm) 及び FL2 (585/40 nm) filters フィルターを備えたAccuri C6 (BD Biosciences)を用いた。3つのmRNAもしくは4つのmRNAによる共導入の分析には、FACSAria (BD Biosciences)を用いた。hmAG1, hmKO2, tagBFP 及び hdKeimaRedは、FITC filter (530/30 nm)を備えたblue laser (488 nm)により検出した。PE filter (585/42 nm)を備えたgreen laser (561 nm)、Pacific Blue filter (450/40 nm)を備えたviolet laser (405 nm)、及びQdot 605 filter (610/20 nm)を備えたviolet laserにより、それぞれ分析した。死細胞及びデブリは、前方及び側方光散乱シグナルにより除外した。翻訳効率の測定においては、EGFPの強度及びtagRFPの強度は、EGFPまたはtagRFPによりトランスフェクトされた細胞のデータセットから得られたspectral matrix(参考文献[5])に基づいて補正した。翻
訳効率は、補正したEGFPシグナルの平均強度を、補正したtagRFPシグナルの平均強度で割って得られた値により定義した。
【0092】
[イメージングサイトメトリー]
レポーター蛍光蛋白質をC末端側で核局在化シグナルM9に融合し、共導入した細胞を明確化した。3つのmRNAを導入した24時間後、IN Cell Analyzer 6000 (GE Healthcare)を用いて、細胞の明視野像及び蛍光画像を得た。hmAG1、hmKO2、tagBFPの蛍光シグナルは、FITC filterを備えた青色レーザー、DsRed filterを備えた緑色レーザー、DAPI filterを備えたUVレーザーでそれぞれ測定した。得られた画像は、Cell Profiler (参考文献[2])を用いて解析した。まず、三つの蛍光チャネルの平均イメージにおいて、核を識別した。次いで、フローサイトメトリーと同様に、各ピクセル毎に、hmKO2シグナル及びtagBFPシグナルを、hmAG1シグナルで割った。そして幾何平均率をそれぞれの核について得た。画像は、ImageJ (アメリカ国立衛生研究所(NIH)製)を用いて編集した。
【0093】
[実施例1 miRNA応答性レポーターmRNAによる、既知の細胞株の一次元分離]
1種もしくは2種のmiRNA応答性レポーターmRNAによる、既知の細胞株の一次元分離を行った。結果を
図3に示す。
図3(a)は、本実施例において用いた、インビトロ合成されたmiRNA応答性レポーターmRNAの模式図である。紙面左手5’末端から紙面右手の3’末端の向きに、ARCA(キャップ構造アナログ),miRNA標的配列、蛍光蛋白質をコードする遺伝子、ポリAテイルが位置する。ARCAとmiRNA標的配列、miRNA標的配列と開始コドンの間はそれぞれ、約20塩基離れるように設計した。
【0094】
図3(b)は、3種のmiRNA応答性レポーターmRNAを3種の細胞株にそれぞれ導入した場合の翻訳効率を比較して示すグラフである。マーカー遺伝子としては、いずれもEGFPをコードする遺伝子を用い、miRNA標的配列は、miR-21-5p、miR-24-3p、miR-203aをそれぞれ用いた。3種のmiRNA応答性レポーターmRNA(α(miR-21-5p)-EGFP(配列番号1)、α(miR-24-3p)-EGFP(配列番号3)、α(miR-203a)-EGFP(配列番号5))は、それぞれ、100ngを、100 ngのコントロールtagRFP mRNA (配列番号24)とともに、HeLa, 293FT 、MCF-7細胞に直接、共導入した。翻訳効率は、共導入の24時間後のフローサイトメトリー測定で、EGFPの平均強度を、tagRFPの平均強度で割ることにより決定した。各グラフのカラムの上部の数値は、それぞれの細胞株間の翻訳効率の倍率を示す。エラーバーは、平均±標準偏差(n=3)を示す。
【0095】
図3(c)は、miR-21-5p応答性EGFP mRNAと、コントロールhmKO2 mRNA(配列番号22)とを共導入したHeLa細胞、293FT細胞について、共導入の24時間後の測定結果を示すドットプロットである。また、
図3(f)は同じmRNAをHeLa細胞と293FT細胞との混合物に共導入した24時間後の測定結果を示すドットプロットである。Accuri C6 フローサートメーターを用いて測定した場合の、独立に3回の試験を行い、代表的な結果を示した。miRNA活性の相違を反映する蛍光強度比から、2種の細胞株が明らかに分離されたことが示される。
【0096】
図3(d)は、miR-24-3p応答性EGFP mRNAと、miR-203a応答性hmKO2 mRNA(配列番号6)とを共導入したHeLa細胞、MFC-7細胞について、共導入の24時間後の測定結果を示すドットプロットである。また、
図3(h)は同じmRNAを、HeLa細胞とMFC-7細胞との混合物に共導入した24時間後の測定結果を示すドットプロットである。
