(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0004】
血圧測定においては、非侵襲的な測定であっても精度良く血圧を測定したい、しかも一拍ごとの継続的な計測(常時計測)を実現したいという要望がある。血管径をもとに血圧を算出する場合、要求される血圧計測精度を満たすためには血管径の計測精度を数十nm〜数μm程度に高く維持しなければならない。そうした高精度な血管径の計測は、短時間の安静状態であれば比較的容易に実現し得るが常時計測となると難しくなる。なぜならば、常時計測の場合には被検者が身体を動かす場合が考えられるからである。具体的には、被検者の体動によって血管が伸び縮みしたり、計測装置と血管との相対位置が体動によってずれたりする場合があり、計測される血管径に誤差が含まれ得ることを考慮した上で血圧を算定する必要がある。
【0005】
ところが、従来技術では式(1)及び式(2)に基づいて血管径Dから血圧Pを算出している。この方法では、計測された血管径Dの値がべき乗(累乗ともいう)の指数として作用するため、血管径Dの少しの計測誤差が、計測される血圧Pの値に大きく影響を及ぼしてしまう。このため、従来技術の手法は、常時計測には不向きと考えられる。
【数1】
【数2】
但し、計測血圧P、収縮期血圧Ps、拡張期血圧Pd、計測血管径D、収縮期血管径Ds、拡張期血管径Dd。
【0006】
本発明は、こうした背景をもとに考案されたものであり、被検者の体動に対するロバスト性に優れた非侵襲的な血圧測定を実現し、もって継続的で高精度な血圧測定を可能にする事を目的とする。
【課題を解決するための手段】
【0007】
以上の課題を解決するための第1の発明は、動脈の血管径を測定する血管径測定部と、前記動脈における脈波伝播速度を測定する脈波伝播速度測定部と、前記血管径と前記脈波伝播速度とを変数とする所定の演算処理を行って血圧を算出する血圧算出部と、を備えた血圧計測装置である。
【0008】
第2の発明は、前記血圧算出部が、前記血圧が、前記脈波伝播速度の2乗に比例し、且つ、前記血管径の逆数に比例する前記演算処理を行って前記血圧を算出する、第1の発明の血圧計測装置である。
【0009】
第1又は第2の発明によれば、非侵襲的に測定した血管径と、脈波伝播速度とを変数とする演算で血圧を算出することができる。血管径の値そのものではなく、その変化点のタイミングから計測されるため、脈波伝播速度の測定は被検者の体動による影響を受けにくい。そのため、血管径のみを用いる従来の血圧算出に比べて、体動に対するロバスト性に優れた非侵襲的な血圧測定を実現し、もって継続的で高精度な血圧測定が可能になる。
【0010】
第3の発明は、前記血管径測定部および前記脈波伝播速度測定部は、脈波における同一の特徴期において測定を行う、第1又は第2の発明の血圧計測装置である。
【0011】
第3の発明によれば、同一の特徴期において血管径と脈波伝播速度とを測定するため、最終的に算出される血圧の計測精度を高く維持することができる。
【0012】
第4の発明は、前記血管径の時間変化波形について所定の微分演算を行って、脈波における拡張期および切痕期を判定する特徴期判定部、を更に備えた第1〜第3の何れかの発明の血圧計測装置である。
【0013】
血管径の時間変化波形から脈波の特徴期を知り得るが、時間変化波形は必ずしも特徴期を検出し易い波形ではない。しかし、第4の発明によれば、血管径の時間変化波形について微分演算を行うことで、波形の変化点の検出を容易にし、特徴期を明確に検出することが可能になる。つまり、特徴期の検出精度を高くすることができ、ひいては血圧の計測精度を高めることができる。
【0014】
第5の発明は、前記血管径測定部が、拡張期血管径および切痕期血管径を測定し、前記脈波伝播速度測定部は、拡張期脈波伝播速度および切痕期脈波伝播速度を測定し、前記血圧算出部は、前記拡張期血管径および前記拡張期脈波伝播速度を用いた前記演算処理を行って拡張期血圧を算出し、前記切痕期血管径および前記切痕期脈波伝播速度を用いた前記演算処理を行って切痕期血圧を算出し、前記拡張期血圧と前記切痕期血圧とを用いた所定の収縮期血圧推定演算を行って収縮期血圧を算出する、第1〜第4の何れかの発明の血圧計測装置である。
【0015】
第5の発明によれば、高い精度で測定された拡張期血圧と切痕期血圧とから収縮期血圧を求めるので、収縮期血圧についても高い測定精度が得られる。
【0016】
例えば、第6の発明として、前記血圧算出部が、前記切痕期血圧を平均動脈圧とみなした前記収縮期血圧推定演算を行って前記収縮期血圧を算出する第5の発明の血圧計測装置を構成することができる。
【0017】
第7の発明は、前記動脈に対して超音波を送受信する超音波プローブであって、前記動脈の上流側を担当する第1超音波プローブと下流側を担当する第2超音波プローブとを備え、前記血管径測定部は、前記第1超音波プローブおよび前記第2超音波プローブのうちの何れかの受信信号に基づいて前記血管径を測定し、前記脈波伝播速度測定部は、前記第1超音波プローブの受信信号と、前記第2超音波プローブの受信信号とに基づいて前記脈波伝播速度を測定する、第1〜第6の何れかの発明の血圧計測装置である。
【0018】
第7の発明によれば、二つの超音波プローブを使用して脈波伝播速度を測定できる。
