特許第6587110号(P6587110)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日立工機株式会社の特許一覧

<>
  • 特許6587110-回転打撃工具 図000002
  • 特許6587110-回転打撃工具 図000003
  • 特許6587110-回転打撃工具 図000004
  • 特許6587110-回転打撃工具 図000005
  • 特許6587110-回転打撃工具 図000006
  • 特許6587110-回転打撃工具 図000007
  • 特許6587110-回転打撃工具 図000008
  • 特許6587110-回転打撃工具 図000009
  • 特許6587110-回転打撃工具 図000010
  • 特許6587110-回転打撃工具 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6587110
(24)【登録日】2019年9月20日
(45)【発行日】2019年10月9日
(54)【発明の名称】回転打撃工具
(51)【国際特許分類】
   B25B 21/02 20060101AFI20191001BHJP
【FI】
   B25B21/02 Z
【請求項の数】14
【全頁数】31
(21)【出願番号】特願2017-561600(P2017-561600)
(86)(22)【出願日】2017年1月6日
(86)【国際出願番号】JP2017000276
(87)【国際公開番号】WO2017122592
(87)【国際公開日】20170720
【審査請求日】2018年7月13日
(31)【優先権主張番号】特願2016-4948(P2016-4948)
(32)【優先日】2016年1月14日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000005094
【氏名又は名称】工機ホールディングス株式会社
(74)【代理人】
【識別番号】100094983
【弁理士】
【氏名又は名称】北澤 一浩
(74)【代理人】
【識別番号】100095946
【弁理士】
【氏名又は名称】小泉 伸
(74)【代理人】
【識別番号】100192337
【弁理士】
【氏名又は名称】福本 鉄平
(74)【代理人】
【識別番号】100206092
【弁理士】
【氏名又は名称】金 佳恵
(74)【代理人】
【識別番号】100208535
【弁理士】
【氏名又は名称】松坂 光邦
(72)【発明者】
【氏名】原田 哲祐
(72)【発明者】
【氏名】西河 智雅
(72)【発明者】
【氏名】伊藤 達也
(72)【発明者】
【氏名】平井 貴大
(72)【発明者】
【氏名】李 陽
【審査官】 亀田 貴志
(56)【参考文献】
【文献】 特開2013−252579(JP,A)
【文献】 特開2009−072889(JP,A)
【文献】 特開2013−146847(JP,A)
【文献】 特開2016−078230(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B25B 21/02
B23B 45/16
B25D 15/00 − 16/00
(57)【特許請求の範囲】
【請求項1】
モータと、
該モータによって駆動される先端工具保持部と、
該モータから該先端工具保持部に至る動力伝達経路に設けられ、該モータの駆動力を該先端工具保持部に伝達する回転打撃が間欠的に生じるよう構成された打撃機構部と、
該モータに供給される電圧を切り替えるスイッチング素子と、
該スイッチング素子を制御する制御部と、を備えた回転打撃工具であって、
第1の回転打撃が終了してから該第1の回転打撃に続く第2の回転打撃が開始するまでの間に該モータに供給される電圧が徐々に上昇し始めるよう、該制御部を構成し
該制御部は、該第1の回転打撃の終了後から該第2の回転打撃の開始までの期間、該モータに供給される電圧が増加期間と減少期間とを交互に繰り返し且つ該増加期間から該減少期間に転じるときの値である電圧極大値が徐々に上昇するように、該モータに供給される電圧を制御することを特徴とする回転打撃工具。
【請求項2】
該制御部は、該第1の回転打撃に続く該第2の回転打撃が開始してから該第2の回転打撃が終了するまでの間に該モータに供給される電圧を徐々に下降させ始めることを特徴とする請求項1に記載の回転打撃工具。
【請求項3】
モータと、
該モータによって駆動される先端工具保持部と、
該モータから該先端工具保持部に至る動力伝達経路に設けられ、該モータの駆動力を該先端工具保持部に伝達する回転打撃が間欠的に生じるよう構成された打撃機構部と、
該モータに供給される電圧を切り替えるスイッチング素子と、
該スイッチング素子を制御する制御部と、を備えた回転打撃工具であって、
第1の回転打撃に続く第2の回転打撃が開始してから該第2の回転打撃が終了するまでの間に該モータに供給される電圧を徐々に下降させ始めるよう、該制御部を構成したことを特徴とする回転打撃工具。
【請求項4】
該制御部は、該第1の回転打撃の終了後から該第2の回転打撃の開始までの期間、該モータに供給される電圧が増加期間と減少期間とを交互に繰り返し且つ該増加期間から該減少期間に転じるときの値である電圧極大値が徐々に上昇するように該モータに供給される電圧を制御することを特徴とする請求項3に記載の回転打撃工具。
【請求項5】
モータと、
該モータによって駆動される先端工具保持部と、
該モータから該先端工具保持部に至る動力伝達経路に設けられ、該モータの駆動力を該先端工具保持部に伝達する回転打撃が間欠的に生じるよう構成された打撃機構部と、
該モータに供給される電圧を切り替えるスイッチング素子と、
該スイッチング素子を制御する制御部と、
該モータに流れるモータ電流を検出する電流検出部、を備えた回転打撃工具であって、
第1の回転打撃が終了してから該第1の回転打撃に続く第2の回転打撃が開始するまでの間に該モータに供給される電圧が徐々に上昇し始めるよう、該制御部を構成し、
該制御部は、該モータ電流が目標電流値を超えている場合、該モータに供給される電圧を徐々に減少させ、該モータ電流が該目標電流値以下である場合、該モータに供給される電圧を徐々に増加させることを特徴とする回転打撃工具。
【請求項6】
該制御部は、該モータにかかる負荷が第1の作業よりも大きい第2の作業が行われる場合には、該モータに供給される電圧を減少させる制御を行った後、複数の回転打撃が生じる間に、該モータに供給される電圧を徐々に増加させることを特徴とする請求項1乃至5のいずれか1項に記載の回転打撃工具。
【請求項7】
該制御部は、該モータにかかる負荷が第1の作業よりも大きく且つ該モータ電流が該目標電流値よりも大きい判別閾値を超え第2の作業が行われる場合には、該モータに供給される電圧を減少させる制御を行った後、複数の回転打撃が生じる間に、該モータに供給される電圧を徐々に増加させることを特徴とする請求項5に記載の回転打撃工具。
【請求項8】
該制御部は、該第2の作業が行われる場合に、該モータに供給される電圧を第1所定値まで減少させた後、該第1所定値から該第1所定値よりも大きい第2所定値まで所定期間をかけて増加させ、該所定期間の経過後に該モータに供給される電圧を該第1所定値よりも小さい第3所定値まで減少させることを特徴とする請求項6又は7に記載の回転打撃工具。
【請求項9】
該制御部は、間欠的に行われる該回転打撃の周期が不定となるように該モータに供給される電圧を制御することを特徴とする請求項1乃至8のいずれか1項に記載の回転打撃工具。
【請求項10】
モータと、
該モータによって駆動される先端工具保持部と、
該モータから該先端工具保持部に至る動力伝達経路に設けられ、該モータの駆動力を該先端工具保持部に伝達する回転打撃が間欠的に生じるよう構成された打撃機構部と、
該モータに供給される電圧を切り替えるスイッチング素子と、
該スイッチング素子を制御する制御部と、
該モータに流れるモータ電流を検出する電流検出部と、を備えた回転打撃工具であって、
該制御部は、該モータ電流が判別閾値を超えた場合、該モータに供給される電圧を第1所定値まで減少させた後、該第1所定値から該第1所定値よりも大きい第2所定値まで所定期間をかけて増加させ、該所定期間の経過後に該モータに供給される電圧を該第1所定値よりも小さい第3所定値まで減少させることを特徴とする回転打撃工具。
【請求項11】
モータと、
該モータによって駆動される先端工具保持部と、
該モータから該先端工具保持部に至る動力伝達経路に設けられ、該モータの駆動力を該先端工具保持部に伝達する回転打撃が間欠的に生じるよう構成された打撃機構部と、
該モータに供給される電圧を切り替えるスイッチング素子と、
該スイッチング素子を制御する制御部と、
該モータに流れるモータ電流を検出する電流検出部と、を備えた回転打撃工具であって、
該制御部は、該モータ電流が判別閾値以下の場合には、第1の回転打撃が終了してから該第1の回転打撃に続く第2の回転打撃が開始するまでの間に該モータに供給される電圧を徐々に上昇させ始めるとともに、該第1の回転打撃に続く第2の回転打撃が開始してから該第2の回転打撃が終了するまでの間に該モータに供給される電圧を徐々に下降させ始めることを特徴とする回転打撃工具。
【請求項12】
モータと、
該モータによって駆動される先端工具保持部と、
該モータから該先端工具保持部に至る動力伝達経路に設けられ、該モータの駆動力を該先端工具保持部に伝達する回転打撃が間欠的に生じるよう構成された打撃機構部と、
該モータに供給される電圧を切り替えるスイッチング素子と、
該スイッチング素子を制御する制御部と、
該モータに流れるモータ電流を検出する電流検出部と、を備えた回転打撃工具であって、
該制御部は、該モータ電流が判別閾値以下の場合において、間欠的に行われる該回転打撃における第1の回転打撃の終了後から該第1の回転打撃に続く第2の回転打撃の開始までの期間、該モータに供給される電圧が増加期間と減少期間とを交互に繰り返し且つ該増加期間から該減少期間に転じるときの値である電圧極大値が徐々に上昇するように該モータに供給される電圧を制御することを特徴とする回転打撃工具。
【請求項13】
モータと、
該モータによって駆動される先端工具保持部と、
該モータから該先端工具保持部に至る動力伝達経路に設けられ、該モータの駆動力を該先端工具保持部に伝達する回転打撃が間欠的に生じるよう構成された打撃機構部と、
該モータに供給される電圧を切り替えるスイッチング素子と、
該スイッチング素子を制御する制御部と、
該モータに流れるモータ電流を検出する電流検出部と、を備えた回転打撃工具であって、
該制御部は、該モータ電流が判別閾値以下の場合において、該モータ電流が該判別閾値よりも小さい目標電流値を超えている場合、該モータに供給される電圧を徐々に減少させ、該モータ電流が該目標電流値以下である場合、該モータに供給される電圧を徐々に増加させることを特徴とする回転打撃工具。
【請求項14】
該制御部は、間欠的に行われる該回転打撃の周期が不定となるように該モータに供給される電圧を制御することを特徴とする請求項1乃至13のいずれか1項に記載の回転打撃工具。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、回転打撃工具に関し、特に間欠的な回転打撃力を出力する回転打撃工具に関する。
【背景技術】
【0002】
従来より、モータの回転力を間欠的な回転打撃力に変換し、当該回転打撃力を用いてネジ等に対して締付作業を行う回転打撃工具が広く用いられている。回転打撃工具においては、回転打撃毎にモータに流れる大きな電流、及び、回転打撃と次の回転打撃との間の期間において流れる電流に起因して、モータ及びモータの制御に用いるスイッチング素子の温度が上昇し、当該温度上昇が顕著な場合には、モータ及びスイッチング素子が劣化・破損する虞があった。このため、モータ及びモータの制御に用いるスイッチング素子の温度上昇の抑制が課題となっていた。
【0003】
特許文献1には、回転打撃工具の一種であって、ハンマを回転させながら軸方向に往復動させることによりハンマをアンビルに打撃させるインパクト機構部を備えたインパクト工具が記載されている。特許文献1のインパクト工具においては、モータに供給する電力をPWM信号で制御(PWM制御)し、PWM信号のデューティ比を100%とした状態でモータを駆動し、モータに流れる電流が所定の電流値を超えた場合にデューティ比を減少させることで、ハンマの過剰な後退を抑えている。より具体的には、モータに流れる電流が所定の電流値に達するまではデューティ比を100%とし、モータに流れる電流が所定の電流値を超えるとデューティ比を85%に低下させ、その後に続く複数回の打撃にわたって徐々にデューティ比を増加させている。
