(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0002】
近年、携帯電話機、携帯型パーソナルコンピュータ、携帯型音楽プレイヤ等の携帯型電子機器の駆動電源として、リチウムイオン二次電池に代表される非水電解質二次電池が多く使用されている。更に、環境保護運動の高まりを背景として二酸化炭素ガス等の排出規制が強化されているため、自動車業界では、ガソリン、ディーゼル油、天然ガス等の化石燃料を使用する自動車だけでなく、リチウムイオン二次電池を用いた電気自動車(EV)やハイブリッド電気自動車(HEV)、及びプラグインハイブリッド自動車(PHEV)の開発が活発に行われている。
【0003】
この種のリチウムイオン二次電池は、負極活物質としてリチウムイオンの挿入・脱離が可能なカーボン系材料などを用い、正極活物質としてLiCoO
2、LiNiO
2 、LiMn
2O
4 等のリチウム遷移金属複合酸化物などを用い、有機溶媒に溶質としてリチウム塩を溶解した電解液を用いる電池である。
【0004】
このようなリチウムイオン二次電池が過充電状態になると、正極からリチウムが過剰に脱離され、負極ではリチウムの過剰な挿入が生じて、正・負極の両極が熱的に不安定化する。正・負極の両極が熱的に不安定になると、やがては電解液の有機溶媒を分解するように作用し、急激な発熱反応が生じて電池が異常に発熱し、電池の安全性が損なわれるという問題が生じる恐れがある。
【0005】
このような問題を解決するため、例えば電解液中に過充電抑制剤として、ビフェニル、シクロヘキシルベンゼン、及びジフェニルエーテルのうち少なくとも一種を添加することにより、過充電時の温度上昇の防止を図ったリチウムイオン二次電池が提案されている(特許文献1参照)。
【0006】
また、電解液の有機溶媒にフェニル基に隣接する第3級炭素を有するアルキルベンゼン誘導体またはシクロアルキルベンゼン誘導体を含有させることにより、低温特性や保存特性などの電池特性に悪影響を及ぼすことがなく、且つ過充電に対して安全性を確保したリチウムイオン二次電池が提案されている。(特許文献2参照)
【0007】
このリチウムイオン二次電池では、リチウムイオン二次電池が過充電状態になると、クメン、1,3−ジイソプロピルベンゼン、1,4−ジイソプロピルベンゼン、1−メチルプロピルベンゼン、1,3−ビス(1−メチルプロピル)ベンゼン、1,4−ビス(1−メチルプロピル)ベンゼン、シクロヘキシルベンゼン、シクロペンチルベンゼンなどの添加剤は分解反応を開始してガスを発生するようになる。これと同時に重合反応を開始して重合熱を発生する。この状態で過充電をさらに続けると、ガスの発生量が増大し、過充電を開始してから15〜19分後に電流遮断機構が作動して過充電電流を遮断する。これにより、電池温度も徐々に低下することとなる。
【発明を実施するための形態】
【0017】
以下、本発明に係る実施の形態について、実施例及び比較例を用いて詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解質二次電池の例を示すものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。
【0018】
まず、実施例及び比較例に係る非水電解質二次電池としての角形のリチウムイオン二次電池10の構成について、
図1,2を用いて説明する。
図1に示すように、角形のリチウムイオン二次電池10は、角形の有底筒状の外装缶12内に、正極板と負極板とがセパレータを介して積層し巻回されて偏平形に成形された電極体14が外装缶12の缶軸方向に対し横向きに収納されており、封口板20により外装缶12の開口が封口されている。
【0019】
図1には、直交するXYZの3方向を示した。Z方向は外装缶12の軸方向で+Z方向が外装缶12の開口側である。Y軸方向は外装缶12の横方向で、正極外部端子40側が+Y方向、負極外部端子30側が−Y方向である。X方向は外装缶12の厚さ方向である。
【0020】
また、封口板20には、ガス排出弁22、電解液注液孔及び電解液注液孔を封止する封止栓24が設けられている。ガス排出弁22は、後述する電流遮断機構の作動圧よりも高いガス圧が加わったとき破断し、ガスが電池外部へ排出される。