図3(b)を参照すると、これらのmiRNAは、二つの細胞株で、活性がわずかに及び逆向きに異なっていることがわかる。
図3(d)、(h)を参照すると、このようなわずかな活性の差を用いて、2種類の細胞株が明確に分離されていることがわかる。
【0097】
図3(e)は、二つの蛍光シグナルの比率を示すヒストグラムである。HeLa細胞、MCF-7細胞、及びこれらの混合物に、各ヒストグラムに示されたmiRNA応答性レポーターmRNA/コントロールmRNA(EGFP mRNA(配列番号19)またはhmKO2 mRNA(配列番号22))のセットを共導入した。2種のmiRNA応答性レポーターmRNAを導入した細胞の蛍光比率の累積頻度は、一番下のカラムに示す。また、
図3(g)は、
図3(c)、
図3(f)のドットプロットにおける、二つの蛍光シグナルの比率を示すヒストグラムである。
【0098】
[実施例2 高次元空間での細胞分離]
3種もしくは4種のmiRNA応答性レポーターmRNAによる細胞分離を行った。まず、3種のmiRNA応答性レポーターmRNAである、α(miR-24-3p)-EGFP、α(miR-127-3p)-EGFP(配列番号7)、α(miR-17-5p)-EGFP(配列番号9)、α(miR-92a-3p)-EGFP(配列番号15)について、HeLa、293FT、MCF-7細胞における翻訳効率を測定した。結果を
図4(a)(d)に示す。各カラムの頂部の数値は、3種の細胞株のうち、2種についての翻訳効率の比率を示す。エラーバーはそれぞれ、平均値±標準偏差(n=3)を示す。
【0099】
3種のmiRNA応答性レポーターmRNA(α(miR-24-3p)-hmAG1(配列番号4)、α(miR-127-3p)-hmKO2(配列番号8)、α(miR-17-5p)-tagBFP(配列番号13))を用いた二次元分離を行った結果を
図4(b)に示す。3種の細胞株に、それぞれ独立に、3種のmiRNA応答性レポーターmRNAを共導入し、24時間後に、FACSAriaで分析した。フローサイトメトリーのデータは、2つの比率についてプロットした。2つの比率は、hmKO2強度をhmAG1強度で割った値、及びtagBFP強度をhmAG1強度で割った値である。共導入されたHeLa細胞、293FT細胞、MCF-7細胞密度を平面上にプロットした。着色した密度プロットは、293FT細胞、HeLa細胞、及びMCF-7細胞の密度を、それぞれ、赤、緑、青のチャンネルで示した画像を重ね合わせ、そのネガ画像として作製した。
【0100】
3種の細胞を混合したサンプルについて、3種のmiRNA応答性レポーターmRNAを用いた二次元分離を行った結果を
図4(c)に示す。フローサイトメトリーのデータは、2つの比率についてプロットした。
【0101】
4種のmiRNA応答性レポーターmRNAを用いた三次元分離を行った。HeLa、293FT、MCF-7、及びこれらの混合物のそれぞれに、4種のコントロールmRNAである、hmAG1 mRNA(配列番号21)、hmKO2 mRNA(配列番号22)、tagBFP mRNA(配列番号20)、hdKeimaRed mRNA(配列番号23)を共導入した。また、HeLa、293FT、MCF-7、及びこれらの混合物のそれぞれに、4種のmiRNA応答性レポーターmRNAである、α(miR-24-3p)-hmAG1、α(miR-127-3p)-hmKO2、α(miR-92-3p)-tagBFP(配列番号17)、α(miR-17-5p)-hdKeimaRed(配列番号14)を共導入した。導入の24時間後にフローサイトメトリー分析を行った。4種のmiRNA応答性レポーターmRNAを用いた三次元分離を行った結果を
図4(e)に示す。フローサイトメトリーによる測定後、3つの比率の幾何平均、すなわち、hmKO2強度をhmAG1強度で割った値、tagBFP強度をhmAG1強度で割った値、及びhdKeimaRed強度をhmAG1強度で割った値を計算して、プロットした。エラーバーは、それぞれの軸における、幾何平均±幾何標準偏差を示す(n=5900〜7300)。
【0102】
細胞密度は、3つの軸に垂直な3つの平面にプロットし、hmKO2、tagBFP、hdKeimaRedの蛍光強度はそれぞれ、hmAG1の蛍光強度で割った。密度プロットは、
図5に示す。
図5は、3回の独立した実験のうち、代表的な結果である。
図5A(a)、(b)より、4種のコントロールmRNAを共導入した3種の細胞株は、いずれの平面のプロットを参照しても分離ができていないことがわかる。一方、
図5(c)より、4種のmiRNA応答性レポーターmRNAを共導入した3種の細胞株は、いずれの平面のドットプロットにおいても、明確に分離ができている。また、
図5(d)より、3種の細胞株の混合物においても、同様に分離が目視で確認できる。すなわち、細胞株混合物を、3種の細胞株に分離するような判別が可能になる。
【0103】
miRNA標的配列を持たない、コントロールmRNAであるhmAG1 mRNA, hmKO2 mRNA、tagBFP mRNAをそれぞれ、2倍ずつ5段階に希釈して、様々な組み合わせでHeLa細胞に共導入した。46通りの独立した導入結果から得られる密度プロットを