【0004】
特許文献2には、回転打撃工具の一種であって、ハンマを回転させながら軸方向に往復動させることによりハンマをアンビルに打撃させるインパクト機構部を備えたインパクト工具が記載されている。特許文献2のインパクト工具においては、モータの回転数の極小値が検出されてからハンマによる打撃が行われる前の期間において、モータに第1の電圧を与えた後に、第1の電圧より小さい第2の電圧を与えることで、ハンマの過剰な後退を抑えている。より具体的には、打撃の直前まではPWM制御のデューティ比を100%とし、打撃の直前から打撃の直後まではデューティ比を70%に低下させ、打撃の直後はデューティ比を即座に100%まで上昇させている。
【0005】
特許文献3には、回転打撃工具の一種であって、ライナを回転させることによりライナとシャフトの間に封入されたオイルを間欠的に高圧状態として打撃力を発生させるオイルパルス機構部を備えたオイルパルス工具が記載されている。特許文献3に記載されたオイルパルス工具においては、打撃の直後に反動によってライナが逆転するとモータの駆動力を減少させ、ライナが再び正転に転じて打撃位置を通過するとモータの駆動力を増加させることで、モータに流れる電流を低減している。より具体的には、ライナが打撃位置に到達する直前にPWM制御のデューティ比を100%から75%まで減少させ、ライナが打撃位置に到達したときに打撃量を発生し、ライナが打撃位置から逆転するとデューティ比を50%まで減少させ、ライナが再び正転に転じるとデューティ比を25%に減少させ、ライナが打撃位置を通過するとデューティ比を即座に100%まで上昇させている。特許文献3に記載されたオイルパルス工具においては、モータの回転子に、減速機構部を介することなくオイルパルス機構部のライナが接続されるという特殊な構造を有しており、モータからライナに加えられるトルクが比較的小さい。よってライナが打撃位置に到達すると、ごく僅かな時間だけ回転打撃を行い、回転打撃が行われた直後には打撃の反動によりライナが即座に逆転するという特性を持っており、上記のような制御が適している。
【0006】
特許文献4には、回転打撃工具の一種であって、電子制御でモータ及びハンマの正転と逆転を繰り返すことによりハンマをアンビルに打撃させるパルス機構部を備えた電子パルス工具が記載されている。特許文献4の電子パルス工具においては、モータ及びハンマの回転方向を切り替えた直後にPWM制御のデューティ比を所定時間だけ制限してから徐々に増加させることにより、モータに流れる電流を低減している。より具体的には、打撃の直前まではモータ及びハンマを正転させながらPWM制御のデューティ比を100%に達するまで徐々に上昇させ、打撃の開始から打撃の終了まではデューティ比を0%とし、打撃の直後にはモータ及びハンマを逆転させながらデューティ比を所定時間だけ40%で維持し、その後に100%に達するまで徐々に上昇させている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2009−72889
【特許文献2】特開2009−72888
【特許文献3】特開2009−269138
【特許文献4】特開2012−139784
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、特許文献1に記載のインパクト工具においては、デューティ比を100%としてモータを駆動する構成であるため、モータに流れる電流が常時大きくなり、モータ及びスイッチング素子の温度上昇が顕著となる傾向にあった。また、モータに流れる電流が所定の電流値を超えた場合には、連続して複数回の回転打撃が生じる間、一様にデューティ比を減少させる構成であるため、打撃時の電流上昇に起因する温度上昇は抑制可能であるが、締付性能が低下してしまうといった問題があった。
【0009】
また特許文献2に記載にインパクト工具においては、打撃の直後にデューティ比を即座に100%まで上昇させるので、大きな電流がモータ及びスイッチング素子に流れ、モータ及びスイッチング素子が発熱しやすくなる。
【0010】
また特許文献3に記載のオイルパルス工具においても、ライナが打撃位置を通過してからデューティ比を即座に100%まで上昇させるので、大きな電流がモータ及びスイッチング素子に流れ、モータ及びスイッチング素子が発熱しやすくなる。
【0011】
また特許文献4に記載の電子パルス工具においては、打撃の直後にモータ及びハンマを逆転させながらデューティ比を所定時間だけ制限してから徐々に上昇させるので、この時点ではモータ及びスイッチング素子に流れる電流を抑えることはできるが、モータ及びハンマの回転方向を逆転から正転に切り替える必要があり、そのときにモータに大きな電流が流れる。
【0012】
そこで本発明は、締付性能の低下を抑えながらモータ又はスイッチング素子の温度上昇を抑制可能な回転打撃工具を提供することを目的としている。また本発明は、締付性能の低下を抑えながらモータ又はスイッチング素子に流れる電流を低減可能な回転打撃工具を提供することを目的としている。また本発明は、操作性の良好な回転打撃工具を提供することを目的としている。
【課題を解決するための手段】
【0013】
上記課題を解決するために本発明は、モータと、該モータによって駆動される先端工具保持部と、該モータから該先端工具保持部に至る動力伝達経路に設けられ、該モータの駆動力を該先端工具保持部に伝達する回転打撃が間欠的に生じるよう構成された打撃機構部と、該モータに供給される電圧を切り替えるスイッチング素子と、該スイッチング素子を制御する制御部と、を備えた回転打撃工具であって、第1の回転打撃が終了してから該第1の回転打撃に続く第2の回転打撃が開始するまでの間に該モータに供給される電圧が徐々に上昇し始めるよう、該制御部を構成したことを特徴とする回転打撃工具を提供している。
【0014】
発明者らは、回転打撃工具において締付性能に影響を与える重要な要因の一つとして、回転打撃が開始される直前における打撃機構部の回転速度が重要であることを見出した。すなわち、第2の回転打撃において十分な締付性能を得るためには、第2の回転打撃が開始される直前までに打撃機構部の回転速度を所望の回転速度まで加速することができれば十分であって、第1の回転打撃が終了してから即座にモータに供給される電圧を最大値まで上昇させる必要はない。ここでいう打撃機構部の回転速度とは、打撃する部材である打撃部と、打撃される部材である被打撃部との、相対的な回転速度を指している。後述の実施の形態を例にとると、オイルパルスユニット6におけるライナ部6Aが打撃部に相当し、打撃軸部6Bが被打撃部に相当し、ライナ部6Aの打撃軸部6Bに対する回転速度が、上記の打撃機構部の回転速度に相当する。上記のように、第1の回転打撃が終了してから第2の回転打撃が開始するまでの間にモータに供給される電圧が徐々に上昇し始めるよう制御部を構成することにより、電流の余計な上昇を抑えながら打撃機構部を加速することができ、締付性能の低下を抑えながらモータ又はスイッチング素子の温度上昇を抑制することができる。
【0015】
上記構成において、該制御部は、該第1の回転打撃に続く該第2の回転打撃が開始してから該第2の回転打撃が終了するまでの間に該モータに供給される電圧を徐々に下降させ始めることが好ましい。
【0016】
また、上記課題を解決するために本発明は、モータと、該モータによって駆動される先端工具保持部と、該モータから該先端工具保持部に至る動力伝達経路に設けられ、該モータの駆動力を該先端工具保持部に伝達する回転打撃が間欠的に生じるよう構成された打撃機構部と、該モータに供給される電圧を切り替えるスイッチング素子と、該スイッチング素子を制御する制御部と、を備えた回転打撃工具であって、第1の回転打撃に続く第2の回転打撃が開始してから該第2の回転打撃が終了するまでの間に該モータに供給される電圧を徐々に下降させ始めるよう、該制御部を構成したことを特徴とする回転打撃工具を提供している。
【0017】
発明者らは、十分な締付性能を得るためには、回転打撃が開始してから回転打撃が終了するまでの間、限られた期間だけモータが大きなトルクを発生すれば十分であって、モータが継続して大きなトルクを発生し続ける必要はないことを見出した。上記のように、第2の回転打撃が開始してから第2の回転打撃が終了するまでの間にモータに供給される電圧を徐々に下降させ始めるよう制御部を構成することにより、締付性能の低下を抑えながらモータ又はスイッチング素子の温度上昇を抑制することができる。
【0018】
上記構成において、該制御部は、該第1の回転打撃の終了後から該第2の回転打撃の開始までの期間、該モータに供給される電圧が増加期間と減少期間とを交互に繰り返し且つ該増加期間から該減少期間に転じるときの値である電圧極大値が徐々に上昇するように該モータに供給される電圧を制御することが好ましい。
【0019】
このような構成によると、モータに供給される電圧が増加期間と減少期間とを交互に繰り返すため、モータを流れるモータ電流も増加と減少とを繰り返す。このため、モータに供給される電圧を100%に固定した状態で常時大きいモータ電流が流れる構成と比較して、モータ又はスイッチング素子の温度上昇を抑制することができる。また、電圧極大値が徐々に上昇するため、十分な電圧がモータに供給され、第1の回転打撃の終了後から第2の回転打撃の開始前までにモータの回転数(打撃機構部の回転速度)を十分に上昇させることができ、十分な回転打撃力を得ることができる。これらにより、モータ又はスイッチング素子の温度上昇を抑制しつつも締付性能の低下を抑制することができる。
【0020】
また、該モータに流れるモータ電流を検出する電流検出部をさらに備え、該制御部は、該モータ電流が目標電流値を超えている場合、該モータに供給される電圧を徐々に減少させ、該モータ電流が該目標電流値以下である場合、該モータに供給される電圧を徐々に増加させることが好ましい。
【0021】
このような構成によると、回転打撃時にモータ電流が急激に上昇した場合、モータに供給される電圧を減少させてモータ電流を低下させるものの、その低下の程度を小さくできるため、締付性能の低下を抑制することができる。
【0022】
また、該制御部は、該先端工具保持部に接続された先端工具によって第1の作業が行われる場合には上記に記載したように該モータに供給される電圧を制御し、該モータにかかる負荷が第1の作業よりも大きい第2の作業が行われる場合には、該モータに供給される電圧を減少させる制御を行った後、複数の回転打撃が生じる間に、該モータに供給される電圧を徐々に増加させることが好ましい。
【0023】
このような構成によると、第2の作業が行われる場合に一旦モータに供給される電圧を減少させない構成と比較して、モータ電流を低くすることができ、モータ又はスイッチング素子の温度上昇を抑制することができる。また、第2の作業が行われる場合にモータに供給される電圧を減少させたままの状態で締付作業を行う構成と比較して、モータ電流を大きくすることができ、締付性能の低下を抑制することができる。すなわち、締付性能の低下を抑制しながらモータ又はスイッチング素子の温度上昇を抑制することができる。
【0024】
また、該制御部は、該先端工具保持部に接続された先端工具によって第1の作業が行われる場合には上記に記載したように該モータに供給される電圧を制御し、且つ、該モータ電流が該目標電流値よりも大きい判別閾値を超えた場合には該モータにかかる負荷が該第1の作業よりも大きい第2の作業が行われていると判断し、該第2の作業が行われる場合には、該モータに供給される電圧を減少させる制御を行った後、複数の回転打撃が生じる間に、該モータに供給される電圧を徐々に増加させることが好ましい。
【0025】
このような構成によると、目標電流値よりも大きい判別閾値を第2の作業が行われていることの判別に用いているため、大きなモータ電流が流れる第2の作業が行われていることを良好に判別することができる。
【0026】
また、該制御部は、該第2の作業が行われる場合に、該モータに供給される電圧を第1所定値まで減少させた後、該第1所定値から該第1所定値よりも大きい第2所定値まで所定期間をかけて増加させ、該所定期間の経過後に該モータに供給される電圧を該第1所定値よりも小さい第3所定値まで減少させることが好ましい。