【0019】
第8の発明は、前記第1超音波プローブおよび前記第2超音波プローブは、頸動脈、鎖骨下動脈および大動脈のうちの何れかの動脈を対象として超音波を送受信する、第7の発明の血圧計測装置である。
【0020】
第8の発明によれば、交感神経の作用による血管径変化が比較的小さい動脈を測定対象とするので、血圧計測において安定した精度を得ることができる。
【0021】
第9の発明は、前記血管径測定部が、前記第1超音波プローブの受信信号に基づく血管径と、前記第2超音波プローブの受信信号に基づく血管径とを測定し、前記血圧算出部は、脈動変動幅が大きい方の血管径を採用する、第8の発明の血圧計測装置である。
【0022】
血管の短軸断面において、超音波を照射して脈動変動幅を測定する場合、照射方向が直径を通るときが最大となる。測定できる変動幅の数値が大ききほど、精度よく血管径を測定することができる。よって、第9の発明によれば、血管径の計測精度をより高めることができる。
【0023】
第10の発明は、前記第1超音波プローブおよび前記第2超音波プローブは、被検者の皮膚面に貼付される薄型プローブで構成されてなる、第7〜第9の何れかの発明の血圧計測装置である。
【0024】
第10の発明によれば、超音波プローブの位置がずれにくく、精度の良い計測を継続できる。また、ベルト固定などによる血圧計測装置を取り付ける他の方法に比べると、被検者への負担を軽くできるので長時間の継続的な計測に好ましい。勿論、血圧計測装置を取り付けるための作業性も向上することができる。
【0025】
第11の発明は、動脈の血管径を測定することと、前記動脈における脈波伝播速度を測定することと、前記血管径と前記脈波伝播速度とを変数とする所定の演算処理を行って血圧を算出することと、を含む血圧計測方法である。
【0026】
第11の発明によれば、第1の発明と同様の効果が得られる。
【発明を実施するための形態】
【0028】
〔第1実施形態〕
図1は、本実施形態における血圧計測装置10のシステム構成例を示す図である。血圧計測装置10は、超音波測定により非侵襲に被検者3の血管5の直径と脈波伝播速度とを測定して血圧を計測する装置である。
【0029】
本実施形態の血圧計測装置10は、
1)測定結果や操作情報を画像表示するための手段と操作入力のための手段を兼ねるタッチパネル12と、
2)操作入力のためのキーボード14と、
3)校正用血圧測定ユニット20と、
4)超音波測定制御ユニット30と、
5)処理装置40と、を備える。
その他、適宜図示省略された電源などを備えるものとする。
【0030】
校正用血圧測定ユニット20は、血管径を測定するための校正に必要な血圧を測定する装置である。本実施形態では、カフ21と、血圧値を算出して処理装置40へ計測値を出力する本体装置22と、を備えた加圧式血圧計(カフ型血圧計)を用いて実現することができる。勿論、加圧式以外の血圧計を用いて実現するとしてもよい。
【0031】
超音波測定制御ユニット30は、第1超音波プローブ31(超音波深触子)と第2超音波プローブ32と、制御装置33とを備える。
【0032】
第1超音波プローブ31及び第2超音波プローブ32は、被検者3の皮膚に貼り付けされる薄型プローブである。第1超音波プローブ31及び第2超音波プローブ32は、プローブ間距離Lpだけ離して同じ血管5の血管短軸断面を計測するように近接して貼り付けされ、被検者3へ超音波パルスを発信・照射し、その反射波を受信することができる。
【0033】
制御装置33は、第1超音波プローブ31及び第2超音波プローブ32に係る制御を行う装置であり、超音波の送受信を制御し、第1超音波プローブ31及び第2超音波プローブ32で受信した反射波の信号(受信信号)を処理装置40へ出力する。
【0034】
処理装置40は、血圧計測装置10の基幹装置であって、タッチパネル12、キーボード14、校正用血圧測定ユニット20、超音波測定制御ユニット30などの装置各部と信号送受可能に接続されている。また、外部装置と通信接続するための通信装置を処理装置40に含める構成とすることもできる。
【0035】
処理装置40には制御基板41が搭載されている。制御基板41には、CPU(Central Processing Unit)42と、IC(Integrated Circuit)メモリーやハードディスク等による記憶媒体43と、校正用血圧測定ユニット20や超音波測定制御ユニット30とのデータ通信を実現する通信IC44とが搭載されている。CPU42は、記憶媒体43に記憶されているプログラムを実行することにより血圧計測装置10を統合的に制御して、血圧測定と測定結果の表示や記憶といった各種機能を実現する。その中には、校正用血圧測定ユニット20で測定された血圧をタッチパネル12に表示させる機能や、超音波測定制御ユニット30からの受信信号の生データや、Aモード、Bモード、Mモード等の超音波反射波信号のデータをタッチパネル12に表示させる機能を含めることができる。
【0036】
なお、
図1の例では、校正用血圧測定ユニット20や超音波測定制御ユニット30を血圧計測装置10と一体に構成したがこれに限らない。校正用血圧測定ユニット20と超音波測定制御ユニット30の一方または両方を血圧計測装置10とは別体とし、処理装置40とデータ通信可能に有線または無線接続した構成とすることもできる。