図4(f)に示す。Set A は、4段階の2倍希釈から得られるドットプロットを含む群であり、Set Bは5段階の2倍希釈から得られるドットプロットを含む群である。詳細な導入条件は、表5A、表5Bに示した。複数のコントロールmRNAを種々の濃度に希釈したこの実験は、細胞内でのmiRNA活性により生じうる種々のmiRNA応答性レポーターmRNAを示すものである。すなわち、理論的に、3種類のmiRNAに注目し、そのmiRNAの活性が、細胞ごとに2倍ずつ4段階異なると想定した(最大43=64種類の細胞種を想定できる)場合、3種類のmiRNA応答性レポーターmRNAを用いることでこれらの細胞を最大37種類に分離することができることを示唆している。またmiRNAの活性が2倍ずつ5段階異なる場合でも、同じ方法で分離できることを示唆している(その場合は最大53=125種類の細胞種が想定でき、3種類のmiRNA応答性レポーターmRNAで61種類にまで分離できる)。
【0104】
【表5A】
【表5B】
【0105】
[実施例3 miRNA標的配列の挿入と翻訳効率]
レポーターmiRNA応答性レポーターmRNAにおける、miRNA標的配列の位置について調べた。miR-21-5pの標的部位である、miR-21-5pの完全相補配列が、5’UTRに1つ存在するmiRNA応答性レポーターmRNA(α(miR-21-5p)-EGFP(配列番号1))と、miR-21-5pの完全相補配列が、3’UTRに4つ存在するmiRNA応答性レポーターmRNA(EGFP-4xα(4xmiR-21-5p)(配列番号2))とを調製し、これらについて翻訳効率を調べた。同様にして、miR17-5pの標的部位である、miR-17-5pの完全相補配列が、5’UTRに1つ存在するmiRNA応答性レポーターmRNA(α(miR-17-5p)-EGFP(配列番号9))と、miR-17-5pの完全相補配列が、3’UTRに4つ存在するmiRNA応答性レポーターmRNA(EGFP-4xα(4xmiR-17-5p) (配列番号10))とを調製し、これらについて翻訳効率を調べた。レポーターmRNAが応答するmiRNAに対する阻害剤(inhibitor)の存在下で各レポーターmRNAの翻訳効率を測定した。miR-1 に対する阻害剤をネガティブコントロールとして使用した。阻害剤の濃度は、2 pmolとした。エラーバーはそれぞれ、平均値±標準偏差(n=2)を示す。結果を
図6に示す。
【0106】
[実施例4 miRNA応答性レポーターmRNAのmiRNAインヒビターとしての活性]
市販のmiRNA阻害剤とmiRNA応答性レポーターmRNAの違いを検証する実験を行った。市販のmiRNA阻害剤あるいは、miR-17-5p応答性レポーターmRNA (α(miR-17-5p)-CBRLuc(配列番号33); ルシフェラーゼ遺伝子のため蛍光は示さない)の存在下で、同じmiR-17-5p に応答する α(miR-17-5p)-EGFPの、HeLa細胞中での翻訳効率を測定した。miR-1 に対する阻害剤、miR-1に応答するルシフェラーゼmRNA(α(miR-1)-CBRLuc(配列番号32))をネガティブコントロールとして使用した。結果を
図7(a)に示す。エラーバーはそれぞれ、平均値±標準偏差(n=3)を示す。この結果より、miRNA応答性レポーターmRNAは、miRNAインヒビターとして機能することはほとんどないことがわかる。
【0107】
他の6種類のmiRNAに応答するレポーターmRNA(ルシフェラーゼ)(α(miR-21-5p)-CBRluc : 配列番号34、α(miR-92a-3p)-CBRluc : 配列番号35、α(miR-24-3p)-CBRluc : 配列番号36、α(miR-127b-3p)-CBRluc : 配列番号37、α(miR-16-5p)-CBRluc : 配列番号38、α(miR-203a)-CBRluc : 配列番号39)がmiRNA阻害剤としては働かないことを確認した。
それぞれのmiRNAの活性は、そのmiRNAに応答するEGFP レポーターmRNAで測定した。このとき、miR-1 (ネガティブコントロール) または、同じmiRNAに応答するルシフェラーゼレポーターmRNAを導入した。3回の試験結果を
図7(b)に示す。
【0108】
[実施例5 3種の細胞株におけるmiRNA応答性レポーターmRNAの翻訳効率]
3種の細胞株に、それぞれ、20種のmiRNA応答性レポーターmRNAを導入し、翻訳効率の比率を調べた。
図8は、3種の細胞株における、これら20種のmiRNA応答性レポーターmRNAの翻訳効率を示すグラフである。(a)は、HeLaと293FTの比較、(b)は、293FTとMCF-7との比較、(c)は、MCF-7とHeLaと比較を示す。エラーバーはそれぞれ、平均値±標準偏差(n=3)を示す。本結果で得られた翻訳効率の値を用いて、この値で構成されるベクトルを考えた場合の座標における細胞間の距離を算出して、他の実施例で使用したmiRNA応答性レポーターmRNAの組み合わせを選択した。
【0109】
[実施例6 2種のmiRNA応答性レポーターmRNAによる一次元分離]