【0027】
このような構成によると、第2の作業が行われてから所定期間が経過した後にモータに供給される電圧を第1所定値よりも小さい第3所定値まで減少させるため、所定期間経過後には大きなモータ電流が流れることがなく、モータ又はスイッチング素子の温度上昇をより抑制することができる。
【0028】
また、該制御部は、間欠的に行われる該回転打撃の周期が不定となるように該モータに供給される電圧を制御することが好ましい。
【0029】
このような構成によると、回転打撃の周期が不定となるため、回転打撃の周期と回転打撃工具内に使用されている機構等とが共振することがない。これにより、回転打撃工具に発生する振動を低減することができ、操作性を向上させることができる。
【0030】
上記課題を解決するために本発明はさらに、モータと、該モータによって駆動される先端工具保持部と、該モータから該先端工具保持部に至る動力伝達経路に設けられ、該モータの駆動力を該先端工具保持部に伝達する回転打撃が間欠的に生じるよう構成された打撃機構部と、該モータに供給される電圧を切り替えるスイッチング素子と、該スイッチング素子を制御する制御部と、を備えた回転打撃工具であって、該制御部は、複数の回転打撃が生じる間に、該モータに供給される電圧を徐々に増加させるよう構成されたことを特徴とする回転打撃工具を提供している。
【0031】
このような構成によると、該モータに供給される電圧が締付作業の時間を長くするほど締付性能が大きくなるので、木ネジ等を用いて締付作業を行うときのように負荷が小さい場合には、短い時間に小さな電圧でモータを駆動するだけで十分に木ネジ等を被締結材に対して締め付けることができる。それでも締め付けが不十分となる場合にも、作業を継続していれば次第に電圧と締付性能が大きくなるので、被締付材の負荷が予想よりも大きかった場合でも作業を中断することなく対応できる。よって操作性の良好な回転打撃工具を提供することができる。
【0032】
上記構成において、該モータに流れるモータ電流を検出する電流検出部をさらに備え、該制御部は、該モータ電流が判別閾値を超えた場合、該モータに供給される電圧を減少させる制御を行った後、複数の回転打撃が生じる間に、該モータに供給される電圧を徐々に増加することが好ましい。
【0033】
このような構成によると、モータに供給される電圧を減少させない構成と比較して、モータ電流を低くすることができ、モータ又はスイッチング素子の温度上昇を抑制することができる。また、モータに供給される電圧を減少させたままの状態で締付作業を行う構成と比較して、モータ電流を大きくすることができ、締付性能の低下を抑制することができる。
【0034】
また、該制御部は、該モータ電流が該判別閾値を超えた場合、該モータに供給される電圧を第1所定値まで減少させた後、該第1所定値から該第1所定値よりも大きい第2所定値まで所定期間をかけて増加させ、該所定期間の経過後に該モータに供給される電圧を該第1所定値よりも小さい第3所定値まで減少させることが好ましい。
【0035】
このような構成によると、判別閾値を超えた場合に一旦モータに供給される電圧を減少させない構成と比較して、モータ電流を低くすることができ、モータ又はスイッチング素子の温度上昇を抑制することができる。また、判別閾値を超えた場合にモータに供給される電圧を減少させたままの状態で締付作業を行う構成と比較して、モータ電流を大きくすることができ、締付性能の低下を抑制することができる。すなわち、締付性能の低下を抑制しながらモータ又はスイッチング素子の温度上昇を抑制することができる。さらに、所定期間が経過した後にモータに供給される電圧を第1所定値よりも小さい第3所定値まで減少させるため、所定期間経過後には大きなモータ電流が流れることがなく、モータ又はスイッチング素子の温度上昇をより抑制することができる。
【0036】
また、該制御部は、該モータ電流が該判別閾値以下の場合には、第1の回転打撃が終了してから該第1の回転打撃に続く第2の回転打撃が開始するまでの間に該モータに供給される電圧を徐々に上昇させ始めるとともに、該第1の回転打撃に続く第2の回転打撃が開始してから該第2の回転打撃が終了するまでの間に該モータに供給される電圧を徐々に下降させ始めることが好ましい。
【0037】
このような構成によると、第1の回転打撃が終了してから第2の回転打撃が開始するまでの間にモータに供給される電圧が徐々に上昇し始めるように制御部が構成されているため、電流の余計な上昇を抑えながら打撃機構部を加速することができ、締付性能の低下を抑えながらモータ又はスイッチング素子の温度上昇を抑制することができる。さらに、第2の回転打撃が開始してから第2の回転打撃が終了するまでの間にモータに供給される電圧を徐々に下降させ始めるように制御部が構成されているため、締付性能の低下を抑えながらモータ又はスイッチング素子の温度上昇を抑制することができる。
【0038】
また、該制御部は、該モータ電流が該判別閾値以下の場合において、間欠的に行われる該回転打撃における第1の回転打撃の終了後から該第1の回転打撃に続く第2の回転打撃の開始までの期間、該モータに供給される電圧が増加期間と減少期間とを交互に繰り返し且つ該増加期間から該減少期間に転じるときの値である電圧極大値が徐々に上昇するように該モータに供給される電圧を制御することが好ましい。
【0039】
このような構成によると、モータに供給される電圧が増加期間と減少期間とを交互に繰り返すため、モータを流れるモータ電流も増加と減少とを繰り返す。このため、モータに供給される電圧を100%に固定した状態で常時大きいモータ電流が流れる構成と比較して、モータ又はスイッチング素子の温度上昇を抑制することができる。また、モータに供給される電圧極大値が徐々に上昇するため、十分な電圧がモータに供給され、第1の回転打撃の終了後から第2の回転打撃の開始前までにモータの回転数(打撃機構部の回転速度)を十分に上昇させることができ、十分な回転打撃力を得ることができる。これらにより、モータ又はスイッチング素子の温度上昇をより抑制しつつも締付性能の低下を抑制することができる。
【0040】
また、該制御部は、該モータ電流が該判別閾値以下の場合において、該モータ電流が該判別閾値よりも小さい目標電流値を超えている場合、該モータに供給される電圧を徐々に減少させ、該モータ電流が該目標電流値以下である場合、該モータに供給される電圧を徐々に増加させることが好ましい。
【0041】
このような構成によると、回転打撃時にモータ電流が急激に上昇した場合、モータに供給される電圧を減少させモータ電流を低下させるものの、その低下の程度を小さくできるため、締付性能の低下を抑制することができる。
【0042】
また、該制御部は、間欠的に行われる該回転打撃の周期が不定となるように該モータに供給される電圧を制御することが好ましい。
【0043】
このような構成によると、回転打撃の周期が不定となるため、回転打撃の周期と回転打撃工具内に使用されている機構等とが共振することがない。これにより、回転打撃工具に発生する振動を低減することができ、操作性を向上させることができる。
上記課題を解決するために、本発明はさらに、モータと、該モータによって駆動される先端工具保持部と、該モータから該先端工具保持部に至る動力伝達経路に設けられ、該モータの駆動力を該先端工具保持部に伝達する回転打撃が間欠的に生じるよう構成された打撃機構部と、該モータに供給される電圧を切り替えるスイッチング素子と、該スイッチング素子を制御する制御部と、を備えた回転打撃工具であって、第1の回転打撃が終了してから該第1の回転打撃に続く第2の回転打撃が開始するまでの間に該モータに供給される電圧が徐々に上昇し始めるよう、該制御部を構成し、該制御部は、該第1の回転打撃の終了後から該第2の回転打撃の開始までの期間、該モータに供給される電圧が増加期間と減少期間とを交互に繰り返し且つ該増加期間から該減少期間に転じるときの値である電圧極大値が徐々に上昇するように、該モータに供給される電圧を制御することを特徴とする回転打撃工具を提供する。
上記課題を解決するために、本発明はさらに、モータと、該モータによって駆動される先端工具保持部と、該モータから該先端工具保持部に至る動力伝達経路に設けられ、該モータの駆動力を該先端工具保持部に伝達する回転打撃が間欠的に生じるよう構成された打撃機構部と、該モータに供給される電圧を切り替えるスイッチング素子と、該スイッチング素子を制御する制御部と、該モータに流れるモータ電流を検出する電流検出部と、を備えた回転打撃工具であって、第1の回転打撃が終了してから該第1の回転打撃に続く第2の回転打撃が開始するまでの間に該モータに供給される電圧が徐々に上昇し始めるよう、該制御部を構成し、該制御部は、該モータ電流が目標電流値を超えている場合、該モータに供給される電圧を徐々に減少させ、該モータ電流が該目標電流値以下である場合、該モータに供給される電圧を徐々に増加させることを特徴とする回転打撃工具を提供する。
上記構成において、該制御部は、該モータにかかる負荷が第1の作業よりも大きい第2の作業が行われる場合には、該モータに供給される電圧を減少させる制御を行った後、複数の回転打撃が生じる間に、該モータに供給される電圧を徐々に増加させることが好ましい。
また、上記構成において、該制御部は、該モータにかかる負荷が第1の作業よりも大きく且つ該モータ電流が該目標電流値よりも大きい判別閾値を超える第2の作業が行われる場合には、該モータに供給される電圧を減少させる制御を行った後、複数の回転打撃が生じる間に、該モータに供給される電圧を徐々に増加させることが好ましい。
上記課題を解決するために、本発明はさらに、モータと、該モータによって駆動される先端工具保持部と、該モータから該先端工具保持部に至る動力伝達経路に設けられ、該モータの駆動力を該先端工具保持部に伝達する回転打撃が間欠的に生じるよう構成された打撃機構部と、該モータに供給される電圧を切り替えるスイッチング素子と、該スイッチング素子を制御する制御部と、該モータに流れるモータ電流を検出する電流検出部と、を備えた回転打撃工具であって、該制御部は、該モータ電流が判別閾値を超えた場合、該モータに供給される電圧を第1所定値まで減少させた後、該第1所定値から該第1所定値よりも大きい第2所定値まで所定期間をかけて増加させ、該所定期間の経過後に該モータに供給される電圧を該第1所定値よりも小さい第3所定値まで減少させることを特徴とする回転打撃工具を提供する。
上記課題を解決するために、本発明はさらに、モータと、該モータによって駆動される先端工具保持部と、該モータから該先端工具保持部に至る動力伝達経路に設けられ、該モータの駆動力を該先端工具保持部に伝達する回転打撃が間欠的に生じるよう構成された打撃機構部と、該モータに供給される電圧を切り替えるスイッチング素子と、該スイッチング素子を制御する制御部と、該モータに流れるモータ電流を検出する電流検出部と、を備えた回転打撃工具であって、該制御部は、該モータ電流が判別閾値以下の場合には、第1の回転打撃が終了してから該第1の回転打撃に続く第2の回転打撃が開始するまでの間に該モータに供給される電圧を徐々に上昇させ始めるとともに、該第1の回転打撃に続く第2の回転打撃が開始してから該第2の回転打撃が終了するまでの間に該モータに供給される電圧を徐々に下降させ始めることを特徴とする回転打撃工具を提供する。
上記課題を解決するために、本発明はさらに、モータと、該モータによって駆動される先端工具保持部と、該モータから該先端工具保持部に至る動力伝達経路に設けられ、該モータの駆動力を該先端工具保持部に伝達する回転打撃が間欠的に生じるよう構成された打撃機構部と、該モータに供給される電圧を切り替えるスイッチング素子と、該スイッチング素子を制御する制御部と、該モータに流れるモータ電流を検出する電流検出部と、を備えた回転打撃工具であって、該制御部は、該モータ電流が判別閾値以下の場合において、間欠的に行われる該回転打撃における第1の回転打撃の終了後から該第1の回転打撃に続く第2の回転打撃の開始までの期間、該モータに供給される電圧が増加期間と減少期間とを交互に繰り返し且つ該増加期間から該減少期間に転じるときの値である電圧極大値が徐々に上昇するように該モータに供給される電圧を制御することを特徴とする回転打撃工具を提供する。