【0021】
また、封口板20の外面には、絶縁部材32,42を介して負極外部端子30と正極外部端子40とが形成されている。負極外部端子30は、負極集電体16を介して電極体14の負極板と接続され、正極外部端子40は、正極集電体18を介して電極体14の正極板と接続される。この負極外部端子30及び正極外部端子40は、リチウムイオン二次電池10を単独で使用するか、直列接続ないし並列接続で使用するか等に応じて、その形状を適宜変更できる。また、負極外部端子30及び正極外部端子40に端子板34,44やボルト形状の外部接続端子36,46等を取り付けて使用することもできる。
【0022】
次に、角形のリチウムイオン二次電池10の電極体14と電流遮断機構100の構成について
図2を用いて説明する。電流遮断機構100は、負極側の導電経路または正極側の導電経路の少なくとも一方に設けられるが、以下では、正極側の導電経路70に設けられるものとする。
図2は、紙面の下方側から上方側に向かって、電極体14において巻回前の積層状態を示す
図2(a)、電極体14の正極側を示す斜視図である
図2(b)、電流遮断機構100を含む正極側の導電経路70の各要素を分解した分解図である
図2(c)が示される。
【0023】
図2(a)に示すように、電極体14は、負極板50と正極板60とセパレータ58,59を積層し、これをY軸周りに巻回したものである。負極板50は、負極芯体52と、負極芯体52の上に形成される負極活物質合材層54で構成され、−Y軸方向の端部には負極活物質合材層54が形成されない負極芯体露出部56が設けられる。負極芯体露出部は負極集電体16と接続される部分である。正極板60は、正極芯体62と、正極芯体62の上に形成される正極活物質合材層64で構成され、+Y軸方向の端部には正極活物質合材層64が形成されない正極芯体露出部66が設けられる。正極芯体露出部は正極集電体18と接続される部分である。セパレータ58,59は、負極板50と正極板60の積層の間にそれぞれ配置される。
【0024】
図2(b)に示すように、電極体14の+Y方向端面には、正極芯体露出部66が積層巻回され、圧縮された形態で突き出す。図示を省略したが、電極体14の−Y方向端面には、負極芯体露出部56が積層巻回され、圧縮された形態で突き出す。以下では、正極側について説明する。
【0025】
図2(c)に示すように、電極体14の+Y方向端部の正極芯体露出部66の両外面に、正極集電体18と集電体受部品75とが接続されている。正極集電体18は、タブ部72と、タブ部72から−Z方向に延伸し、集電体受部品75と対となって正極芯体露出部66を挟む集電体本体部74を含む。
【0026】
正極外部端子40は、筒部76を備え、内部に貫通孔78が形成されている。そして、正極外部端子40の筒部76は、ガスケット80、封口板20、絶縁部材42及びカップ状の導電部材82にそれぞれ設けられた貫通孔に挿入され、正極外部端子40における筒部76の先端部77が加締められて一体に固定されている。
【0027】
また、導電部材82の矩形筒状部の下端の周縁部には反転板84の周囲が溶接されており、この反転板84の中央部には、正極集電体18のタブ部72に形成された薄肉部86がレーザ溶接により溶接され溶接部が形成されている。また、正極集電体18のタブ部72に形成された薄肉部86には、溶接部の周囲に環状の溝88が形成されている。正極集電体18のタブ部72と反転板84の間には、貫通孔を有する樹脂製の集電体タブホルダ90が配置されており、集電体タブホルダ90の貫通孔を介して正極集電体18のタブ部72と反転板84が接続されている。
【0028】
以上の構成により、正極芯体露出部66は、正極集電体18、正極集電体18のタブ部72、反転板84及び導電部材82を介して正極外部端子40と電気的に接続されている。
【0029】