【0037】
[測定原理の説明]
次に、本実施形態における血圧測定の原理について説明する。
図2は、第1超音波プローブ31及び第2超音波プローブ32の取り付け状態を示す図である。第1超音波プローブ31と第2超音波プローブ32は同じ仕様の超音波プローブであって、走査面を平行にして所定のプローブ間距離Lp(好適には10mm〜30mm程度)だけ離して粘着台座34に固定されている。粘着台座34は、皮膚面に着脱可能な粘着層を有しており、被検者3が身体を動かしても容易にはずれたり剥がれたりしない。粘着台座34は、第1超音波プローブ31と第2超音波プローブ32とが血管5(本実施形態では頸動脈)の短軸を描出できるように、且つ第1超音波プローブ31が心臓側(上流側)で第2超音波プローブ32が頭側(下流側)になるように、貼り付けされるものとする。
【0038】
なお、第1超音波プローブ31と第2超音波プローブ32を一体の粘着台座34に搭載せずにそれぞれ別々に粘着台座34を有する構成としてもよい。
また、測定対象とされる血管5は頸動脈に限らず、緊張時にはたらく交感神経の作用による血管径変化が比較的小さい他の動脈、例えば鎖骨下動脈や大動脈を測定対象とすることもできる。
【0039】
図3は、第1超音波プローブ31と第2超音波プローブ32との貼り付け位置における断面図である。第1超音波プローブ31と第2超音波プローブ32は、それぞれ内蔵する発信部から数MHz〜数十MHzの超音波パルス信号やバースト信号を血管5に向けて送出し、内蔵する受信部で血管5の前壁5fと後壁5rそれぞれから反射波を受信する。そして、処理装置40は、前壁5fからの受信波と、後壁5rからの受信波との到達時間差から血管5の直径、すなわち第1超音波プローブ31で測定した第1血管径D1と、第2超音波プローブ32で測定した第2血管径D2とを算出する。超音波の送出と反射波の受信は極く短い時間間隔で連続的に行われる。このため、第1血管径D1と第2血管径D2との算出も連続的に行うことができる。この結果、血管径が時系列に変化する波形が得られる。
【0040】
図4は、第1血管径D1と第2血管径D2の時系列波形例であって、(1)血管径波形、(2)血管径を二階微分した加速度波形、(3)拡張期の加速度波形の拡大図、に相当する。なお、波形は理解を容易にするために簡略化している。
【0041】
図4(1)によれば、第1血管径D1と第2血管径D2の変化から拡張期Td、収縮期Ts、切痕期Tnが分かる。また、第1超音波プローブ31は、第2超音波プローブ32よりも心臓側に配置されているため、心臓収縮に伴う圧力波は第1超音波プローブ31の方が早く到達する。そのため、第1血管径D1は第2血管径D2より拡張/収縮のタイミングが早い。
【0042】
しかし、実際の血管径の変化は
図4(1)に示したように拡張期Td、収縮期Ts、切痕期Tnが明確に現れるとは限らない。特に、収縮期Tsのピークはその時点を明確に特定できないケースが比較的多く、例えば心疾患等が懸念される被検者3では心雑音の影響がある。
【0043】
そこで、本実施形態では、収縮期Tsのピークではなく、拡張期Td及び切痕期Tnのピークを検出する。具体的には、第1血管径D1及び第2血管径D2を逐一、時刻tで二階微分し、それぞれの径変化の加速度を求める。そして、二階微分値が所定のピーク条件(例えば基準値を超えること)を満たすピークを見つけることで、拡張期Td及び切痕期Tnを検出する。本手法によれば、拡張期Td及び切痕期Tnを確実に見つけることができる。二階微分は、所定の微分演算の一例である。
【0044】
なお、二階微分値を用いることは副次的に血管径測定のロバスト性を高めることになる。すなわち、第1超音波プローブ31や第2超音波プローブ32から送出される超音波の方向(以下「送出ライン」という)が血管5の短軸方向断面の中心を通る場合、送出ライン上に現れる血管径の変動が最も大きくなるため、血管径の変化がはっきりと波形に現れる。しかし、送出ラインが、短軸方向断面の中心からずれてしまうと血管径の変動が小さくなるため、波形がなまってしまう。微分演算を行わずに血管径波形のピークから拡張期Td及び切痕期Tnを見つける構成では、被検者3が身体を動かすことで、血管5に対する送出ラインがずれてしまい、血管径波形のピークが表出し難くなって、拡張期Td及び切痕期Tnを見つけられずに継続的な計測が途切れる可能性がある。しかし、本実施形態のように二階微分すると、送出ラインが血管5の短軸方向断面の中心を通っていない状態であっても、血管5の壁部を捉えてさえいれば加速度波形には明確なピークが表出する。つまり、被検者3の体動に対する高いロバスト性が得られる。被検者3が身体を動かしたとしても継続的な血圧測定が途切れる可能性は従来技術よりも遙かに小さくなる。
【0045】
微分演算として二階微分を行うこととして説明するが、一回微分を行って拡張期Td及び切痕期Tnを検出することとしてもよい。一回微分であっても、従来技術に比べて、被検者3の体動に対するロバスト性は高いものとなる。
【0046】