上記課題を解決するために、本発明はさらに、モータと、該モータによって駆動される先端工具保持部と、該モータから該先端工具保持部に至る動力伝達経路に設けられ、該モータの駆動力を該先端工具保持部に伝達する回転打撃が間欠的に生じるよう構成された打撃機構部と、該モータに供給される電圧を切り替えるスイッチング素子と、該スイッチング素子を制御する制御部と、該モータに流れるモータ電流を検出する電流検出部と、を備えた回転打撃工具であって、該制御部は、該モータ電流が判別閾値以下の場合において、該モータ電流が該判別閾値よりも小さい目標電流値を超えている場合、該モータに供給される電圧を徐々に減少させ、該モータ電流が該目標電流値以下である場合、該モータに供給される電圧を徐々に増加させることを特徴とする回転打撃工具を提供する。
【発明の効果】
【0044】
本発明の回転打撃工具によれば、締付性能の低下を抑えながらモータ又はスイッチング素子の温度上昇を抑制することができる。また本発明の回転打撃工具によれば、締付性能の低下を抑えながらモータ又はスイッチング素子に流れる電流を抑制することができる。また本発明によれば、操作性の良好な回転打撃工具を提供することができる。
【図面の簡単な説明】
【0045】
図1】本発明の実施の形態によるオイルパルスドライバの全体を示す部分断面側面図である。
図2】本発明の実施の形態によるオイルパルスドライバのオイルパルスユニットを示す図1の部分拡大図である。
図3】本発明の実施の形態によるオイルパルスドライバのオイルパルスユニットを示す図2のIII−III断面図であり、(a)はライナ部と打撃軸部との相対回転角度が0°の場合、(b)は180°の場合を示している。
図4】本発明の実施の形態によるオイルパルスドライバにおけるオイルパルスユニットのメインシャフトを示す斜視図である。
図5】本発明の実施の形態によるオイルパルスドライバのオイルパルスユニットの動作を示す図であり、(a)はライナ部と打撃軸部との相対回転角度が0°の場合、(b)は45°の場合、(c)は90°の場合、(d)は135°の場合、(e)は180°の場合、(f)は225°の場合、(g)は270°の場合、(h)は315°の場合を示している。
図6】本発明の実施の形態によるオイルパルスドライバの電気的構成を示すブロック図を含む回路図である。
図7】本発明の実施の形態によるオイルパルスドライバの制御部による駆動制御によるブラシレスモータの駆動制御を示すフローチャートである。
図8】本発明の実施の形態によるオイルパルスドライバの制御部による駆動制御を行った場合のモータ電流、デューティ比及びブラシレスモータの回転数の時間変化を示すタイムチャートである。
図9】本発明の実施の形態によるオイルパルスドライバの制御部による駆動制御を行った場合の回転打撃の周期を説明する図である。
図10】本発明の実施の形態によるオイルパルスドライバの制御部による駆動制御を行った場合のモータ電流及びデューティ比の時間変化を示すタイムチャートである。
【発明を実施するための形態】
【0046】
以下、本発明の実施の形態について添付図面を参照しながら説明する。なお、以下の説明において、具体的な数値に言及した場合、例えば、角度について「90°」のように言及した場合、当該数値と完全に一致する場合だけでなく、当該数値と略同一である場合も含むものとする。また、位置関係等に言及した場合、例えば、平行、直交、反対等のように言及した場合、完全に平行、直交、反対等である場合だけでなく、略平行、略直交、略反対等である場合を含むものとする。
【0047】
図1は、本発明の実施の形態による回転打撃工具の一例であるオイルパルスドライバ1の全体を示す部分断面側面図であり、オイルパルスドライバ1に電池パックPを装着した状態を示している。オイルパルスドライバ1は、木ネジ、ボルト等に対して締付作業を行う工具である。図1に示されているように、オイルパルスドライバ1は、ハウジング2、ブラシレスモータ3、円環基板4、減速機構5、オイルパルスユニット6及び制御基板部7を備えている。なお、図1において、矢印で示された「前」を前方向、「後」を後方向、「上」を上方向、「下」を下方向と定義する。さらに、オイルパルスドライバ1を後方から見た場合の左を左方向、右を右方向と定義する。
【0048】
ハウジング2は、オイルパルスドライバ1の外郭をなしており、モータ収容部21と、ハンドル部22と、基板収容部23とを有している。
【0049】
モータ収容部21は、前後方向に延びる略筒形状をなし、その内部にブラシレスモータ3、円環基板4、減速機構5及びオイルパルスユニット6を収容している。また、モータ収容部21の前側内部には、機構ケース21Aが配置されている。機構ケース21Aは、前方に向かうに従って徐々に径が細くなる形状をなしており、その前端部分には開口21aが形成されている。
【0050】
ブラシレスモータ3は、モータ収容部21の後部に収容されており、回転軸31と、ロータ32と、ステータ33とを有している。回転軸31は、前後方向に延びる軸であって、軸受を介してモータ収容部21に回転可能に支承されている。また、回転軸31の前部には、冷却ファン31Aが設けられている。冷却ファン31Aは、遠心ファンであり、回転軸31の回転により回転し、モータ収容部21内にブラシレスモータ3、円環基板4等を冷却する冷却風を発生させる。ロータ32は、複数の永久磁石32Aを有する回転子であり、回転軸31に固定されており、回転軸31と一体回転するように構成されている。ステータ33は、ステータ巻線33Aを有する固定子であり、モータ収容部21に固定されている。ブラシレスモータ3の電気的構成の詳細については、後述する。ブラシレスモータ3は、本発明における「モータ」の一例である。
【0051】
円環基板4は、後面視において円環形状をなす基板であって、ブラシレスモータ3のステータ33の後方に配置されている。また、円環基板4の後面視中央には前後方向に貫通する挿通孔が形成されており、当該挿通孔には回転軸31の後部が挿通されている。円環基板4の電気的構成の詳細については、後述する。
【0052】
減速機構5は、ブラシレスモータ3の回転軸31(ロータ32)の回転を減速してオイルパルスユニット6に伝達する遊星ギヤ機構である。減速機構5は、回転軸31と一体回転するサンギヤ5Aと、サンギヤ5Aに噛合する遊星ギヤ5Bと、遊星ギヤ5Bと噛合するとともにモータ収容部21に対して固定されたリングギア5Cと、遊星ギヤ5B及びオイルパルスユニット6に接続されるとともに回転軸31と同軸回転するように構成されたキャリア5Dとを備えている。回転軸31の回転は、サンギヤ5Aを介して遊星ギヤ5Bの周回運動に変換され、当該周回運動はキャリア5Dを介してオイルパルスユニット6に伝達される。これにより、回転軸31の回転は、減速されてオイルパルスユニット6に伝達される。
【0053】
オイルパルスユニット6は、ブラシレスモータ3の回転軸31(ロータ32)の回転力を間欠的な回転打撃力に変換して出力する機構であり、機構ケース21Aの内部に収容されている。オイルパルスユニット6は、減速機構5に接続されたライナ部6Aと図示せぬ先端ビットを保持可能な打撃軸部6Bとを備えている。オイルパルスユニット6においては、ライナ部6Aを打撃軸部6Bに対して回転させることで、先端ビットを保持した打撃軸部6Bに間欠的な回転打撃力を発生させる。オイルパルスドライバ1においては、当該間欠的な回転打撃力を用いて木ネジ、ボルト等に対する締付作業を行う。本実施の形態において、先端ビットは、ドライバビットやボルト締付用ビット等である。オイルパルスユニット6の詳細については、後述する。
【0054】
ハンドル部22は、モータ収容部21の前後方向略中央から下方に延びる部分であり、ユーザによって把持される部分である。ハンドル部22は、ユーザによって操作可能に構成されたスイッチトリガ22Aとスイッチ機構22Bとを備えている。スイッチトリガ22Aは、ハンドル部22の上端部前側に設けられており、ハンドル部22内部においてスイッチ機構22Bと接続されている。スイッチ機構22Bは、制御基板部7に接続されており、スイッチトリガ22Aが押込まれた場合(オンされた場合)、始動信号を制御基板部7に出力する。
【0055】
基板収容部23は、ハンドル部22の下端に接続されており、その内部に制御基板部7を収容している。基板収容部23の下端部には、電池パックPを着脱可能に保持するように構成された電池接続部23Aが形成されている。電池接続部23Aは、プラス接続端子23B及びマイナス接続端子23C(図6)を有している。制御基板部7の電気的構成の詳細については、後述する。
【0056】
電池パックPは、ブラシレスモータ3、円環基板4及び制御基板部7の電源となる二次電池を有する電池組を収容している。電池組は、電池パックPが電池接続部23Aに装着(接続)された状態で、プラス接続端子23B及びマイナス接続端子23Cに接続されるように構成されている。本実施の形態において、二次電池は、リチウムイオン二次電池である。
【0057】
ここで、図2図4を参照しながらオイルパルスユニット6の詳細について説明する。図2は、オイルパルスユニット6を示す図1の部分拡大図である。図3は、オイルパルスユニット6を示す図2のIII−III断面図である。なお、説明の便宜上、図3(a)に示されている状態を打撃軸部6Bに対するライナ部6Aの相対回転角度が0°の状態と定義する。図3(b)に示されている状態は、打撃軸部6Bに対するライナ部6Aの相対回転角度が180°の状態である。また、図2及び図3に示されている回転軸心Aは、回転軸31(キャリア5D)の回転軸心を表わしている。
【0058】
図2に示されているように、オイルパルスユニット6のライナ部6Aは、前後方向に延びる筒形状をなす主筒状部61と、主筒状部61の後部を閉塞する接続プレート62と、主筒状部61の前端に設けられた先端筒状部63とを備えており、回転軸心Aを中心に回転可能に設けられている。また、図3(a)及び(b)に示されているように、ライナ部6Aの内部には、主筒状部61の内周面等によってライナ室61aが画成されており、ライナ室61aにはオイル(作動油)が充填されている。
【0059】
図3(a)及び(b)に示されているように、主筒状部61の内周面は、後面視において略楕円形状を規定しており、当該内周面には、第1凸部61A、第2凸部61B、第1突起61C及び第2突起61Dが形成されている。なお、図3(a)及び(b)においては、主筒状部61の内周面が規定する略楕円形状の長軸を仮想長軸線X−Xで示し、短軸を仮想短軸線Y−Yで示している。
【0060】
第1凸部61Aは、主筒状部61の内周面から主筒状部61の径方向内方に突出するとともに前後方向に延びており、後面視において仮想長軸線X−X上に位置している。第2凸部61Bは、第1凸部61Aと同一形状をなしており、回転軸心Aに関して第1凸部61Aと対称に構成されている。
【0061】
第1突起61Cは、主筒状部61の内周面から主筒状部61の径方向内方に突出するとともに前後方向に延びており、後面視において仮想短軸線Y−Yよりも僅かに第1凸部61A側に位置している。第2突起61Dは、第1突起61Cと同一形状をなしており、仮想長軸線X−Xを含み仮想短軸線Y−Yに直交する仮想平面に関して、第1突起61Cと対称に構成されている。第1突起61C及び第2突起61Dは、図3(a)に示されている状態(相対回転角度0°)では後面視において仮想短軸線Y−Yよりも僅かに上方に位置し、図3(b)に示されている状態(相対回転角度180°)では、仮想短軸線Y−Yよりも僅かに下方に位置する。
【0062】
図2に戻り、接続プレート62は、円板部62A及び接続部62Bを備えている。円板部62Aは、主筒状部61の後部を閉塞する部分であり、後面視において円形状をなしている。円板部62Aの前面には、後方に窪む軸受孔62aが形成されている。接続部62Bは、前後方向に延びる略六角注形状をなしており、円板部62Aの後面の略中央に固定されるとともに減速機構5のキャリア5Dに相対回転不能に接続されている。これにより、ライナ部6Aは、キャリア5Dと一体に回転軸心Aを中心に回転する。
【0063】
先端筒状部63は、主筒状部61と連続した部分であり、主筒状部61の前端から前方に延びる筒形状をなしている。先端筒状部63の外径は、主筒状部61の外径よりも小さく構成されており、先端筒状部63の前端には、開口63aが形成されている。
【0064】
図2図4に示されているように、オイルパルスユニット6の打撃軸部6Bは、メインシャフト64と、第1ブレード65と、第2ブレード66とを備えている。図4は、メインシャフト64を示す斜視図である。
【0065】