実施例1と同様に2種のmiRNA応答性レポーターmRNAによる、2種の細胞株の蛍光強度比率に基づく一次元分離を行った。
図9に一連の結果を示す。あるmiRNA応答性レポーターmRNAによる翻訳効率、すなわちmiRNA活性が2倍以下である2種の細胞株においても、293FTとHeLaの分離、もしくは、293FTとMCF-7の分離が可能であったことを示す。エラーバーはそれぞれ、平均値±標準偏差(n=3)を示す。
【0110】
293FT細胞とHeLa細胞における、miR-24-3p、miR-17-5pの活性を調べるために翻訳効率を測定した。測定には、α(miR-24-3p)-EGFP、α(miR-17-5p)-EGFPを用いた。結果を
図9(a)に示す。各カラムの頂部の数値は、翻訳効率の比率を示す。293FTとHeLa、及びこれらの混合物に、α(miR-24-3p)-EGFP、α(miR-17-5p)-hmKO2(配列番号12)を共導入し、導入の24時間後にフローサイトメトリー分析を行った。コントロールmRNAとしては、EGFP、hmKO2を用いた。
図9(b)にドットプロットの結果を示す。293FT細胞とHeLa細胞が、異なる帯状プロットとして、判別されていることがわかる。また、
図9(g)に、293FTとHeLaとの混合物についての同様のドットプロットを示す。これらの結果から、混合物について測定した場合でも、それぞれの細胞が分離して観察できることがわかる。
図9(c)にシグナル比率のヒストグラムを示す。それぞれの細胞株に、各ヒストグラムに示されたmiRNA応答性レポーターmRNA/コントロールmRNAのセットを共導入した。フローサイトメトリーで測定した2種の蛍光シグナル比を計算し、プロットした。2種のmiRNA応答性レポーターmRNAを導入した細胞の累積頻度は、
図9(c)の一番下のカラムに示す。
【0111】
同様に、293FT細胞とMCF-7細胞における、miR-17-5p、miR-127-3pの活性を調べるために翻訳効率を測定した。測定には、α(miR-17-5p)-EGFP、α(miR-127-3p)-EGFPを用いた。結果を
図9(d)に示す。各カラムの頂部の数値は、翻訳効率の比率を示す。293FTとMCF-7、及びこれらの混合物に、α(miR-17-5p)-EGFP、α(miR-127-3p)-hmKO2を共導入し、導入の24時間後にフローサイトメトリー分析を行った。コントロールmRNAとしては、EGFP、hmKO2を用いた。
図9(e)にドットプロットの結果を示す。293FT細胞とMCF-7細胞が、異なる帯状プロットとして、判別されていることがわかる。また、
図9(h)に、293FTとMCF-7との混合物についての同様のドットプロットを示す。これらの結果から、混合物について測定した場合でも、それぞれの細胞が分離して観察できることがわかる。
図9(f)にシグナル比率のヒストグラムを示す。それぞれの細胞株に、各ヒストグラムに示されたmiRNA応答性レポーターmRNA/コントロールmRNAのセットを共導入した。フローサイトメトリーで測定した2種の蛍光シグナル比を計算し、プロットした。2種のmiRNA応答性レポーターmRNAを導入した細胞の累積頻度は、
図9(f)の一番下のカラムに示す。
【0112】
[実施例7 レポーター蛍光蛋白質が核局在化シグナルに連結した3種のmiRNA応答性レポーターmRNAの共導入]
HeLa、293FT、MCF-7細胞に、核局在化蛍光蛋白質を発現する3種のmiRNA応答性レポーターmRNAである、40 ngのα(miR-24-3p)-hmAG1-M9 (配列番号25)、10 ngのα(miR-127-3p)-hmKO2-M9 (配列番号26)、200 ngのα(miR-17-5p)-tagBFP-M9 (配列番号27)を共導入した。導入の24時間後にイメージングサイトメトリー分析を実施した。
図10(a)は、導入した細胞の蛍光画像を示す。図中、は100 μmを示す。hmKO2, hmAG1、tagBFPはそれぞれ、赤、緑、青のチャンネルで示した。
図10(a)から、核により、強度のばらつきがあることがわかる。
図10(b)は、
図10(a)と同一の対象について測定したデータを、二つの比率を用いて疑似カラー処理した結果を示す。共導入された細胞の核を抜きだし、それぞれのピクセルにおける蛍光強度について分析した。hmKO2の蛍光シグナルを、hmAG1の蛍光シグナルで割った比率、及びtagBFPの蛍光シグナルを、hmAG1の蛍光シグナルで割った比率をそれぞれ、10‐0.25〜100.75と、10‐0.5〜100.5の範囲を0〜1に正規化して、紫色、緑色で示した。
図10(c)は、これらの比についての密度プロットを示す。
【0113】
[実施例8 フローサイトメトリー及びイメージングサイトメトリーによる、3種のmiRNA応答性レポーターmRNAを用いた二次元分離]