さて、第1血管径D1及び第2血管径D2それぞれの二階微分値のピーク時刻t1,t2の差から脈波伝播時間差Δtが得られる。脈波伝播時間差Δtが得られたならば、本実施形態の処理装置40は、この脈波伝播時間差Δtとプローブ間距離Lpとから脈波伝播速度PWVを求める。そして、本実施形態の血圧導出式を用いて脈波伝播速度PWVに基づいて血圧Pを求める。なお、ピーク時刻t1,t2は、拡張期Tdに対応する時刻(タイミング)である。切痕期Tnに対応するピーク時刻t3,t4の差から脈波伝播時間差Δtを得て、脈波伝播速度PWVを求めることとしてもよい。
【0047】
本実施形態の血圧導出式の考え方は、次の通りである。
まず、非加圧状態での血管径血圧特性は、例えば
図5に示すような非線形特性を有することが知られている。計測血圧P、収縮期血圧Ps、拡張期血圧Pd、計測血管径D、収縮期血管径Ds、拡張期血管径Dd、スティフネスパラメーターβの間には、従来技術として上述した式(1)及び式(2)の関係がある。
【0048】
一方、脈波伝播速度PWVと血管弾性との関係は、メーンズ・コルテベークの式として式(3)で表される。但し、血管の壁厚h、血管半径r、血液密度ρ、増分弾性係数Einc、とする。増分弾性係数Eincは、式(4)で表される。
【数3】
【数4】
【0049】
ここで、式(3)に式(4)を代入して整理すると式(5)が得られる。
【数5】
【0050】
また、式(1)をDで微分して整理すると式(6)が得られる。
【数6】
【0051】
そして、式(5)に式(6)を代入すると式(7)となり、当該式を変形することで、本実施形態の血圧導入式である式(8)が得られる。本実施形態の血圧導入式は、スティフネスパラメーターβと、血管径Dと、脈波伝播速度PWVとの関係を示す式となる。
【数7】
【数8】
【0052】
式(8)において血液密度ρの変化は極めて小さいため、定数として扱う事ができる。また、スティフネスパラメーターβは、計測開始前に、校正用血圧測定ユニット20で計測された校正用拡張期血圧Pd0及び校正用収縮期血圧Ps0と、校正期間中に超音波測定制御ユニット30により計測された校正用拡張期血管径Dd0及び校正用収縮期血管径Ds0とから、式(2)でもって校正することができる定数である。
【0053】
よって、本実施形態において、一拍ごとの継続的な血圧計測(常時計測)において必要となる計測は、脈波伝播速度PWVと、血管径Dとなる。
ここで、更に特徴的なことは、式(8)に代入する脈波伝播速度PWVと、血管径Dとには所定の関係があることである。すなわち、脈波伝播速度PWVは、第1血管径D1と第2血管径D2との、拡張期Td又は切痕期Tnの到来時間差を脈波伝播時間差Δtとして算出することで求める。そして、式(8)に代入する血管径Dは、脈波伝播時間差Δtを算出する際に利用した拡張期Td又は切痕期Tnでの、血管径とする。これにより、式(8)によって拡張期血圧Pdと切痕期血圧Pnとを求めることとなる。
【0054】
収縮期血圧Psと、拡張期血圧Pdと、切痕期血圧Pnとは、一定の関係があることが知られている。このため、本実施形態では、式(8)を用いて求めた拡張期血圧Pdと切痕期血圧Pnとから、収縮期血圧Psを算出する。
以上のようにして、本実施形態では、一拍ごとの継続的な血圧計測(常時計測)を実現する。
【0055】
式(1)に基づいて血管径から血圧を算出する従来技術では、血管径Dの値がべき乗の指数となって作用する。このため、被検者3が身体を動かして血管径Dの計測に誤差が混入すると、算出される血圧値に与える影響は甚大となる。しかし、本実施形態の式(8)では、血管径Dの値は、べき乗の指数として用いられておらず、またべき乗される値でもない。従って、血管径Dの計測誤差が、算出される血圧値に与える影響は、従来よりも遙かに小さくて済む。よって、被検者3の体動に対するロバスト性を高めることができる。
【0056】
[機能構成の説明]
次に、本実施形態を実現するための機能構成について説明する。
図6は、本実施形態の血圧計測装置10の機能構成例を示すブロック図である。血圧計測装置10は、操作入力部100と、第1超音波送受信部102と、第2超音波送受信部104と、校正用血圧測定部106と、処理部200と、画像表示部360と、記憶部500とを備える。
【0057】
操作入力部100は、オペレーターによる各種操作入力を受け付け、操作入力に応じた操作入力信号を処理部200へ出力する。ボタンスイッチやレバースイッチ、ダイヤルスイッチ、トラックパッド、マウス、タッチパネルなどにより実現できる。
図1のタッチパネル12やキーボード14がこれに該当する。
【0058】
第1超音波送受信部102及び第2超音波送受信部104は、処理部200から出力される発信制御信号に基づいて超音波測定のための超音波の発信・照射と、その反射波の受信を行う。例えば、超音波振動素子や当該素子のドライバー回路により実現される。
図1の超音波測定制御ユニット30に付属する第1超音波プローブ31及び第2超音波プローブ32がこれに該当する。
【0059】
校正用血圧測定部106は、校正基準となる血圧を取得するための手段であり、測定した血圧情報を処理部200へ出力することができる。
図1の校正用血圧測定ユニット20がこれに該当する。
【0060】