図2及び図4に示されているように、メインシャフト64は、前後方向に延びる略円柱形状の軸であり、その前部はライナ部6Aの開口63a及び機構ケース21Aの開口21a(図1)を介して前方に突出しており、後部は、ライナ室61a内に収容されている。また、メインシャフト64の前部には、先端ビットが挿入される保持孔64aが前端から後方に窪むように形成されており、後端部は、ライナ部6Aの軸受孔62aに挿通されている。さらに、メインシャフト64の前後方向略中央部分とライナ部6Aの先端筒状部63の内周面との間には、ゴム製のOリング64Aが設けられている。すなわち、メインシャフト64は、軸受孔62aを介して、ライナ部6Aに回転可能に支承されており、Oリング64Aによってオイルパルスユニット6内部のオイルが外部に漏れるのを防いでいる。なお、メインシャフト64の回転軸心は、回転軸心Aと略一致している。
【0066】
また、図3及び図4に示されているように、ライナ室61a内に収容されたメインシャフト64の後部には、前後方向に延びるとともにメインシャフト64の中心(回転軸心A)を通るように径方向に貫通するシャフト貫通孔64bが形成されている。また、メインシャフト64の後部外周面には、メインシャフト64の径方向外方に突出するとともに前後方向に延びる第1シール凸部64B、第2シール凸部64C、第3シール凸部64D及び第4シール凸部64Eが形成されている。
【0067】
第1シール凸部64Bは、図3(a)の状態(相対回転角度0°)においてライナ部6Aの第1突起61C対向する位置に形成されている。第2シール凸部64Cは、第1シール凸部64Bと同一形状をなしており、図3(a)の状態において、ライナ部6Aの第2突起61Dと対向する位置に形成されている。なお、第1シール凸部64B及び第2シール凸部64Cが第1突起61C及び第2突起61Dにそれぞれ対向している状態において、それらの間には僅かな隙間が形成されている。
【0068】
第3シール凸部64Dは、図3(b)の状態(相対回転角度180°)において第1突起61Cと対向する位置に形成されている。第4シール凸部64Eは、図3(b)の状態において第2突起61Dと対向する位置に形成されている。なお、第3シール凸部64D及び第4シール凸部64Eが第1突起61C及び第2突起61Dにそれぞれ対向している状態において、それらの間には僅かな隙間が形成されている。
【0069】
図2及び図3に示されているように、第1ブレード65及び第2ブレード66は、前後方向に延びる略板形状をなす同一の部材であり、シャフト貫通孔64b内にメインシャフト64の径方向に往復動可能に設けられている。第1ブレード65と第2ブレード66との間には、スプリング67が設けられており、スプリング67は第1ブレード65及び第2ブレード66をメインシャフト64の径方向外方に付勢している。図3(a)の状態において、第1ブレード65の径方向外方端はライナ部6Aの第1凸部61Aに、第2ブレード66の径方向外方端は第2凸部61Bに当接した状態となる。また、図3(b)の状態において、第1ブレード65の径方向外方端はライナ部6Aの第2凸部61Bに、第2ブレード66の径方向外方端は第1凸部61Aに当接した状態となる。
【0070】
ここで、図5を参照しながら、オイルパルスユニット6の動作及びオイルパルスユニット6における間欠的な回転打撃力の発生について説明する。図5は、オイルパルスユニット6の動作を示す図であり、(a)はライナ部6Aと打撃軸部6Bとの相対回転角度が0°の場合、(b)は45°の場合、(c)は90°の場合、(d)は135°の場合、(e)は180°の場合、(f)は225°の場合、(g)は270°の場合、(h)は315°の場合を示している。なお、図5中の回転方向R(矢印)は、ライナ部6Aの回転方向(後面視において時計回り方向)を示している。
【0071】
ブラシレスモータ3が駆動し、回転軸31の回転が減速機構5を介してオイルパルスユニット6に伝達されると、ライナ部6Aが回転方向Rに回転を開始する。このとき、打撃軸部6Bのメインシャフト64に負荷がかかっていない場合又は負荷が小さい場合(例えば、締付作業開始から木ネジ、ボルト等が着座するまでの期間)には、ライナ室61aに充填されたオイルの抵抗のみでライナ部6Aと打撃軸部6Bとが一体に回転する。
【0072】
一方、メインシャフト64に大きな負荷がかかった場合(例えば、木ネジ、ボルト等が着座した場合)には、ライナ部6A及び打撃軸部6Bは一体に回転せず、ライナ部6Aのみが回転する。ライナ部6Aのみが回転を開始して、図5(a)の状態(相対回転角度が0°)となると、ライナ部6Aの第1突起61Cは打撃軸部6B(メインシャフト64)の第1シール凸部64Bと、第2突起61Dは第2シール凸部64Cと前後方向全域に亘って対向し、第1凸部61Aは第1ブレード65と、第2凸部61Bは第2ブレード66と前後方向全域に亘って当接する。これにより、ライナ室61aは、図5(a)に示されているように、ライナ分室61b、61c、61d、61eの4室に区画される「区画状態」となる。
【0073】
図5(a)の状態からブラシレスモータ3がさらに回転すると、ライナ分室61b及び61dの2室の容積が減少し、ライナ分室61b及び61d内のオイルが圧縮され、当該2室内のオイル圧が瞬間的に上昇する。この瞬間的なオイル圧の上昇によって、ライナ分室61b及び61dとライナ分室61c及び61eとの間に圧力差が生じ、第1ブレード65及び第2ブレード66それぞれの回転方向Rにおける上流側面が回転方向Rに押圧される。その結果、メインシャフト64を回転方向Rに回転させようとする回転力が瞬間的に発生し、メインシャフト64(打撃軸部6B)に強力な回転方向Rの回転打撃力(回転トルク)が発生する。なお、ライナ部6Aの主筒状部61には、上記の瞬間的に上昇するオイル圧を制御して締付トルクを調整するための図示せぬトルク調整機構が設けられている。
【0074】
メインシャフト64に回転打撃力が発生した瞬間から、ライナ部6Aが打撃軸部6Bに対して相対的にさらに回転すると、第1シール凸部64Bが第1突起61Cに対向している状態、第2シール凸部64Cが第2突起61Dに対向している状態、第1ブレード65が第1凸部61Aと当接している状態、第2ブレード66が第2凸部61Bと当接している状態がそれぞれ解除される。これにより、4室に区画されていたライナ室61aの「区画状態」が解除されて「区画解除状態」となる。「区画解除状態」においては、ライナ室61a内のオイル圧が一定となり、第1ブレード65及び第2ブレード66に押圧力が働かないため、メインシャフト64には回転打撃力は発生せず、ライナ部6Aのみがさらに回転する。なお、ライナ室61aが「区画状態」となりメインシャフト64に回転打撃力が発生した瞬間から「区画解除状態」となるまでの期間、メインシャフト64には回転打撃力が発生している。
【0075】
「区画解除状態」となった後、ライナ部6Aがさらに回転すると、「区画解除状態」を維持したまま、図5(b)の状態(相対回転角度45°)を経て、図5(c)の状態(相対回転角度90°)の状態となる。当該状態となると、第1ブレード65が第1突起61Cに当接し、第2ブレード66が第2突起61Dに当接する。これにより、第1ブレード65及び第2ブレード66が径方向内方に後退し、第1ブレード65及び第2ブレード66のメインシャフト64から径方向外方に突出していた部分がシャフト貫通孔64b内に全て収容される。このため、第1ブレード65及び第2ブレード66はオイル圧の影響を受けない状態となり、メインシャフト64に回転打撃力は発生せず、ライナ部6Aはそのまま回転する。
【0076】
ライナ部6Aが図5(c)の状態からさらに回転すると、再び「区画解除状態」となり、図5(d)の状態(相対回転角度135°)を経て、図5(e)の状態(相対回転角度180°)となる。図5(e)の状態となると、ライナ部6Aの第1突起61Cは打撃軸部6B(メインシャフト64)の第3シール凸部64Dと、第2突起61Dは第4シール凸部64Eと前後方向全域に亘って対向し、第1凸部61Aは第2ブレード66と、第2凸部61Bは第1ブレード65と前後方向全域に亘って当接する。これにより、ライナ室61aは、図5(e)に示されているように、ライナ分室61b、61c、61d、61eの4室に再び区画され(「区画状態」)、当該状態からライナ部6Aが打撃軸部6Bに対してさらに回転すると、再び回転打撃力が発生する。
【0077】
当該回転打撃力が発生した後、さらにライナ部6Aが回転すると再び「区画解除状態」となり、図5(f)の状態(相対回転角度225°)を経て、図5(g)の状態(相対回転角度270°)となる。当該状態となると、第1突起61Cが第2ブレード66に当接し、第2突起61Dが第1ブレード65に当接し、再び、第1ブレード65及び第2ブレード66のメインシャフト64から径方向外方に突出していた部分がシャフト貫通孔64b内に全て収容される。このため、図5(c)の状態と同様に、第1ブレード65及び第2ブレード66はオイル圧の影響を受けない状態となり、メインシャフト64に回転打撃力は発生せず、ライナ部6Aはそのまま回転する。
【0078】
ライナ部6Aが図5(g)の状態からさらに回転すると、再び「区画解除状態」となり、図5(h)の状態(相対回転角度315°)を経て、図5(a)の状態(相対回転角度0°)となる。この後、ライナ部6Aが回転を継続すると、上記の過程が繰返され、ライナ部6Aが打撃軸部6Bに対して1回転する毎(相対回転角度360°毎)に2回の回転打撃力(間欠的な回転打撃力)が発生する。当該間欠的に発生する回転打撃力により、メインシャフト64に保持された先端ビットが木ネジ、ボルト等を間欠的に回転方向Rに打撃(回転打撃)し、木ネジ、ボルト等が被締結材に対して締付けられる。このように、オイルパルスユニット6は、ブラシレスモータ3の回転軸31(ロータ32)の回転力を間欠的な回転打撃力に変換して出力し、当該間欠的な回転打撃力を用いて木ネジ、ボルト等に対して締付作業を行う。オイルパルスユニット6は、本発明における「打撃機構部」の一例である。また、先端ビットは、本発明における「先端工具」の一例である。メインシャフト64の前部に形成された先端ビットが挿入される保持孔64aは、本発明における「先端工具保持部」の一例である。
【0079】
次に、図6を参照しながらオイルパルスドライバ1の電気的構成、すなわちブラシレスモータ3、円環基板4及び制御基板部7の電気的構成の詳細について説明する。図6は、オイルパルスドライバ1の電気的構成を示すブロック図を含む回路図である。
【0080】
図6に示されているように、ブラシレスモータ3のロータ32は、N極及びS極を1組とした永久磁石32Aを2組備えている。また、ステータ33のステータ巻線33Aは、スター結線された3相のコイルU、V、Wを有し、コイルU、V、Wはそれぞれ円環基板4に接続されている。
【0081】
円環基板4は、インバータ回路41及び3個のホールIC42を備えている。また、制御基板部7は、制御電源回路71、電流検出回路72、電圧検出回路73、回転位置検出回路74、回転数検出回路75、駆動信号出力回路76及び制御部77を備えている。
【0082】
インバータ回路41は、電池パックPの電力をブラシレスモータ3に供給する回路であり、プラス接続端子23B及びマイナス接続端子23Cとブラシレスモータ3との間に接続されている。インバータ回路41は、6個のスイッチング素子すなわちFET41A〜41Fを有している。6個のFET41A〜41Fは、3相ブリッジ形式に接続されており、各ゲートは駆動信号出力回路76に接続され、各ドレイン又は各ソースは、ブラシレスモータ3のコイルU、V、Wに接続されている。6個のFET41A〜41Fは、ブラシレスモータ3に供給される電力(電圧)を切り替える。より詳細には、6個のFET41A〜41Fは、駆動信号出力回路76から出力される駆動信号(ゲート信号)に基づいて、ロータ32を所定の回転方向に回転させるスイッチング動作を行う。3個のホールIC42のそれぞれは、円環基板4の前面のロータ32と対向する位置に設けられており、ロータ32の回転位置に応じてハイ信号又はロー信号を回転位置検出回路74に出力する。FET41A〜41Fのうちいずれか一つのFETが、本発明における「スイッチング素子」の一例である。
【0083】
制御電源回路71は、各回路に制御電源を供給する定電圧電源回路である。本実施の形態においては、制御電源回路71は、プラス接続端子23B及びマイナス接続端子23C間の電圧(電池パックPの電圧)を5V(制御電圧)に変換し、各回路に印加するように構成されている。