HeLa、293FT、MCF-7、及びこれらの混合物のそれぞれに、3種のコントロールmRNA、hmAG1、hmKO2、tagBFPを共導入した。また、HeLa、293FT、MCF-7、及びこれらの混合物のそれぞれに、レポーター蛍光蛋白質が核局在化シグナルに連結した3種のコントロールmRNA、hmAG1-M9(配列番号28)、hmKO2-M9(配列番号29)、tagBFP-M9(配列番号30)を共導入した。同様に、HeLa、293FT、MCF-7、及びこれらの混合物のそれぞれに、3種のmiRNA応答性レポーターmRNAである、α(miR-24-3p)-hmAG1、α(miR-127-3p)-hmKO2、α(miR-92-3p)-tagBFPを共導入した。同様に、HeLa、293FT、MCF-7、及びこれらの混合物のそれぞれに、レポーター蛍光蛋白質が核局在化シグナルに連結した3種のmiRNA応答性レポーターmRNAである、α(miR-24-3p)-hmAG1-M9、α(miR-127-3p)-hmKO2-M9、α(miR-92-3p)-tagBFP-M9を共導入した。これらを導入の24時間後に、フローサイトメトリー分析及び、イメージングサイトメトリー分析を実施した。3回の独立した実験のうち、代表的な結果を
図11に示す。
【0114】
3種のコントロールmRNAを導入した、HeLa細胞、293FT細胞、MCF-7細胞、及びこれらの混合物の、フローサイトメトリー分析結果を
図11(a)に、イメージングサイトメトリー結果を、
図11(c)に示す。また、レポーター蛍光蛋白質が核局在化シグナルに連結した3種のコントロールmRNAを共導入した、HeLa細胞、293FT細胞、MCF-7細胞、及びこれらの混合物の、フローサイトメトリー分析結果を
図11(e)に、イメージングサイトメトリー結果を、
図11(g)に示す。いずれの結果からも、細胞の分離ができていないことがわかる。
【0115】
3種のmiRNA応答性レポーターmRNAを導入した、HeLa、293FT、MCF-7、及びこれらの混合物の、フローサイトメトリー分析結果を
図11(b)に、イメージングサイトメトリー結果を、
図11(d)に示す。また、レポーター蛍光蛋白質が核局在化シグナルに連結した3種のmiRNA応答性レポーターmRNAを共導入した、HeLa、293FT、MCF-7、及びこれらの混合物の、フローサイトメトリー分析結果を
図11(f)に、イメージングサイトメトリー結果を、
図11(h)に示す。3種のmiRNA応答性レポーターmRNAを導入した場合、フローサイトメトリーでも、イメージングサイトメトリーでも、同様に3種の細胞の分離が可能になった。混合物においても、独立したプロット群が認められることから、3種の細胞の分離が可能であることがわかる。さらに、レポーター蛍光蛋白質が核局在化シグナルに連 結した3種のmiRNA応答性レポーターmRNAを用いた場合にも、同様の結果が得られた。
【0116】
[実施例9 miRNA応答性レポーターmRNAを用いた線維芽細胞株の分離]
由来の異なる細胞株だけでなく、同一の細胞株の状態の違いを識別する実験を行った。ここでは、代表的なヒト正常細胞として、IMR-90 に注目した。IMR-90は静止状態から TGF刺激で平滑筋方向に分化することが知られている。IMR-90で発現が確認されており、かつCAUを含まないmiRNAを67種類選び、hmAG1をレポーター蛋白質として発現するmiRNA応答レポーターmRNAのライブラリーを作製した(配列番号77〜143)。これをそれぞれ、IMR-90にコントロールhmKO2 mRNAとともに導入して、フローサイトメトリー解析を行った。
【0117】
次いで、1次スクリーニングしてIMR-90で活性な、26のmiRNA 応答 mRNAを得た。結果を
図12A(a)に示す。
図12A(a)中、平均蛍光比率(FL2/FL1)が 0.199 以上のものを活性ありと判断し(コントロールのmiRNAに応答しないmRNAでは 0.198)、26 の miRNA 中、類似度の高い2種類を省略した24の miRNA 応答 mRNAを抽出した。
【0118】
さらに筋分化に関連する2のmiRNAに対するmiRNA応答レポーターmRNAを作製した(配列番号144、145)。これらに加えて、前項で抽出した24のmRNAと、前項では活性が観察されなかったmRNAのうち、TGFシグナルや筋分化に関連の高いmiRNAに応答する6のmRNAを合わせた、合計32 mRNAについて、IMR-90に対するTGF-β1刺激の前後で活性が変化したmiRNAを探索する2 次スクリーニングを実施した。IMR-90は2日間飢餓状態においた後、10ng/mL のTGF-β1で刺激した。翌日mRNAを導入し、さらに翌日フローサイトメトリー解析を行った。これら合計32種類のmiRNAを探索した結果を、
図12A(b)に示す。
図12A(b)中、最も活性が高かったmiRNA応答mRNA(α(miR-145-5p)-hmAG1)(配列番号117)を次の実験で用いた。
【0119】
イメージングサイトメトリーは以下の通りに行った。TGF刺激あり、なしのIMR-90をmiRNA応答mRNA(α(miR-145-5p)-hmAG1とhmKO2のペア)と抗αSMA 抗体で同時に染色した。