ここで、反転板84、正極集電体18のタブ部72、及び集電体タブホルダ90が電流遮断機構100を形成する。すなわち、反転板84は、外装缶12内の圧力が増加すると正極外部端子40の貫通孔78側に変形するようになっており、反転板84の中央部には正極集電体18のタブ部72の薄肉部86が溶接されているため、外装缶12内の圧力が所定値を超えると正極集電体18のタブ部72の薄肉部86が環状の溝88の部分で破断するため、反転板84と正極集電体18との間の電気的接続が遮断されるようになっている。なお、電流遮断機構100としては、上述の構成のもの以外に、反転板84に溶接され、この溶接部の周囲を正極集電体18に溶接した金属箔からなるものを使用し、外装缶12内部の圧力が高まって反転板84が変形したときに金属箔が破断する構成のものも採用することができる。また、正極集電体18のタブ部72と反転板84との接続強度を調整し、外装缶12内の圧力が所定値を超えると、正極集電体18のタブ部72と反転板84との接続部が破断するようにしてもよい。
【0030】
また、正極外部端子40に形成された貫通孔78は、ゴム製の端子栓(図示を省略した)により封止されている。更に、端子栓の上部には、金属製の板材がレーザ溶接によって正極外部端子40に溶接固定されている。
【0031】
なお、ここでは正極側の導電経路70に電流遮断機構100を設ける形態を説明したが、負極側の導電経路に電流遮断機構を設けるようにしてもよい。
【0032】
角形のリチウムイオン二次電池10を完成させるには、正極外部端子40及び負極外部端子30にそれぞれ電気的に接続された電極体14を外装缶12内に挿入し、封口板20を外装缶12の開口に嵌合させて、この嵌合部分をレーザ溶接して封口する。そして、電解液注液孔から所定量の電解液を注入した後、電解液注液孔を封止栓24によって封止すればよい。
【0033】
また、角形のリチウムイオン二次電池10では、電流遮断機構100の電池外側に対応する側の空間は完全に密閉されている。この電流遮断機構100が作動した後、更に外装缶12内の圧力が増加すると、封口板20に設けられたガス排出弁22が開放されることにより、ガスが電池外部へと排出される。
【0034】
次に、角形のリチウムイオン二次電池10の製造方法について、更に詳細に説明する。
【0035】
[正極板の作製]
Li
2CO
3と(Ni
0.35Co
0.35Mn
0.3)
3O
4とを、Liと(Ni
0.35Co
0.35Mn
0.3)とのモル比が1:1となるように混合した。次いで、この混合物を空気雰囲気中にて900℃で20時間焼成し、LiNi
0.35Co
0.35Mn
0.3O
2で表されるリチウム遷移金属酸化物を得て、正極活物質とした。以上のようにして得られた正極活物質と、過充電抑制剤としての炭酸リチウムと、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)のNMP溶液とを、リチウム遷移金属酸化物:炭酸リチウム:カーボンブラック:ポリフッ化ビニリデン(PVdF)の質量比が89:2:7:2となるように混練し、正極スラリーを作製した。
【0036】
作製した正極スラリーを、正極芯体62としてのアルミニウム合金箔(厚さ15μm)の上に塗布した後、乾燥させてスラリー作製時に溶媒として使用したNMPを除去し正極活物質合材層64を形成した。
【0037】
その後、圧延ロールを用いて所定の充填密度(2.43g/cm
3)、空隙率(38%)になるまで圧延し、所定寸法に切断して正極板60を作製した。正極板60における充填密度は、2.2〜2.9g/cm
3の範囲であってもよい。
【0038】
[負極板の作製]
負極活物質としての天然黒鉛と、増粘剤としてのカルボキシメチルセルロース(CMC)と、結着剤としてのスチレン−ブタジエン−ラバー(SBR)とを水と共に混練して負極スラリーを作製した。ここで、負極活物質:カルボキシメチルセルロース(CMC):スチレン−ブタジエン−ラバー(SBR)の質量比は98.8:1:0.2となるように混合した。
【0039】
ついで、作製した負極スラリーを、負極芯体52としての銅箔(厚さが8μm)の上に塗布した後、乾燥させてスラリー作製時に溶媒として使用した水を除去し負極活物質合材層54を形成した。
【0040】
その後、圧延ローラーを用いて所定の充填密度(1.06g/cm
3)になるまで圧延した。負極板50における充填密度は、0.9〜1.5g/cm
3の範囲であってもよい。