【0084】
電流検出回路72は、インバータ回路41とマイナス接続端子23Cとの間に設けられたシャント抵抗1Aの電圧降下値を取り込むことでブラシレスモータ3に流れる電流(モータ電流)を検出し、検出したモータ電流に応じた信号(電流値信号)を制御部77に出力する回路である。電流検出回路72は、本発明における「電流検出部」の一例である。
【0085】
電圧検出回路73は、プラス接続端子23Bとマイナス接続端子23Cとの間に接続されており、ブラシレスモータ3に印可される電圧(プラス接続端子23Bとマイナス接続端子23Cとの間に印加される電圧)の電圧を検出し、検出した電圧値を示す信号(電圧値信号)を制御部77に出力する回路である。
【0086】
回転位置検出回路74は、3個のホールIC42のそれぞれから出力されたハイ信号又はロー信号に応じてロータ32の回転位置を検出し、検出した回転位置を示す信号(回転位置信号)を回転数検出回路75及び制御部77に出力する回路である。
【0087】
回転数検出回路75は、回転位置検出回路74から出力される回転位置信号に基づいてロータ32の回転数を算出し、算出した回転数を示す信号(回転数信号)を制御部77に出力する回路である。
【0088】
駆動信号出力回路76は、6個のFET41A〜41Fのそれぞれのゲート及び制御部77に接続されている。駆動信号出力回路76は、制御部77から出力された制御信号に基づいて6個のFET41A〜41Fの各ゲートに駆動信号を出力する回路である。
【0089】
制御部77は、ブラシレスモータ3の駆動制御に用いる処理プログラム、各種データに基づいて演算を行う中央処理装置(CPU)を有する図示せぬ演算部と、当該処理プログラム、各種データ、各種閾値等を記憶するための図示せぬROMと、データを一時記憶するための図示せぬRAMを有する記憶部と、時間を計測する計時部とを備えている。なお、本実施の形態において、制御部77はマイクロコンピューターである。
【0090】
制御部77は、回転位置検出回路74から出力された回転位置信号に基づいて、FET41A〜41Fのうちの導通させるFETを交互に切換えるための制御信号を形成し、当該制御信号を駆動信号出力回路76に出力する。これによってコイルU、V、Wのうちの所定のコイルに交互に通電し、ロータ32を所定の回転方向に回転させる。この場合、インバータ回路41の負電源側(マイナスライン)に接続されているFET41D〜41Fを駆動する(導通させる)駆動信号は、パルス幅変調信号(PWM駆動信号)として出力される。なお、PWM駆動信号は、デューティ比を変更可能な信号である。パルス幅変調(PWM制御)においては、パルスの幅であるデューティ比の大きさを切り替えることで出力される平均電圧を切り替える。デューティ比を大きくすればブラシレスモータ3に供給(印加)される平均電圧が大きくなり、デューティ比を小さくすればブラシレスモータ3に供給(印加)される平均電圧が小さくなる。パルス幅変調(PWM制御)によってブラシレスモータ3に供給される平均電圧は、本発明における「モータに供給される電圧」の一例である。制御部77は、本発明における「制御部」の一例である。
【0091】
次に、制御部77によるブラシレスモータ3の駆動制御について説明する。
【0092】
制御部77によるブラシレスモータ3の駆動制御においては、モータ電流に基づいてデューティ比を変更することでモータ電流が目標電流値となるように制御する定電流制御を行い、所定の電流閾値(電流閾値I2)を超えた場合、着座時にブラシレスモータ3(ライナ部6A)に過大な負荷がかかるボルトのような締結部材が被締結材に着座したと判断し、ボルト着座後専用の制御(後述のS108〜S110)を行う。
【0093】
本実施の形態においては、ブラシレスモータ3及びFET41A〜41Fの耐熱温度等を考慮し、回転打撃中以外におけるモータ電流の目標電流値を中心とした上下動の最大値が、ブラシレスモータ3及びFET41A〜41Fの過度な温度上昇を招かない程度の電流値となるように(過度な温度上昇を招く電流値に達しないように)、目標電流値を設定している。なお、本実施の形態において、目標電流値は25Aであるが、これに限られず、使用されるモータ及びスイッチング素子の耐熱温度等を考慮して、モータ電流が過度な温度上昇を招かない程度の電流値となるように設定すればよい。
【0094】
また、制御部77による定電流制御においては、ゲインが高く設定されたPIDフィードバック制御のような制御は行わずに、デューティ比を変更する処理毎にデューティ比を指定量増加又は減少させる。本実施の形態においては、上記した指定量は1%であり、制御部77によるデューティ比変更処理は略1ms毎に行われる。このため、モータ電流の目標電流値への追従性は、ゲインが高く設定されたPIDフィードバック制御等に比べて遅く、モータ電流は目標電流値を中心として緩やかに上下動する。
【0095】
このように、ゲインが高く設定されたPIDフィードバック制御等に比べて目標電流値に対しての追従性を低く構成したのは、締付性能の低下を抑制しつつ且つボルト着座を確実に判断するためである。詳細には、仮に、目標電流値への追従性が高い定電流制御を行った場合には、回転打撃時に発生する急激なモータ電流の上昇に対して、急激にデューティ比を減少させてしまい締付性能が低下してしまう。これに対し、本実施の形態における追従性を低く構成した定電流制御を用いれば、急激にデューティ比を減少させることがなく締付性能の低下を抑制することができる。
【0096】
また、仮に、目標電流値への追従性の高い定電流制御を用いた場合には、ボルトが被締結材に着座した後にモータ電流の急激な上昇に応答してデューティ比を急激に減少させてしまう。このため、モータ電流が電流閾値I2を超える前にモータ電流を目標電流値付近まで低下させてしまい、ボルト着座を確実に判断(判別)することができない。これに対し、本実施の形態における追従性を低く構成した定電流制御を用いれば、ボルトが被締結材に着座した後の急激なモータ電流の上昇に対しても急激にデューティ比を減少させることがない。このため、モータ電流が電流閾値I2を超える前に、モータ電流を目標電流値付近まで低下させることがなく、確実にボルト着座を判断することができる。また、本実施の形態による定電流制御を行えば、モータ電流は目標電流値を中心として緩やかに上下動するため、モータ電流の変動(デューティ比の変更)に起因する締付フィーリングの悪化を抑制することもできる。なお、本実施の形態においては、デューティ比を変更する処理毎にデューティ比を指定量(1%)増加又は減少させる制御によって定電流制御の追従性を低く構成しているが、これに限られず、ゲインの値を適宜設定したPIDフィードバック制御等を用いて追従性を低く構成してもよい。
【0097】
次に、制御部77による駆動制御における具体的な処理フローについて説明する。図7は、制御部77によるブラシレスモータ3の駆動制御を示すフローチャートである。
【0098】
制御部77は、電池パックPが電池接続部23Aに接続され、制御電源回路71から電源が供給された場合に駆動制御を開始する。制御部77は、駆動制御を開始すると、S101において、スイッチトリガ22Aがオンされたか否かを判断する。当該判断は、制御部77にスイッチ機構22Bから始動信号が入力されたか否かで判断し、制御部77に始動信号が入力された場合、スイッチトリガ22Aがオンされたと判断する。
【0099】
S101で、スイッチトリガ22Aがオンされていないと判断した場合(S101:No)、S101の判断を再び行う。すなわち、S101の判断を繰返しながら、ユーザによってスイッチトリガ22Aがオンされるまで待機する。
【0100】
S101で、スイッチトリガ22Aがオンされたと判断した場合(S101:Yes)、ブラシレスモータ3の駆動を開始し、S102において、ブラシレスモータ3に流れる電流I(以下、モータ電流Iと呼ぶ)が電流閾値I1を超えているか否かを判断する。制御部77は、電流検出回路72が出力する電流値信号に基いてモータ電流Iを検出する。本実施の形態において、電流閾値I1は、上記したように25Aであり、定電流制御における目標電流値である。
【0101】
S102で、モータ電流Iが電流閾値I1を超えていないと判断した場合(S102:No)、S103において、S103の処理時のデューティ比である処理時デューティ比D1が所定値D(本実施の形態においては、100%)未満であるか否かを判断する。
【0102】
S103で、処理時デューティ比D1が所定値D未満であると判断した場合(S102:Yes)には、S104においてデューティ比を指定量(1%)増加させた後S102に戻り、処理時デューティ比D1が所定値D未満でないと判断した場合(S103:No)には、デューティ比は増加させずにS102に戻る。なお、デューティ比を1%増加させるとは、例えば、デューティ比が80%であれば81%にする意味であり、処理時デューティ比D1の1%分を増加させるという意味ではない。
【0103】
一方、S102で、モータ電流Iが電流閾値I1を超えていると判断した場合(S102:No)、S105において、モータ電流Iが電流閾値I2を超えているか否かを判断する。電流閾値I2は、被締結材に着座した締結部材の種類を判別するための閾値であり、モータ電流Iが電流閾値I2を超えている場合には、ネジ頭が被締結材に着座した場合にメインシャフト64に過大な負荷がかかるボルトのような締結部材であると判断し、一方、モータ電流Iが電流閾値I2を超えていない場合には、ネジ頭が被締結材に着座した後もメインシャフト64にかかる負荷は大きくなるものの締結部材が被締結材にのめりこんでいく木ネジのような締結部材であると判断する。電流閾値I2は、本発明における「判別閾値」の一例である。また、木ネジに対する締付作業は、本発明における「第1の作業」の一例である。さらに、ボルトに対する締付作業のうちボルトが着座する前の締付作業は、本発明における「第1の作業」の一例であり、ボルトに対する締付作業のうちボルトが着座した後の締付作業は、本発明における「第2の作業」の一例である。
【0104】
S105で、モータ電流Iが電流閾値I2を超えていないと判断した場合、言い換えれば、モータ電流Iが電流閾値I1よりも大きく且つ電流閾値I2未満である場合(S105:No)、S106において、デューティ比を指定量(1%)減少させた後にS102に戻る。なお、デューティ比を1%減少させるとは、例えば、デューティ比が80%であれば79%にする意味であり、処理時デューティ比D1の1%分を減少させるという意味ではない。
【0105】
このように、S102〜S105においては、モータ電流Iが電流閾値I2を超えない限りにおいて、モータ電流Iが電流閾値I1を超えていればデューティ比を1%減少させ、モータ電流Iが電流閾値I1以下であればデューティ比を所定値Dを上限として1%増加させる。すなわち、S102〜S105は、モータ電流Iを、目標電流値を中心として緩やかに上下動させるための処理である。
【0106】
S105で、モータ電流Iが電流閾値I2を超えていないと判断した場合、すなわち、ボルトのような締結部材が着座した(ボルト着座)と判断した場合には、S107において、デューティ比を指定デューティ比D2とする。本実施の形態においては、指定デューティ比D2は80%である。指定デューティ比D2の場合のブラシレスモータ3に供給される電圧の値は、本発明における「第1所定値」の一例である。
【0107】
S107において、デューティ比を指定デューティ比D2とした後、S108でデューティ比を指定値D3(本実施の形態においては、0.025%)増加させ、S109でS105の処理時から指定期間が経過したか否かを判断する。S109で指定期間(本実施の形態においては、800ms)が経過していないと判断した場合は、S108及びS109を繰返しながらデューティ比をS108の処理毎に指定値D3増加させる。なお、本実施の形態においては、S108及びS109の繰り返しの周期は1msであり、指定期間は800msであるため、指定値D3を0.025%とすることで、指定期間800msの間にデューティ比は80%から100%まで増加する。S109における指定期間、すなわち800msは、本発明における「所定期間」の一例であり、指定期間経過後のデューティ比100%の場合のブラシレスモータ3に供給される電圧の値は、本発明における「第2所定値」の一例である。
【0108】