分化誘導、およびmRNA導入後のIMR-90の免疫染色は以下の方法で行った。mRNA共導入の1日後、培地と等量のCytofix Fixation Buffer (BD Biosciences) を加え、37°Cで10分間静置して、細胞を固定した。次いで、Pharmingen Stain Buffer (FBS, BD Biosciences) で洗浄後、Phosflow Perm Buffer III (BD Biosciences) 中で氷上30分静置して、細胞膜の透過処理を行った。洗浄後、Blocking One (ナカライテスク) 中で氷上30分静置した。10% Blocking Oneを含むPharmingen Stain Buffer (FBS) を用いて 200倍希釈した抗αSMA抗体で、細胞を室温30分間染色した。洗浄後、Hoechist 33342 (Life Technologies)で染色した。染色後の細胞は IN Cell Analyzer 6000 で解析した。
【0120】
細胞内因子に対するフローサイトメトリーは以下の通りに行った。分化誘導、およびmRNA導入後のIMR-90を培養プレートから剥離させ、上記のCytofix Fixation BufferおよびPhosflow Perm Buffer IIIを用いて、説明書の指示に従って細胞を固定、膜透過させた。
膜透過後の細胞を、上記と同様に、Blocking One で細胞をブロッキングした後、100倍希釈した抗αSMA抗体を用いて、室温30分間染色した。染色後、細胞を洗浄し、フローサイトメトリー解析を行った。
【0121】
フローサイトメトリー解析結果を
図12A(c)に密度プロットで示した。
図12A(c)の結果より、α(145-5p)-hmAG1を用いることで同一の細胞の分化状態の差を判別することができた。
図12B(d)に同様の実験結果をヒストグラムで示した。ここではコントロールのmRNAペアを導入した結果を実線及び一点鎖線で示した。従来技術である抗体染色法の場合には、細胞を固定する必要があり、ヒストグラムに示されるように分布の幅が広く、重なり部分も多かった。一方、本発明の方法では生細胞をそのまま使用することができ、分布の幅が狭く、十分な判別が可能であることが示された。
【0122】
同様の実験を核局在するレポーター蛋白質を用いて行い、イメージングサイトメトリーを実施した。結果を
図12C(f)に示す。ここでは、画像解析を行って、ピクセルあたりの蛍光比率(hmKO2/hmAG1) を計算し、写真上で緑色で示した。抗体からの蛍光強度はマゼンタで示した。
図12B(e)に同様の実験結果をヒストグラムで示した。ここでもコントロールのmRNAペアを導入した結果を実線及び一点鎖線で示した。
【0123】
図12B(e)、
図12C(f)の結果から、本発明のmRNAを用いた場合、TGF-β1刺激があった場合と無かった場合では、核に局在した蛋白質の量比が異なることが示された。そして、この結果は、
図12B(d)に示したフローサイトメトリー解析で得られた結果と良く合致していることがわかった。
【0124】
さらに、miRNA応答mRNAのレポーター蛋白質の組み合わせを変えて、α(miR-145-5p)-hmKO2とhmAG1のペアを用いて同様の解析を行った。イメージングサイトメトリーの結果を
図17(a)へ、およびフローサイトメトリーの結果を
図17(b)に示す。その結果、上記のα(miR-145-5p)-hmAG1とhmKO2のペアを用いた場合同様に、TGF-β1の添加により、筋分化させることで、SMA陽性細胞におけるmiR-145-5pの発現が高くなり、対応するレポーター蛋白質の発現が減少することが確認された。
以上より、レポーター蛋白質の種類に依存せず、生細胞を判別が可能であることが示された。
【0125】
[実施例10 miRNA応答性レポーターmRNAを用いたprimary culture (NHLF) の細胞集団の判別]
同じ67 miRNAライブラリーを使って、株化細胞ではなく、ヒト正常肺線維芽細胞の初代培養細胞(NHLF)の集団内のmiRNA 活性を調べた。
図13(a)に、細胞を選別する(細胞の混合具合を明らかにする)mRNAの探索戦略を示す。第一スクリーニングではmiRNAの活性を検出して67 miRNAから8 miRNAを選別した。第二スクリーニングでは 8 miRNA とレポーター蛋白質を組み合わせて、56セットのレポーター mRNAを探索した。
【0126】
IMR-90 と同じ67種類のmiRNA応答レポーターmRNAのライブラリーを使用して、ヒト正常肺線維芽細胞の初代培養細胞 (NHLF) におけるmiRNA活性を探索した。結果を
図13A(b)に示す。ここでは特に、mRNAを導入された細胞集団がつくる蛍光比率のピーク幅 (90% interval) を解析し、その幅が広い8つのmiRNA (miR-16-5p, miR-17-5p, miR-21-5p, miR-27a-3p, miR-20a-5p, miR-106a-5p, miR-143-3p, let-7i-5p) を選んだ。
【0127】
図14(a)、(b)は、第一スクリーニングの結果を細胞株 (IMR-90) と初代培養細胞 (NHLF) で比較した結果を示す。いずれも67種類のmiRNA応答レポーターmRNAについての結果である。