処理部200は、血圧計測装置10を統括制御して、被検者3の生体情報の計測に係る各種演算処理を行う。処理部200は、例えば、CPUやGPU等のマイクロプロセッサーや、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、ICメモリーなどの電子部品によって実現される。そして、各機能部との間でデータの入出力制御を行い、所定のプログラムやデータ、操作入力部100からの操作入力信号等に基づいて各種の演算処理を実行して被検者3の生体情報(本実施形態では血圧)を算出する。
【0061】
処理部200は、超音波測定制御部202と、血管径測定部203と、特徴期判定部204と、心拍判定部205と、脈波伝播速度測定部208と、血圧算出部210と、測定画像生成部260と、計時部270とを有する。
【0062】
超音波測定制御部202は超音波測定を統合的に制御する。具体的には、第1超音波送受信部102及び第2超音波送受信部104による超音波の発信と受信の制御、並びに反射波の受信信号を増幅してデジタル信号に変換する処理等を行う。
図1では超音波測定制御ユニット30の制御装置33がこれに該当する。
【0063】
血管径測定部203は、超音波の受信信号に基づいて血管5(本実施形態では頸動脈)の血管径を連続的に測定する。この連続的な測定によって血管径の時間変化波形が得られることになる。本実施形態では、第1超音波送受信部102の受信信号から第1血管径D1を測定するとともに、第2超音波送受信部104の受信信号から第2血管径D2を測定する。なお、血管径の測定にあたり、受信信号から血管5の前壁5f及び後壁5rを検出し(
図3参照)、前壁5fから後壁5rまでの距離差を求めるが、これ以外の方法で血管径を測定してもよい。
【0064】
また、血管径測定部203が測定した血管径の時間変化波形に基づいて、特徴期判定部204が拡張期及び切痕期を判定する。第1血管径D1に対応する拡張期及び切痕期と、第2血管径D2に対応する拡張期及び切痕期とのそれぞれが判定される。血管径測定部203は、この特徴期判定部204によって判定された特徴期の血管径を特定する。具体的には変化する第1血管径D1のうち、拡張期に対応する血管径と切痕期に対応する血管径とを特定する。また、第2血管径D2のうち、拡張期に対応する血管径と切痕期に対応する血管径とを特定する。
【0065】
特徴期判定部204は、血管径の時間変化波形に所定の微分演算を施し、脈波の特徴期である拡張期と切痕期とを判定する。本実施形態では、二階微分を行い、二階微分値が基準以上のピークであることを示すピーク条件を満たした時点(タイミング)を検出することで特徴期を判定する。
【0066】
心拍判定部205は、特徴期判定部204の結果から超音波測定結果における心拍の区切りを判定する。心拍数を算出する機能を含むとしてもよい。
【0067】
脈波伝播速度測定部208は、血管5における脈波伝播速度PWVを測定する。本実施形態では、拡張期Tdと切痕期Tnとのそれぞれについて、当該特徴期における脈波伝播時間差Δtを算出し、当該時間差Δtとプローブ間距離Lpとから脈波伝播速度PWVを求める。すなわち、拡張期脈波伝播速度PWVdと、切痕期脈波伝播速度PWVnとを求める。
【0068】
血圧算出部210は、血管径測定部203により測定された血管径Dと脈波伝播速度PWVとを変数とする所定の演算処理を行って血圧を算出する。本実施形態では、血圧が脈波伝播速度の2乗に比例し、且つ、血管径Dの逆数に比例する式(8)による演算処理を行って血圧を算出する。式(8)の構成からすれば、血圧算出部210は、校正時に設定された血管5の硬さを示す指標値(スティフネスパラメーターβ)および血管5の校正用拡張期血管径Dd0に基づいて比例の定数が定められた演算処理を行って血圧を算出するとも言える。
【0069】
また、血圧算出部210は、収縮期血圧推定部212を有する。血圧算出部210は、拡張期血管径Ddおよび拡張期脈波伝播速度PWVdを用いた演算処理を行って拡張期血圧Pdを算出し、切痕期血管径Dnおよび切痕期脈波伝播速度PWVnを用いた演算処理を行って切痕期血圧Pnを算出する。そして、収縮期血圧推定部212が、拡張期血圧Pdと切痕期血圧Pnとを用いた所定の収縮期血圧推定演算を行って収縮期血圧Psを算出する。具体的には切痕期血圧Pnを平均動脈圧とみなして次式(9)にて求める。
【数9】
【0070】
測定画像生成部260は、血圧測定に必要な各種操作画面や測定結果を表示するための画像を生成し画像表示部360へ出力する。画像表示部360は、測定画像生成部260からの画像データを表示する。
図1のタッチパネル12がこれに該当する。
【0071】
計時部270は、測定時刻の計時を行う。計時方法は適宜選択可能であるが、例えばシステムクロックを利用することができる。
【0072】
記憶部500は、ICメモリーやハードディスク、光学ディスクなどの記憶媒体により実現され、各種プログラムや、処理部200の演算過程のデータなどの各種データを記憶する。
図1では、処理装置40の制御基板41に搭載されている記憶媒体43がこれに該当する。なお、処理部200と記憶部500の接続は、装置内の内部バス回路による接続に限らず、LAN(Local Area Network)やインターネットなどの通信回線で実現しても良い。その場合、記憶部500は血圧計測装置10とは別の外部記憶装置により実現されるとしてもよい。
【0073】