一方、S109で指定期間が経過したと判断した場合は、S110でデューティ比を指定デューティ比D4(本実施の形態においては、20%)とする。指定デューティ比D4の場合のブラシレスモータに供給される電圧の値は、本発明における「第3所定値」の一例である。
【0109】
S107〜S110の処理は、ボルト着座と判断した場合(S105:Yes)に、デューティ比を一旦80%としたうえで、800msの期間をかけて当該80%から100%まで増加させ、その後、20%まで減少させる処理である。
【0110】
S107〜S110の処理によれば、ボルトが着座した後、800ms経過後にデューティ比が20%となるため、ボルト着座後に大きな電流が長時間流れることがなく、ブラシレスモータ3又はFET41A〜41Fの温度上昇を抑制することができる。また、ボルト着座後にデューティ比を一旦80%に落とし800msかけて100%まで増加させるため、ボルト着座後800msの期間デューティ比を100%で締付作業を行う構成と比較して、ブラシレスモータ3及びFET41A〜41Fの温度上昇をより抑制することができる。なお、指定期間である800msは、ボルト着座後からボルトを被締結材に確実に締結できる期間である。なお、上記した数値は、例示であり、指定期間は800msに限られず、ボルト着座後からボルトを被締結材に確実に締結できる期間であればよい。また、指定デューティ比D2及びD3は、80%及び0.025%に限られず、デューティ比がボルト着座後に100%以下の値から指定期間をかけて100%となる値であればよく、S108及びS109の繰り返しの周期を考慮に入れ、算出すればよい。
【0111】
S110において、デューティ比を20%とした後は、スイッチトリガ22Aがユーザによってオフされるまでデューティ比を20%に維持する。スイッチトリガ22Aがオフされた場合には、ブラシレスモータ3の駆動を停止させ、S101に戻り、再びスイッチトリガ22Aがオンされるまで待機する。なお、図7のフローチャートには示されていないが、S102以降でスイッチトリガ22Aがオフされた場合、制御部77は、ブラシレスモータ3の駆動を停止させ、S101に戻り、スイッチトリガ22Aがオンされるまで待機する。
【0112】
ここで、図8を参照しながら、締結部材として木ネジを用いて制御部77による駆動制御を行った場合の、モータ電流、デューティ比及びブラシレスモータ3(回転軸31)の回転数の時間変化について説明する。図8は、モータ電流、デューティ比及びブラシレスモータ3の回転数の時間変化を示すタイムチャートであり、木ネジに対して締付作業が開始されて回転打撃が行われた後から次の回転打撃が終了するまでの期間を示している。なお、図8における時刻t0は、ブラシレスモータ3が駆動を開始した時刻、時刻t1は、回転打撃が終了し、ライナ部6Aが打撃軸部6Bに対して相対回転し始めた直後の時刻である。
【0113】
最初にモータ電流I及びブラシレスモータ3の回転数(ライナ部6Aの打撃軸部6Bに対する相対回転速度)の時間変化について説明する。
【0114】
図8に示されているように、モータ電流Iは、回転打撃が終了した後、上述の制御部77による駆動制御により電流閾値I1(目標電流値)を中心として緩やかに上下動しながら推移し、当該モータ電流Iがブラシレスモータ3に流れることにより回転数は上昇していく。時刻t9で次の回転打撃が開始されると回転数が急激に減少するため、モータ電流Iは急激に増加するが、上述の制御部77によるデューティ比減少処理(S102、S105、S106の繰り返し)により、回転打撃中である時刻t12付近でモータ電流Iは減少し始める。モータ電流Iは回転打撃中に徐々に減少し始めるが、回転打撃が終了し回転数が再び上昇を始める時刻t13においてもモータ電流Iは電流閾値I1を超えており、その後も減少し続け、時刻t15付近で再び上昇に転じている。
【0115】
次に、デューティ比の時間変化について、制御部77における処理と併せて説明する。
【0116】
デューティ比は、回転打撃が終了した後、上述の制御部77よる駆動制御により、増加期間と減少期間とを繰返しながら推移する。言い換えれば、ブラシレスモータ3に印加(供給)される電圧は、回転打撃が終了した後、増加期間と減少期間とを繰返しながら推移する。詳細には、モータ電流Iが電流閾値I1を超えた時刻t1から電流閾値I1以下となる時刻t3まで期間(期間T1)において、制御部77は、上述のデューティ比減少処理を繰り返しており、(S102、S105、S106の繰り返し)、当該処理が遅れて反映され、時刻t2からデューティ比が減少し始め、時刻t4まで減少が継続している(期間T2、減少期間)。
【0117】
一方、当該デューティ比減少処理が反映されモータ電流Iが電流閾値I1以下となった時刻t3から電流閾値I1を再び超える時刻t5までの期間(期間T3)において、制御部77は、上述のデューティ比増加処理(S102、S103、S104の繰り返し)を行っており、当該処理が遅れて反映され、時刻t4からデューティ比が増加し始め、時刻t6まで増加が継続している(期間T4、増加期間)。なお、期間T1における制御部77のデューティ比減少処理が遅れて時刻t2から反映され、期間T3における制御部77のデューティ比増加処理が遅れて時刻t4から反映されるのは、制御部77による当該処理からインバータ回路41のFET41A〜41Fの駆動までに所定の期間要するからである。
【0118】
このように、上述した制御部77の処理により、デューティ比は増加期間と減少期間とを交互に繰り返しながら推移していき、時刻t9で回転打撃が開始される、すなわち、時刻t9でオイルパルスユニット6で回転打撃力が発生する。回転打撃が開始されるとモータ電流Iが時刻t10で再び電流閾値I1を超え、制御部77は再びデューティ比減少処理を開始し、回転打撃中である時刻t11で遅れて当該処理が反映されデューティ比が減少していく。その後、デューティ比は、回転打撃が終了した時刻t13の後も減少を続け、その後、再び、増加期間となり、上述の過程を繰り返す。なお、打撃開始時(時刻t9)のデューティ比D8は、打撃終了時(時刻t13)のデューティ比D9よりも大きい値となっている。
【0119】
また、制御部77による駆動制御によると、増加期間から減少期間に転じるときのデューティ比の極大値D5、D6、D7は、徐々に上昇していく。すなわち、極大値D7は、極大値D6よりも大きく、極大値D6は極大値D5よりも大きくなる。これは、制御部77によるデューティ比増加処理によってモータ電流Iを増加させた場合のモータ電流Iの上昇率(上昇の傾き)が、デューティ比減少処理によってモータ電流Iを減少させた場合のモータ電流Iの減少率(減少の傾き)よりも小さく、増加期間(例えば、期間T4)が減少期間(例えば、期間T2)よりも長くなるためである。デューティ比増加処理によるモータ電流Iの上昇率がデューティ比減少処理によるモータ電流Iの減少率よりも小さくなる要因は、ブラシレスモータ3の回転数が上昇するにつれてブラシレスモータ3にかかる負荷が小さくなっていき、それによりモータ電流Iが電流閾値I1まで上昇しにくくなるからである。モータ電流Iが電流閾値I1まで上昇するまでにかかる時間が長くなるにつれて、デューティ比が上昇する時間も長くなり、その結果、デューティ比の極大値D5、D6、D7は、徐々に上昇していく。期間T4は、本発明における「増加期間」の一例であり、期間T2は、本発明における「減少期間」の一例である。
【0120】
本実施の形態においては、制御部77を構成するマイクロコンピュータの処理速度に制限があるため、複数の回転打撃が間欠的に生じる一連の動作において、回転打撃の終了から次の回転打撃の開始までの間に3つのデューティ比の極大値D5、D6、D7が生じるが、制御部77を処理速度のより速いマイクロコンピューターで構成した場合には、デューティ比増加処理とデューティ比減少処理の切り替わりがより頻繁となり、回転打撃の終了から次の回転打撃の開始までの間に生じるデューティ比の極大値の数が増加することになる。
【0121】
また本実施の形態においては、S102においてモータ電流Iが電流閾値I1を超えていないと判断した場合には、S104においてデューティ比を指定量(1%)だけ増加させているが、制御部77による定電流制御の追従性の高さがボルト着座の判別ができない程度の高さとならない範囲において、モータ電流Iと電流閾値I1との差が大きくなるほど指定量が大きくなるよう構成してもよい。また、S102においてモータ電流Iが電流閾値I1を超えていると判断し、S105においてモータ電流Iが電流閾値I2を超えていないと判断した場合には、S106においてデューティ比を指定量(1%)だけ減少させているが、制御部77による定電流制御の追従性の高さがボルト着座の判別ができない程度の高さとならない範囲において、モータ電流Iと電流閾値I1との差が大きくなるほど指定量が大きくなるよう構成してもよい。このように構成した場合は、モータ電流Iが電流閾値I1の付近でより細かく上下動することになり、デューティ比増加処理とデューティ比減少処理の切り替わりがより頻繁となる。よってこの場合も、回転打撃の終了から次の回転打撃の開始までの間に生じるデューティ比の極大値の数が増加することになる。
【0122】
以上のようにデューティ比増加処理とデューティ比減少処理の切り替わりがより頻繁となり、回転打撃の終了から次の回転打撃の開始までの間に生じるデューティ比の極大値の数が増加すると、デューティ比の極大値とデューティ比の極小値の差が小さくなるので、回転打撃の終了から次の回転打撃の開始までの間にデューティ比がより滑らかに上昇することになる。このように、デューティ比の時間変化を回転打撃の終了から次の回転打撃の開始までの間で巨視的にみると、デューティ比は全体として徐々に上昇している。デューティ比の極大値と、これに続くデューティ比の極小値との間の平均値を算出し、この平均値が時間の経過とともに上昇していれば、デューティ比は全体として徐々に上昇しているということができる。これによりモータ電流Iが余計に上昇してブラシレスモータ3やFET41A〜41Fが発熱するのを抑えながら、ライナ部6Aを所望の回転速度へと加速することができる。なお、本実施の形態においては、極大値D5は例えば90%、極大値D6は例えば95%、極大値D7は100%である。極大値D5の場合のブラシレスモータ3に供給される電圧の値、D6の場合の電圧の値、D7の場合の電圧の値のそれぞれは、本発明における「電圧極大値」の一例である。
【0123】
次に、図9を参照しながら、締結部材として木ネジを用いて制御部77による駆動制御を行った場合の回転打撃の周期について説明する。図9は、制御部77による駆動制御を行った場合の回転打撃の周期を説明する図であり、回転打撃5回分の期間におけるモータ電流及び回転数の時間変化を示している。
【0124】
図9に示されているように、時刻t16で1回目の回転打撃が開始され、時刻t17で回転打撃が終了しており、2回目の回転打撃が時刻t18で開始されている。また、時刻t19で3回目の回転打撃、時刻t20で4回目の回転打撃、時刻t21で5回目の回転打撃が開始されている。
【0125】
1回目の回転打撃の開始(時刻t16)から2回目の回転打撃の開始(時刻t18)までの回転打撃間隔(回転打撃周期)は、22msであり、2回目の回転打撃(時刻t18)から3回目の回転打撃(時刻t19)までの回転打撃間隔は、20msである。また、3回目の回転打撃(時刻t19)から4回目の回転打撃(時刻t20)までの回転打撃間隔は、26msであり、4回目の回転打撃(時刻t20)から5回目の回転打撃(時刻t21)までの回転打撃間隔は、21msである。時刻t16、時刻t18、時刻t19、時刻t20、時刻t21のそれぞれの時刻から開始される回転打撃は、本発明における「第1の回転打撃」及び「第2の回転打撃」の一例である。仮に、時刻t19から開始される回転打撃を本発明における「第1の回転打撃」の一例とすると、時刻t20から開始される回転打撃は本発明における「第2の回転打撃」の一例となる。
【0126】
このように、制御部77による駆動制御を行った場合、回転打撃間隔(回転打撃周期)は一定とならず、まばらになる。これは、制御部77による上述のデューティ比減少処理又はデューティ比増加処理に起因して、回転打撃毎にモータ電流I及び回転数の挙動が僅かに異なり、回転打撃終了後からライナ部6Aが打撃軸部6Bに対して180°相対回転するまでの期間(すなわち、回転打撃間隔)も回転打撃毎に異なるためである。