図14(a)は、蛍光比率の比較、つまりピークの場所の比較であり、(b)は 90% interval の比較、つまりピークの幅の比較である。どちらも2回のスクリーニング実験の平均値と標準偏差をエラーバーとして表示した。
図14(a)、(b)から、miRNA 活性の平均値は株化されたIMR-90と同様だったが、miRNA 活性は細胞集団内でより広く分布しており、より不均質な集団であることが示された。
【0128】
図13(c)に第二スクリーニング用の組み合わせ表を示す。1〜8の番号は8種類のmiRNAを、この実験では、順に、miR-16-5p, miR-17-5p, miR-21-5p, miR-27a-3p, miR-20a-5p, miR-106a-5p, miR-143-3p, let-7i-5pを示す。表の行(h), 列(i), 各升目の2桁の数字 (j,k) はそれぞれ hmAG1, hmKO2, tagBFP, hdKeimaRedが応答するmiRNAの番号を示す。この表に従うと、どのmiRNAの2 つの組み合わせについても、全てのレポーター蛋白質の組み合わせが網羅されることがわかる。
【0129】
次いで、これらのmiRNA活性の相関関係を得た。各miRNAの組み合わせについて、そのmiRNAに応答するレポーターmRNAのペア(配列番号114、81、115、102、80、111、83、116、157〜181)をNHLFに導入したとき、細胞集団がつくる蛍光比率のピーク幅 (90% interval) を解析した。以下の6種類の組み合わせで得られた値の平均値を求めた。たとえば、miR-143-3p とmiR-21-5pの場合、
(A) α(miR-143-3p)-hmAG1(配列番号114) + α(miR-21-5p)-hmKO2(配列番号159)
(B) α(miR-143-3p)-hmAG1 + α(miR-21-5p)-tagBFP(配列番号168)
(C) α(miR-143-3p)-hmAG1 + α(miR-21-5p)-hdKeimaRed(配列番号176)
(D) α(miR-21-5p)-hmAG1(配列番号81) + α(miR-143-3p)-hmKO2(配列番号163)
(E) α(miR-21-5p)-hmAG1 + α(miR-143-3p)-tagBFP(配列番号172)
(F) α(miR-21-5p)-hmAG1 + α(miR-143-3p)-hdKeimaRed(配列番号180)
このピーク幅は、コントロール mRNAを導入したときに、同様の解析で求めたピーク幅
に対する相対値として下記表6に表される。
【0130】
【表6】
【0131】
この表から、対象の細胞集団にある、miRNA間の機能的な関係性を見いだせることがわかる。たとえば、miR-143-3p と miR-21-5p の組み合わせなど、値の大きなmiRNAの間には、その機能に負の相関がある。すなわちこの場合、miR-143-3pの活性が高い細胞では、miR-21-5p の活性は低く、miRNA-143-3pの活性が低い細胞ではmiR-21-5pの活性は低い。また、値の小さなmiRNAの組み合わせには、その機能に正の相関がある。実際、miR-17 precursor family を形成する miR-17, miR-20a, miR-106a には活性においても高い正の相関を示すことがわかった。
【0132】
なぜ、miRNA活性の関係性がわかるのかについて、
図15を用いて説明する。
図15は、ある細胞群が同じ量のmRNAを取り込んだと仮定したとき、細胞群で2 つのmiRNA活性の分布がある場合、想定される結果を模式的に示す図である。
図15(a)は、2 つのmiRNA活性が正に相関する場合、蛍光比率のピークは細くなることを示す。
図15(b)は、2つのmiRNA活性が負に相関する場合、蛍光比率のピークは広くなることを示す。
図15(c)は、2 つのmiRNA活性が相関しない場合、中間的な幅のピークができることを示す。
【0133】
図13の(d)は、miRNA活性に負の相関がみられたあるいは相関が見られなかった3つのmiRNAに応答するレポーターmRNA(α(miR-106a-5p)-hmAG1(配列番号116), α(miR-21-5p)-hmKO2(配列番号159), α(miR-143-3p)-tagBFP)を用いて、NHLFを分離解析した結果を示す。mRNAを導入した細胞集団を蛍光比率の密度分布で示した。
【0134】
図13の(e)は、miRNA活性に正の相関がみられた3つのmiRNAに応答するレポーターmRNA(α(miR-20a-5p)-hmAG1(配列番号111), α(miR-17-5p)-hmKO2(配列番号12), α(miR-106a-5p)-tagBFP(配列番号171))を用いて、NHLFを分離解析した結果を示す。mRNA を導入した細胞集団を蛍光比率の密度分布で示した。
【0135】