そして、記憶部500は、システムプログラム501と、血圧測定プログラム502と、拡張期タイミング511と、切痕期タイミング513とを記憶する。また、校正採用プローブ識別情報520と、校正用拡張期血管径521と、校正用収縮期血管径522と、校正用拡張期血圧531と、校正用収縮期血圧532と、スティフネスパラメーター535と、拡張期脈波伝播時間541と、切痕期脈波伝播時間542と、拡張期脈波伝播速度551と、切痕期脈波伝播速度552とを記憶する。また、血管径ログデータ600と、血圧ログデータ700とを記憶する。勿論、これら以外にも、各種判定用のフラグや、計時用のカウンター値などを適宜記憶することができる。
【0074】
システムプログラム501は、血圧計測装置10にコンピュータとしての基本的な入出力機能を実装させるためのプログラムである。処理部200は、システムプログラム501を実行した上で、血圧測定プログラム502を実行することにより、超音波測定制御部202や、血管径測定部203、特徴期判定部204、心拍判定部205、脈波伝播速度測定部208、血圧算出部210、測定画像生成部260、計時部270等の機能を実現する。なお、これらの機能部の何れかを電子回路などのハードウェアで実現することも可能である。
【0075】
記憶部500に記憶される拡張期タイミング511と切痕期タイミング513とには、最新の心拍に係るタイミングの情報、すなわちそれぞれの特徴期を示す時間情報が格納される。時間情報は、血管径ログデータ600の測定時刻601の情報である。また、拡張期タイミング511と切痕期タイミング513とには、第1血管径D1及び第2血管径D2それぞれに関する時間情報が格納される。
【0076】
校正採用プローブ識別情報520には、第1超音波プローブ31と第2超音波プローブ32の何れで測定した血管径を校正用として採用したかを示す情報が格納される。
【0077】
血管径ログデータ600には、計測開始から終了までの血管径に関する情報が時系列に格納される。例えば、
図7に示すように、超音波測定周期毎の測定時刻601と対応づけて、当該時刻における拍動を識別するための拍動番号602(例えば、計測開始から何回目の拍動であるかを示す値)と、その時に計測された第1血管径611及び第2血管径612と、第1血管径二階微分値621と、第2血管径二階微分値622とを対応づけて格納する。勿論、これら以外のデータも適宜格納することができる。
図7においては、測定時刻601が「t001」「t002」「t003」「t004」と徐々に経過しているが、拍動番号602が何れも「1」となっているため、同一の拍動に係るデータであることを示している。第1血管径611及び第2血管径612を時系列に見ることで、血管径の時間変化波形が得られる。また、「t001」と「t002」において、第1血管径二階微分値621と第2血管径二階微分値622とが“NULL”となっているのは、時刻「t001」よりも前にデータがなく、二階微分値の算出に必要なデータが得られていないためである。
【0078】
血圧ログデータ700には、一拍ごとの継続的な血圧測定の結果が格納されており、計測開始から終了までに測定された各種血圧値に関する情報が時系列に格納される。例えば、
図8に示すように、拍動番号701と対応づけて、拡張期血圧711と、収縮期血圧712と、切痕期血圧713とを格納する。勿論、これら以外のデータも適宜格納することができる。
【0079】
[処理の流れの説明]
次に、血圧計測装置10の動作について説明する。
図9は、本実施形態における血圧計測装置10における主たる処理の流れを説明するためのフローチャートである。なお、第1超音波プローブ31及び第2超音波プローブ32は予め被検者3に貼り付けられているものとする。
【0080】
血圧計測装置10は、先ずオペレーターに向けて校正用血圧測定ユニット20のカフ21を被検者3の上腕に取り付けるように指示する表示をタッチパネル12にて行う(ステップS2)。当該表示画面には、取り付け完了の操作入力アイコンが含まれており、当該アイコンへの操作入力が検出されると、血圧計測装置10は、校正処理を実行する(ステップS4)。
【0081】
図10は、本実施形態における校正処理の流れを説明するためのフローチャートである。校正処理において、血圧計測装置10は、校正用として上腕血圧測定を開始する(ステップS10)。
【0082】
校正用の血圧測定には数十秒程度の時間を要するので、その間に血圧計測装置10は第1超音波プローブ31及び第2超音波プローブ32による血管5の血管径測定と血管径の二階微分処理とを開始する(ステップS12)。測定結果は、血管径ログデータ600に格納される(
図7参照)。
【0083】
校正用の血圧測定が完了すると、校正用血圧測定ユニット20から処理装置40へ校正用拡張期血圧Pd0と校正用収縮期血圧Ps0とが送信され、記憶部500にそれぞれ記憶される(ステップS14;
図6参照)。
【0084】
次に、血圧計測装置10は、校正用血圧測定ユニット20による校正用の計測期間中に血管径ログデータ600に格納された第1血管径D1及び第2血管径D2の変動から拡張期と収縮期を判定し、校正用拡張期血管径Dd0と校正用収縮期血管径Ds0とを決定する(ステップS16)。例えば、校正用の計測期間中に判定された拡張期血管径を統計処理(例えば平均処理や中央値選択処理)することで校正用拡張期血管径Dd0を決定する。同じく、校正用の計測期間中に判定された収縮期血管径を統計処理(例えば平均処理や中央値選択処理)することで校正用収縮期血管径Ds0を決定する。