【0127】
次に、図10を参照しながら、締結部材としてボルトを用いて制御部77による駆動制御を行った場合のモータ電流及びデューティ比の時間変化について説明する。図10は、モータ電流及びデューティ比の時間変化を示すタイムチャートであり、ボルトに対して締付作業を行った場合を示している。なお、図10における時刻t22は、ブラシレスモータ3が駆動を開始した時刻である。
【0128】
図10に示されているように、時刻t22でブラシレスモータ3の駆動が開始して何度か回転打撃を行い、時刻t23でボルトが被締結材に着座するとメインシャフト64にかかる負荷が非常に大きくなり、モータ電流Iが電流閾値I2を超える。モータ電流Iが電流閾値I2を超えると、制御部77がボルト着座であると判断し(S105:Yes)、S107の処理を行う。これにより、デューティ比は一旦80%まで減少する。
【0129】
デューティ比が80%まで減少した後は、制御部77のS108〜S109の処理の繰り返しにより、800msの期間をかけてデューティ比が80%から100%まで上昇する。この間、モータ電流Iは徐々に上昇していく。時刻23から800ms経過しデューティ比が100%となった時刻24で、制御部77のS110の処理により、デューティ比は20%まで減少する。デューティ比が20%まで減少すると、モータ電流Iも大幅に減少する。
【0130】
上述したように、本実施の形態によるオイルパルスドライバ1は、ブラシレスモータ3と、ブラシレスモータ3によって駆動されるメインシャフト64と、ブラシレスモータ3から打撃軸部6Bに至る動力伝達経路に設けられるとともにブラシレスモータ3の駆動力をメインシャフト64に伝達する回転打撃が間欠的に生じるよう構成されたオイルパルスユニット6と、ブラシレスモータ3に供給される電圧を切り替えるFET41A〜41Fと、FET41A〜41Fを制御する制御部77と、を備えており、回転打撃(例えば、時刻t18から開始される回転打撃)が終了してから当該回転打撃に続く次の回転打撃(例えば、時刻t19から開始される回転打撃)が開始するまでの間にブラシレスモータ3に供給される電圧が徐々に上昇し始めるように制御部77が構成されている。すなわち、回転打撃が終了してから当該回転打撃に続く次の回転打撃が開始するまでの間にブラシレスモータ3に供給される電圧が上昇を開始し、その後、当該電圧が徐々に上昇するように制御部77は構成されている。ブラシレスモータ3の動力は、ブラシレスモータ3から順に減速機構5及びオイルパルスユニット6を経て先端ビットへと至る経路によって伝達されており、この経路が、本発明における「動力伝達経路」の一例である。
【0131】
回転打撃工具において締付性能に影響を与える重要な要因の一つとして、回転打撃が開始される直前におけるライナ部6Aの打撃軸部6Bに対する回転速度が重要であることを発明者らは見出した。このため、第2の回転打撃において十分な締付性能を得るためには、第2の回転打撃が開始される直前までにライナ部6Aの打撃軸部6Bに対する回転速度を所望の回転速度まで加速することができれば十分であって、回転打撃が終了してから即座にデューティ比を最大値まで上昇させる必要はない。上記構成のように、回転打撃が終了してから当該回転打撃に続く次の回転打撃が開始するまでの間にブラシレスモータ3に供給される電圧が徐々に上昇し始めるよう制御部77を構成することにより、電流の余計な上昇を抑えながらライナ部6Aを加速することができ、締付性能の低下を抑えながらブラシレスモータ3又はFET41A〜41Fの温度上昇を抑制することができる。
【0132】
また、本実施の形態においては、回転打撃が開始してから当該回転打撃が終了するまでの間にブラシレスモータ3に供給される電圧を徐々に下降させ始めるように制御部77が構成されている。言い換えれば、回転打撃が開始してから当該回転打撃が終了するまでの間にブラシレスモータ3に供給される電圧が下降を開始し、その後、当該電圧が徐々に下降するように制御部77が構成されている。
【0133】
十分な締付性能を得るためには、回転打撃が開始してから回転打撃が終了するまでの間、限られた期間だけモータが大きなトルクを発生すれば十分であって、モータが継続して大きなトルクを発生し続ける必要はないことを発明者らは見出した。このため、回転打撃が開始してから当該回転打撃が終了するまでの間にブラシレスモータ3に供給される電圧を徐々に下降させ始めるよう制御部77を構成することにより、締付性能の低下を抑えながらブラシレスモータ3又はFET41A〜41Fの温度上昇を抑制することができる。
【0134】
また、本実施の形態によるオイルパルスドライバ1は、ブラシレスモータ3と、ブラシレスモータ3によって駆動され回転打撃を間欠的に行うオイルパルスユニット6と、ブラシレスモータ3に供給される電圧を切り替えるFET41A〜41Fと、FET41A〜41Fを制御する制御部77とを備えており、制御部77は、回転打撃の終了後から当該回転打撃に続く次の回転打撃の開始までの期間、ブラシレスモータ3に供給される電圧(PWM信号のデューティ比)が増加期間と減少期間とを交互に繰り返し且つ増加期間から減少期間に転じるときの値である当該電圧の極大値(デューティ比の極大値)が徐々に上昇する(デューティ比の極大値D5、D6、D7の順で大きくなる)ようにブラシレスモータ3に供給される電圧(デューティ比)を制御している。
【0135】
上記構成によると、ブラシレスモータ3に供給される電圧が増加期間と減少期間とを交互に繰り返すため、ブラシレスモータ3を流れるモータ電流も増加と減少とを繰り返す。このため、ブラシレスモータ3に供給される電圧を最大(デューティ比を100%)に固定した状態で常時大きいモータ電流が流れる構成と比較して、ブラシレスモータ3又はFET41A〜41Fの温度上昇を抑制することができる。また、ブラシレスモータ3に供給される電圧の極大値が徐々に大きくなるため(デューティ比の極大値D5、D6、D7がその順に徐々に大きくなるため)、十分な電圧(電力)がブラシレスモータ3に供給され、回転打撃の終了後から次の回転打撃の開始前までにブラシレスモータ3の回転数(ライナ部6Aの打撃軸部6Bに対する回転速度)を十分に上昇させることができ、十分な回転打撃力を得ることができる。これらにより、ブラシレスモータ3又はFET41D〜41Fの温度上昇を抑制しつつも締付性能の低下を抑制することができる。
【0136】
また、オイルパルスドライバ1の制御部77は、モータ電流が目標電流値(電流閾値I1)を超えている場合、デューティ比を徐々に減少させ、モータ電流が目標電流値(電流閾値I1)以下である場合、デューティ比を徐々に増加させている。すなわち、制御部77は、モータ電流を目標電流値に近づけるために、ゲインが高く設定されたPIDフィードバック制御のような追従性の高い定電流制御を行わずに、デューティ比を1ms毎に固定値(1%)増減させる制御を行っている。このため、回転打撃時にモータ電流が急激に上昇した場合、デューティ比を減少させモータ電流を低下させるものの、その低下の程度を小さくできるため、締付性能の低下を抑制することができる。なお、本実施の形態において制御部77は、デューティ比を1ms毎に1%増減させる制御を行っているが、これに限られない。例えば、1ms毎に5%以下の固定値でデューティ比を増減する構成であっても上記効果を得ることができ、好ましくは2%以上3%以下ある。
【0137】
また、オイルパルスドライバ1におけるオイルパルスユニット6は、被締結材への着座時にブラシレスモータ3にかかる負荷が木ネジ等よりも大きいボルトが着座した場合、デューティ比を80%まで減少させた後、80%から100%まで800msをかけて増加させている。このため、着座後のボルトに対してデューティ比を100%に固定した状態で締付作業を行う構成と比較して、モータ電流を低くすることができ、ブラシレスモータ3又はFET41A〜41Fの温度上昇を抑制することができる。また、着座後のボルトに対してデューティ比を80%に固定した状態で締付作業を行う構成と比較して、モータ電流を大きくすることができ、締付性能の低下を抑制することができる。すなわち、締付性能の低下を抑えながらブラシレスモータ3又はFET41A〜41Fの温度上昇を抑制することができる。
【0138】
また、本実施の形態によるオイルパルスドライバ1の制御部77は、モータ電流が目標電流値(電流閾値I1)よりも大きい電流閾値I2を超えた場合、ボルトが被締結材に着座したと判断している。このように、目標電流値(電流閾値I1)よりも大きい電流閾値I2をボルトの着座を判別するために用いているため、着座時に大きなモータ電流が流れるボルトの着座を判別することができる。また、上述したように、オイルパルスドライバ1における制御部77は、目標電流値を超えている場合にデューティ比を徐々に増加させ、目標電流値以下である場合にデューティ比を徐々に減少させる制御を行っているため、ボルト着座時に急激に上昇するモータ電流に対してデューティ比を減少させすぎない。このため、ボルトの着座に伴うモータ電流の上昇を過度に抑制せず、電流閾値I2を用いて行うボルトの着座判別の精度を向上させることができる。
【0139】
また、本実施の形態によるオイルパルスドライバ1の制御部77は、ボルト着座時から800ms経過後にデューティ比を80%よりも小さい20%まで減少させている。このため、ボルト着座時から800ms経過後に大きなモータ電流が流れることがなく、ブラシレスモータ3又はFET41A〜41Fの温度上昇をより抑制することができる。
【0140】
また、本実施の形態によるオイルパルスドライバ1の制御部77は、間欠的に行われる回転打撃の周期が不定となるようにデューティ比を制御している。これにより、回転打撃の周期と回転打撃工具内に使用されている機構等とが共振することがない。これにより、回転打撃工具に発生する振動を低減することができ、操作性を向上させることができる。
【0141】
本発明による回転打撃工具は、上述した実施の形態に限定されず、特許請求の範囲に記載された発明の要旨の範囲内で種々の変更が可能である。例えば、上記の実施の形態においては、オイルパルスドライバ1を例にとって説明したが、これに限定されず、いわゆるハンマとアンビルで構成される打撃機構部を備えたインパクトドライバやインパクトレンチに適用可能である。
【0142】
また、本実施の形態においては、ライナ部6Aが打撃軸部6Bに対して1回転する間に2回の回転打撃が生じるように構成したが、これに限られない。例えば、ライナ部6Aが打撃軸部6Bに対して1回転する間に1回の回転打撃が生じる構成としてもよい。この場合、第3シール凸部64D及び第4シール凸部64Eを削除すれば、ライナ部6Aが打撃軸部6Bに対して1回転する間に1回の回転打撃が生じる構成とすることができる。
【0143】
また、本実施の形態によるオイルパルスドライバ1においては、ブラシレスモータ3を採用し、制御部77がパルス幅変調(PWM制御)のデューティ比を制御したが、これに限られない。例えば、パルス幅変調(PWM制御)に替えて、パルス振幅変調(PAM制御)によってブラシレスモータに供給される電圧を切り替える構成であってもよい。ブラシレスモータに替えてブラシを備えたモータを採用してもよいし、電池パックPに替えて交流電源によってモータを駆動してもよい。交流電源によってモータを駆動する場合は、制御部77が導通角を制御する構成であってもよい。
【0144】
また、本実施の形態によるオイルパルスドライバ1においては、デューティ比を増加させる場合(S104)の指定量(1%)と低下させる場合(S106)の指定量(1%)とが同じ値であったが、これに限られず、デューティ比を増加させる場合(S104)の指定量と低下させる場合(S106)の指定量とを異なった値としてもよい。
【符号の説明】
【0145】
1…オイルパルスドライバ、2…ハウジング、3…ブラシレスモータ、4…円環基板、5…減速機構、6…オイルパルスユニット、6A…ライナ部、6B…打撃軸部、7…制御基板部、21…モータ収容部、22…ハンドル部、23…基板収容部、31…回転軸、33…ステータ、41…インバータ回路、64…メインシャフト、72…電流検出回路、77…制御部、D2…指定デューティ比、D4…指定デューティ比、D5…極大値、D6…極大値、D7…極大値、I1…電流閾値、I2…電流閾値、X…仮想長軸線、Y…仮想短軸線
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10