【0041】
次いで、非水電解質二次電池には安全性向上が求められていることから、導電性異物混入による内部短絡防止を目的に、アルミナと、結着剤と、溶剤としてNMPを質量比30:0.9:69.1となるように混合し、ビーズミルにて混合分散処理を施し、保護層スラリーを作製した。このように作製した保護層スラリーを負極活物質合材層54上に塗布した後、溶剤として使用したNMPを乾燥除去して、負極活物質合材層54の表面にアルミナと結着剤からなる保護層を形成した。その後、所定寸法に切断して、負極板50を作製した。なお、上記アルミナとバインダーからなる層の厚みは4μmとした。なお、正極活物質合材層64上に保護層を設けることもできる。
【0042】
正極板60及び負極板50の充填密度は以下のようにして求めた。充填密度を求める対象の正極板60または負極板50を電極板として、電極板を10cm
2に切り出し、電極板10cm
2の質量A(g)、電極板の厚みC(cm)を測定する。次いで、正極板60の場合は正極芯体62を、負極板50の場合は負極芯体52を、芯体として、芯体10cm
2の質量B(g)、及び芯体厚みD(cm)を測定する。そして、次の式から充填密度を求める。
充填密度=(A―B)/〔(C−D)×10cm
2〕
【0043】
また正極活物質合材層64の空隙率は、正極活物質合材層64全体の体積から、活物質、導電材、結着材、及び炭酸リチウムの体積をそれぞれ引き、正極活物質合材層64内の空間体積を算出後、正極活物質合材層64全体に対する空間の割合を百分率で算出した。
【0044】
[偏平状の電極体の作製]
偏平状の電極体14は、上述のようにして作製された正極板60及び負極板50を用い、正極板60及び負極板50を、巻回軸であるY方向の一方の端部である+Y方向端部に正極芯体露出部66、他方の端部である−Y方向端部に負極芯体露出部56がそれぞれ位置するように、ポリエチレン製多孔質のセパレータ58,59を介して偏平状に巻回することにより作製した。
【0045】
[電解液の調製]
非水電解質の非水溶媒としてエチレンカーボネート30体積%、メチルエチルカーボネート30体積%、及びジメチルカーボネート40体積%よりなる混合溶媒に、電解質塩としてLiPF
6を1.15mol/Lとなるように添加して混合し、電解液を調製した。
【0046】
[導電経路の作製]
上記のように電流遮断機構100は、正極側または負極側の少なくとも一方に設けるが、ここでは正極側に電流遮断機構100を設けるものとする。
【0047】
電流遮断機構100を備えた正極側の導電経路70の作製手順について説明する。まず、封口板20の上面にガスケット80を、封口板20の下面に絶縁部材42及び導電部材82をそれぞれ配置し、それぞれの部材に設けられた貫通孔に正極外部端子40の筒部76を挿通させた。その後、正極外部端子40の筒部76の先端部77を加締めることにより、正極外部端子40、ガスケット80、封口板20、絶縁部材42、及び導電部材82を一体的に固定した。
【0048】
次いで、カップ状の導電部材82の周縁部に反転板84の周囲を完全に密閉するように溶接した。なお、ここでは、反転板84としては薄いアルミニウム製の板を下部が突出するように成型処理したものを用いた。導電部材82と反転板84との間の溶接法としては、レーザ溶接法を用いた。
【0049】
反転板84に樹脂製の集電体タブホルダ90を当接し、集電体タブホルダ90と絶縁部材42とをラッチ固定した。
図2において、集電体タブホルダ90にラッチ用の溝部92と、絶縁部材42にラッチ用の突起94を示した。
【0050】
次いで、正極集電体18のタブ部72に設けた貫通孔96に、集電体タブホルダ90の下面に設けた突出部(図示を省略した)を挿入した後、この突出部を加熱しながら加締めることにより、集電体タブホルダ90と正極集電体18を固定した。そして、正極集電体18の溝で囲まれた領域(図示を省略した)と反転板84とをレーザ溶接法によって溶接した。その後、正極外部端子40の頂部より貫通孔78内に所定圧力のN2ガスを導入し、導電部材82と反転板84との間の溶接部の密封状態を検査した。
【0051】
その後、正極外部端子40の貫通孔78内に端子栓を挿入し、金属板をレーザ溶接によって正極外部端子40に溶接固定した。