図13(d)、(e)から実証されるように、対象が同じ細胞集団の場合であっても、このような正の相関性の高い miRNA に対する mRNA セットを使うと、細胞は極めて均一な集団として表示される(f)が、そうではない miRNA セットを使うと、細胞の異質性が観察された(e)。したがって、所望の細胞の判別の目的に応じて、使用するmiRNA応答性mRNAを選択することができる。例えばこの場合、NHLFを所望の細胞と考え、NHLFとそれ以外の細胞を判別する場合には正の相関性の高い miRNA に対する mRNA セットを用いて、所望の細胞をより広がりの狭い(特異的な)細胞集団とすることができ、多様性に富んだNHLFを、所望の細胞を含む細胞の母集団と考え、ここから所望の細胞を分離分別したい場合には、負の相関性の高い miRNA に対する mRNA セットを用いて、幅広く分布された細胞のうちの所望の一部分を採取することができる。
【0136】
[実施例11 miRNA応答性レポーターmRNAを用いたIMR-90の細胞集団の判別]
NHLFと同様の第二スクリーニングを株化された線維芽細胞であるIMR-90についても実施した。この実験では、
図13(C)で示されるmiRNAを表す番号1〜8を、順に、miR-16-5p, miR-17-5p, miR-125b-5p, miR-93-5p, miR-20a-5p, miR-106a-5p, miR-145-5p, miR-26a-5pとした。各miRNAの組み合わせについて、そのmiRNAに応答するレポーターmRNAのペア(配列番号117、100、125、80、157、166、174、83、167、158、175、111、161、170、178、110、116、162、171、179、146〜156)をIMR-90に導入したとき、細胞集団がつくる蛍光比率のピーク幅 (90% interval) を解析し、コントロール mRNAを導入したときに、同様の解析で求めたピーク幅に対する相対値として下記表7に表される。
【0137】
【表7】
【0138】
図16は、第二スクリーニングの結果をもとに選んだ、4種類のmiRNA応答mRNA(α(miR-16-5p)-hmAG1(配列番号80), α(miR-26a-5p)-hmKO2(配列番号148), α(miR-17-5p)-tagBFP(配列番号167), α(miR-125b-5p)-hdKeimaRed(配列番号153)をIMR-90に共導入した場合の結果を三次元の密度プロットとして示した。図中に示されるA、およびBの矢印で示されるように、IMR-90が2つの細胞グループに分離されることがわかった。
【0139】
[参考文献]
[1]Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA.
Warren L., Manos PD., Ahfeldt T., Loh YH., Li H., Lau F., Ebina W., Mandal PK., Smith ZD., Meissner A., Daley GQ., Brack AS., Collins JJ., Cowan C., Schlaeger TM., Rossi DJ.
Cell Stem Cell, 7(5):618-30, 2010
[2]Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software.
Kamentsky L., Jones TR., Fraser A., Bray MA., Logan DJ., Madden KL., Ljosa V., Rueden C., Eliceiri KW., Carpenter AE.
Bioinformatics, 27(8):1179-80, 2011
[3]Quantitative and simultaneous translational control of distinct mammalian mRNAs.
Endo K., Stapleton JA., Hayashi K., Saito H., Inoue T.
Nucleic Acids Res, 41(13):e135, 2013
[4]LambdaN-GFP: an RNA reporter system for live-cell imaging.
Daigle N., Ellenberg J.Nat Methods, 4(8):633-6, 2007
[5]New approaches to fluorescence compensation and visualization of FACS data.
Tung JW., Parks DR., Moore WA., Herzenberg LA., Herzenberg LA.
Clin Immunol, 110(3):277-83, 2004
[6]MicroRNA profiling reveals two distinct p53-related human pluripotent stem
cell states.
Neveu P., Kye MJ., Qi S., Buchholz DE., Clegg DO., Sahin M., Park IH., Kim KS., Daley GQ., Kornblum HI., Shraiman BI., Kosik KS.
Cell Stem Cell, 7(6):671-81, 2010