【0085】
なお、血管5の直径を計測した場合に最も血管径の変動幅が大きくなる、すなわち計測精度がより高くなる。よって、本実施形態では、第1血管径D1と第2血管径D2それぞれの血管径変動幅を比較して変動幅の大きい方の血管径から校正用拡張期血管径Dd0と校正用収縮期血管径Ds0とを決定することとしてもよい。
【0086】
次に、血圧計測装置10は、校正用拡張期血圧Pd0と、校正用収縮期血管径Ds0と、校正用拡張期血管径Dd0と、校正用収縮期血管径Ds0とを用いて式(2)からスティフネスパラメーターβを算出する(ステップS18)。これで、式(8)の血圧導出式における比例定数(=(2ρ/β)・Dd)が決定し校正が完了したことになる。
【0087】
図9に戻って、次に、血圧計測装置10は、オペレーターに向けて校正用血圧測定ユニット20のカフ21を被検者3の上腕から取り外すように指示する表示をタッチパネル12にて行う(ステップS28)。
【0088】
そして、当該表示画面には、取り外し完了の操作入力アイコンが含まれており、当該アイコンへの操作入力が検出されると、血圧計測装置10は血圧測定を開始する。すなわち、血管径ログデータ600をクリアして、再び第1血管径D1と第2血管径D2の測定及び記録を開始するとともに(ステップS30)、第1血管径二階微分値と第2血管径二階微分値の算出及び記録を開始する(ステップS32)。また、心拍判定部205による心拍判定を開始する(ステップS34)。そして、血圧計測装置10は心拍毎に、脈波伝播速度測定部208による脈波伝播速度測定処理(ステップS40)と、血圧算出部310による血圧算出処理(ステップS80)とを繰り返し実行する。
【0089】
図11は、本実施形態における脈波伝播速度測定処理の流れを説明するためのフローチャートである。
脈波伝播速度測定処理において、血圧計測装置10は、血管径ログデータ600に基づいて、第1血管径D1に係る拡張期タイミング511と、第2血管径D2に係る拡張期タイミング511とを判定する(ステップS50〜S52)。そして、この2つの拡張期タイミングの時間差すなわち拡張期脈波伝播時間Δtdを求め、この拡張期脈波伝播時間Δtdと、予め分かっているプローブ間距離Lpとから拡張期脈波伝播速度PWVdを算出する(ステップS54)。
【0090】
続いて、血圧計測装置10は、血管径ログデータ600に基づいて、第1血管径D1に係る切痕期タイミング513と、第2血管径D2に係る切痕期タイミング513とを判定する(ステップS60〜S62)。そして、この2つの切痕期タイミングの時間差すなわち切痕期脈波伝播時間Δtnを求め、この切痕期脈波伝播時間Δtnと、予め分かっているプローブ間距離Lpとから切痕期脈波伝播速度PWVnを算出する(ステップS64)。そして、脈波伝播速度測定処理を終了する。
【0091】
図12は、本実施形態における血圧算出処理の流れを説明するためのフローチャートである。同処理において、血圧計測装置10は、校正で血管径の測定に採用した超音波プローブを、この時点の心拍に係る血圧算出にも引き続き用いる。或いは、血管径ログデータ600から直近の心拍における第1血管径611及び第2血管径612それぞれの変動幅を求め、変動幅が大きい方の血管径を判別することで、この時点の心拍に係る血圧算出に採用する超音波プローブを決定する(ステップS100)。
【0092】
次いで、血圧計測装置10は、拡張期脈波伝播速度PWVdと、採用された超音波プローブの拡張期タイミング511での血管径Dとを用いて、式(8)で血圧Pを算出し、これを拡張期血圧Pdとして血圧ログデータ700に記憶する(ステップS102)。
【0093】
更に、血圧計測装置10は、切痕期脈波伝播速度PWVnと、採用された超音波プローブの切痕期タイミング513での血管径Dとを用いて、式(8)で血圧Pを算出し、これを切痕期血圧Pnとして血圧ログデータ700に記憶する(ステップS104)。
【0094】
そして、切痕期血圧Pnを平均血圧Paveとみなして、式(9)を用いて収縮期血圧Psを推定算出し、血圧ログデータ700に記憶する(ステップS106)。
【0095】
次いで、血圧計測装置10は、拡張期血圧Pdと収縮期血圧Psと切痕期血圧Pnとをタッチパネル12にて表示させる(ステップS110)。この時、心拍数や血管径などの情報も一緒に表示させると好適である。切痕期血圧Pnの表示は省略することもできる。
【0096】
図9に戻って、血圧計測装置10は次に測定終了条件を満たしているかを判定する(ステップS130)。本実施形態では、タッチパネル12又はキーボード14からの所定の測定終了操作入力がなされると測定終了条件を満たすとして肯定判定する。計測開始ともに起動タイマーをセットして、セットした所定時間の経過により肯定判定するとしてもよい。肯定判定ならば一連の処理を終了する。また、否定判定ならばステップS40に戻り、心拍ごとにステップS40とステップS80とを実行する。
【0097】
[効果の検証]
次に、式(1)を用いて血管径から血圧を算出する従来方式と、式(8)を用いて算出する本実施形態の方式との実測データを比較する。