【0052】
電流遮断機構100を設けない負極側の導電経路については、封口板20の上面にガスケット80を配置し、封口板20の下面に絶縁部材42及び負極集電体16を配置し、それぞれの部材に形成された貫通孔に負極外部端子30の筒部を挿通させた。その後、負極外部端子30の先端部を加締めることにより、負極外部端子30、ガスケット80、封口板20、絶縁部材42、及び負極集電体16を一体に固定した。
【0053】
[角形リチウムイオン二次電池の作製]
上記の方法で封口板に固定された正極集電体18及び正極集電体受部品75を電極体14の正極芯体露出部66の両外面に当接して抵抗溶接により固定した。また、上記の方法で封口板20に固定された負極集電体16及び負極集電体受部品を電極体14の負極芯体露出部56の両外面に当接して抵抗溶接により固定した。
【0054】
その後、電極体14の外周を絶縁シートで被覆してから、電極体14を絶縁シートと共に角形の外装缶12内に挿入し、封口板20を外装缶12の開口部に嵌合させた。そして、封口板20と外装缶12との嵌合部をレーザ溶接した。
【0055】
[実施例1]
次いで、上述のようにして調製された非水電解液を注入した。この後封口することにより、実施例1の非水電解質二次電池を作製した。
【0056】
[実施例2]
正極充填密度を2.61g/cm
3、正極活物質合材層64の空隙率を34%になるように作製する以外は、実施例1と同様の方法で実施例2の非水電解質二次電池を作製した。
【0057】
[比較例1]
正極充填密度を2.06g/cm
3、正極活物質合材層64の空隙率を47%になるように作製する以外は、実施例1と同様の方法で比較例1の非水電解質二次電池を作製した。
【0058】
[比較例2]
正極充填密度を2.15g/cm
3、正極活物質合材層64の空隙率を45%になるように作製する以外は、実施例1と同様の方法で比較例2の非水電解質二次電池を作製した。
【0059】
[実施例3]
正極充填密度を2.55g/cm
3、正極活物質合材層64の空隙率を37%になるように作製する以外は、実施例1と同様の方法で実施例3の非水電解質二次電池を作製した。
【0060】
[実施例4]
正極充填密度を2.63g/cm
3、正極活物質合材層64の空隙率を35%になるように作製する以外は、実施例1と同様の方法で実施例4の非水電解質二次電池を作製した。
【0061】
[極板表面抵抗測定条件]
実施例1,2及び比較例1,2の正極板60に関し、25℃の室温化において2端子法で表面抵抗を測定した。
【0062】
[高温及び低温での過充電試験条件]
高温過充電試験は、60℃の環境下で、125Aで充電深度が140%になるまでの条件で充電を行った。低温過充電試験は、−10℃の環境下で、55Aで充電深度が180%になるまでの条件で充電を行った。
【0063】
[外装容器(電池ケース)内の空間体積に対する炭酸リチウム量の算出]
外装容器内の空間体積に対する炭酸リチウム量の算出方法として、まず、外装缶12の内寸と封口板20の厚みから容器内の全体積を算出し、電極体14の構成材料の質量及び比重から算出した電極体14の体積を引くことで外装容器内の空間体積を算出した。最後に、(炭酸リチウム量/外装容器内体積)の値から、外装容器内の空間体積に対する炭酸リチウム量を算出した。
【0065】
実施例1及び2、比較例1及び2の試験結果を表1に示す。また実施例3及び4の試験結果を表2,3に示す。なお、これらの表で、正極活物質合材層64を単に正極合材と示し、電流遮断機構100をCID(安全機構)と示した。
【0069】
表1に示す結果から、正極活物質合材層64の空隙率が40%以上の場合、極板表面抵抗が約2.5〜5倍に増大し、出力低下が発生する懸念があるため、ハイブリッド電気自動車(HEV)やプラグインハイブリッド自動車用途としてのリチウムイオン二次電池としては好ましくない。また、表2、3に示す結果から、正極活物質合材層64の空隙率が大きいほど高温、及び低温での過充電時の電流遮断機構100の作動時間が短縮され、安全性の向上傾向がある。従って、外装容器内体積あたりの炭酸リチウム量が7mg/cm