実験条件は次の通りである。
a)超音波でヒトの頸動脈の血管径を計測するのと並行してトノメトリ血圧計で血圧を計測した。
b)被検者に首の姿勢を変えてもらい、初期姿勢と、血管径の計測に誤差が生じるような変化姿勢との2つの姿勢について血管径や血圧、脈波伝播速度、スティフネスパラメーター等の値を測定した。
c)スティフネスパラメーターβを含む校正する必要のある各種の値は、初期姿勢で校正した。
【0098】
初期姿勢と変化姿勢との姿勢の違いを客観的に示す値として、変化姿勢において計測された各値からスティフネスパラメーターβの値を算出してみたところ、初期姿勢(校正時)の値から“0.46”変化していた。また、脈波伝播速度は、初期姿勢と変化姿勢とで、18cm/s程度の差が生じていた。
【0099】
図13は、従来方式による実験結果を表すグラフであり、血管径と血圧との対応関係を表すグラフを示している。曲線は、測定した血管径及び血圧のプロットからの推定である。初期姿勢のグラフを実線で、変化姿勢のグラフを一点鎖線で示している。血管径5.78mm程度で、初期姿勢の血圧が100mmHgであるのに対して、同じ血管径で変化姿勢の血圧は80mmHgとなった。約20mmHgの誤差が生じた。
なお、血管径の誤差は、約80mmHg程度の血圧で算出すると、約130μmとなった。
【0100】
一方、
図14は、本実施形態の方式による実験結果を表すグラフであり、脈波伝播速度PWVと血圧との対応関係を表すグラフを示している。初期姿勢のグラフを実線、変化姿勢のグラフを一点鎖線で示している。初期姿勢において血圧100mmHgに対応する脈波伝播速度で、変化姿勢での血圧を計測した場合には95mmHgとなった。すなわち約5mmHgの誤差で納まることが分かる。
【0101】
以上、本実施形態によれば、従来方式による血圧測定よりも姿勢変化に対するロバスト性に優れた血圧測定が実現され、長時間に渡る継続的な血圧測定を精度良く実現できる。
【0102】
なお、本発明を適用可能な形態は上述した実施形態に限るものではなく、適宜構成要素の追加・省略・変更を施すことができる。
【0103】
[変形例:その1]
例えば、上述した実施形態では、計測開始前に校正用の血圧測定を行うとしたがこれを省略することもできる。具体的には、被検者3の年齢、性別、身長、体重などの身体特徴パラメーターと、スティフネスパラメーターβの値との関係を予め統計的手法により調査した上で決定し、記憶部500にテーブルデータとして記憶させておく。或いは、年齢、性別、身長、体重などの身体特徴パラメーターを用いたスティフネスパラメーターβの導出関数を設定して記憶部500に記憶させておく。例えば、年齢からスティフネスパラメーターβを導出する関数としては、以下の式(10)が考えられる。
β=A・[年齢]+B …式(10)
但し、A,Bは定数。Aは0.05〜0.3の範囲から選択され、Bは2〜5の範囲から選択される。
【0104】
そして、校正処理においては、
図15に示すように、被検者の身体特徴パラメーターを入力設定し(ステップS20)、設定された身体特徴パラメーターの値からテーブルデータを参照して、或いは導出関数からスティフネスパラメーターβを決定する(ステップS22)。
【0105】
[変形例:その2]
また、校正用血圧測定ユニット20で拡張期血圧、収縮期血圧に加えて切痕期血圧を測定できるならば、式(2)にてスティフネスパラメーターβを求める際に、拡張期血圧と拡張期血管径に代えて、切痕期血圧と切痕期血管径を用いるとしてもよい。
【0106】
[変形例:その3]
また、上記実施形態のステップS100(
図12参照)において、血圧算出に採用する超音波プローブを決定する方法を、血管径の脈動変動幅に着眼して選択する方法としたがこれに限らない。例えば、第1血管径D1及び第2血管径D2のうち、拡張期及び収縮期の血管径の値が、対応する校正用拡張期血管径521及び校正用収縮期血管径522(
図6参照)により近い方の超音波プローブを採用するとしてもよい。ここで、第1血管径D1及び第2血管径D2から算出された血圧の差の絶対値が、所定値よりも大きい場合には、測定不能と判断して光や音で報知することとしてもよい。
【0107】
[変形例:その4]
また、血圧算出処理のステップS106(
図12参照)において収縮期血圧Psを推定算出する方法も上記実施形態の例に限らない。
例えば、ステップS106に代えて、
図16に示すように、校正用拡張期血圧531及び校正用収縮期血圧532(
図6参照)から校正時血圧差ΔPds(
図5参照)を求め、ステップS102で求めた拡張期血圧Pdに校正時血圧差ΔPdsを加算することで収縮期血圧Psを推定算出するとしてもよい(ステップS107)。或いは、ステップS106に代えて、
図17に示すように、血圧算出用に採用された超音波プローブに係る血管径の変動から収縮期を判定し(ステップS108)、従来の式(1)を用いたβ方式により収縮期血圧Psを算出する(ステップS109)としてもよい。
【0108】
[変形例:その5]
また、上記実施形態では収縮期血圧Psを推定算出したが、当該推定算出を省略することもできる。すなわち、拡張期血圧Pdのみ、或いは、拡張期血圧Pd及び切痕期血圧Pnを表示出力することとする。