3以上であり、正極活物質合材層の充填密度が2.2〜2.9g/cm
3であり、また正極活物質合材層の空隙率は30%以上40%以下であることが好ましい。加えて、外装容器内体積あたりの炭酸リチウム量の上限は、11mg/cm
3以下とすることが電気的特性(容量・出力)確保の面から好ましい。
【0070】
本発明に係る非水電解質二次電池では、非水電解質を構成する非水溶媒(有機溶媒)としては、非水電解質二次電池において一般的に使用されているカーボネート類、ラクトン類、エーテル類、エステル類などを使用することができ、これら溶媒の2種類以上を混合して用いることもできる。これらの中ではカーボネート類、ラクトン類、エーテル類、ケトン類、エステル類などが好ましく、カーボネート類がさらに好適に用いられる。
【0071】
例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネートを用いることができる。特に、環状カーボネートと鎖状カーボネートとの混合溶媒を用いることが好ましい。また、ビニレンカーボネート(VC)などの不飽和環状炭酸エステルを非水電解質に添加することもできる。
【0072】
本発明に係る非水電解質の溶質としては、非水電解質二次電池において一般に溶質として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、LiPF
6、LiBF
4、LiCF
3SO
3、LiN(CF
3SO
2)
2、LiN(C
2F
5SO
2)
2、LiN(CF
3SO
2)(C
4F
9SO
2)、LiC(CF
3SO
2)
3、LiC(C
2F
5SO
2)
3、LiAsF
6、LiClO
4、Li
2B
10Cl
10、Li
2B
12Cl
12、LiB(C
2O
4)
2、LiB(C
2O
4)F
2、LiP(C
2O
4)
3、LiP(C
2O
4)
2F
2、LiP(C
2O
4)F
4など及びそれらの混合物が例示される。これらの中でも、LiPF
6(ヘキサフルオロリン酸リチウム)が好ましく用いられる。非水溶媒に対する溶質の溶解量は、0.5〜2.0mol/Lとするのが好ましい。
【0073】
本発明に係る非水電解質二次電池では、正極活物質としてリチウムイオンの挿入・脱離可能なリチウム遷移金属化合物が使用可能である。リチウム遷移金属化合物としては、リチウム遷移金属複合酸化物が好ましい。リチウムイオンの挿入・脱離可能なリチウム遷移金属複合酸化物としては、コバルト酸リチウム(LiCoO
2)、マンガン酸リチウム(LiMn
2O
4)、ニッケル酸リチウム(LiNiO
2)、リチウムニッケルマンガン複合酸化物(LiNi
1-xMn
xO
2(0<x<1))、リチウムニッケルコバルト複合酸化物LiNi
1-xCo
xO
2(0<x<1)、リチウムニッケルコバルトマンガン複合酸化物(LiNi
xMn
yCo
zO
2(0<x<1、0<y<1、0<z<1、x+y+z=1)等のリチウム遷移金属酸化物が挙げられる。また、上記のリチウム遷移金属複合酸化物にAl、Ti、Zr、Nb、B、Mg、またはMoなどを添加したものが使用できる。例えば、Li
1+aNi
xCo
yMn
zMbO
2(M=Al、Ti、Zr、Nb、B、Mg、Moから選択される少なくとも一種の元素、0≦a≦0.2、0.2≦x≦0.5、0.2≦y≦0.5、0.2≦z≦0.4、0≦b≦0.02、a+b+x+y+z=1)で表されるリチウム遷移金属複合酸化物が挙げられる。
【0074】
本発明に係る非水電解質二次電池では、負極活物質としてリチウムイオンの挿入・脱離可能な炭素材料を用いることができる。リチウムイオンの挿入・脱離可能な炭素材料としては、黒鉛、難黒鉛化性炭素、易黒鉛化性炭素、繊維状炭素、コークス、及びカーボンブラックなどが挙げられる。特に黒鉛を用いることが好ましい。
【0075】
本発明に係る非水電解質二次電池では、セパレータ58,59としてポリプロピレン(PP)やポリエチレン(PE)などのポリオレフィン製の多孔質セパレータを用いることが好ましい。また、ポリプロピレン(PP)とポリエチレン(PE)の3層構造(PP/PE/PP、あるいはPE/PP/PE)を有するセパレータを用いることもできる。