特許第6588756号(P6588756)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ カヤバ工業株式会社の特許一覧

特許6588756アクチュエータ制御装置およびアクチュエータユニット
<>
  • 特許6588756-アクチュエータ制御装置およびアクチュエータユニット 図000002
  • 特許6588756-アクチュエータ制御装置およびアクチュエータユニット 図000003
  • 特許6588756-アクチュエータ制御装置およびアクチュエータユニット 図000004
  • 特許6588756-アクチュエータ制御装置およびアクチュエータユニット 図000005
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6588756
(24)【登録日】2019年9月20日
(45)【発行日】2019年10月9日
(54)【発明の名称】アクチュエータ制御装置およびアクチュエータユニット
(51)【国際特許分類】
   H02P 29/00 20160101AFI20191001BHJP
   H02J 1/00 20060101ALI20191001BHJP
   B61F 5/24 20060101ALI20191001BHJP
   H02K 33/04 20060101ALI20191001BHJP
【FI】
   H02P29/00
   H02J1/00 309R
   B61F5/24 F
   H02K33/04 A
【請求項の数】5
【全頁数】14
(21)【出願番号】特願2015-140969(P2015-140969)
(22)【出願日】2015年7月15日
(65)【公開番号】特開2017-22948(P2017-22948A)
(43)【公開日】2017年1月26日
【審査請求日】2018年1月25日
(73)【特許権者】
【識別番号】000000929
【氏名又は名称】KYB株式会社
(74)【代理人】
【識別番号】100122323
【弁理士】
【氏名又は名称】石川 憲
(74)【代理人】
【識別番号】100067367
【弁理士】
【氏名又は名称】天野 泉
(72)【発明者】
【氏名】小川 貴之
【審査官】 尾家 英樹
(56)【参考文献】
【文献】 特開2011−201332(JP,A)
【文献】 特開2009−148065(JP,A)
【文献】 特開平07−194145(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02P 21/00− 31/00
(57)【特許請求の範囲】
【請求項1】
鉄道車両の台車と車体との間に介装されるアクチュエータを駆動するモータを制御する駆動回路と、
前記駆動回路へ入力される電圧を検知する電圧検知部と、
前記電圧検知部で検知する前記電圧が所定の電圧閾値以下となると前記モータを停止させるコントローラとを備え、
前記電圧閾値は、前記モータが前記アクチュエータを駆動するのに必要なトルクと回転数を得られなくなる値に設定される
ことを特徴とするアクチュエータ制御装置。
【請求項2】
鉄道車両の台車と車体との間に介装されるアクチュエータを駆動するモータを制御する駆動回路と、
前記駆動回路へ入力される電圧を検知する電圧検知部と、
前記電圧検知部で検知する前記電圧が所定の電圧閾値以下となると前記モータを停止させるコントローラとを備え、
前記鉄道車両は、トロリ線から電力供給され、
前記電圧閾値は、同一の前記トロリ線の電圧変動値よりも低い値に設定される
ことを特徴とするアクチュエータ制御装置。
【請求項3】
前記電圧検知部は、交流電流を直流電流に変換するコンバータと前記駆動回路との間の電圧を検知する
ことを特徴とする請求項1または2に記載のアクチュエータ制御装置。
【請求項4】
前記電圧検知部は、前記コンバータと前記駆動回路との間に設けられた平滑回路により、平滑化された電圧を検知する
ことを特徴とする請求項3に記載のアクチュエータ制御装置。
【請求項5】
シリンダと、前記シリンダ内に摺動自在に挿入されるピストンと、前記シリンダ内に挿入されて前記ピストンに連結されるロッドと、前記シリンダ内に前記ピストンで区画したロッド側室およびピストン側室と、タンクと、前記ロッド側室と前記ピストン側室とを連通する第一通路と、前記第一通路に設けた第一開閉弁と、前記ピストン側室と前記タンクとを連通する第二通路と、前記第二通路に設けた第二開閉弁と、前記ロッド側室へ液体を供給するポンプと、前記ポンプを駆動する前記モータと、前記ロッド側室と前記タンクとを連通する排出通路と、前記排出通路に設けた開弁圧を変更可能な可変リリーフ弁と、前記ピストン側室から前記ロッド側室へ向かう液体の流れのみを許容する整流通路と、前記タンクから前記ピストン側室へ向かう液体の流れのみを許容する吸込通路とを有するアク
チュエータと、
請求項1から4のいずれか一項に記載のアクチュエータ制御装置と
を備えたことを特徴とするアクチュエータユニット。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、アクチュエータ制御装置およびアクチュエータユニットに関する。
【背景技術】
【0002】
従来、この種の鉄道車両の制振用途に利用されるアクチュエータにあっては、たとえば、鉄道車両に車体の進行方向に対して左右方向の振動を抑制すべく、車体と台車との間に介装されて使用されるものが知られている。そして、アクチュエータはポンプを駆動するモータを備えていて、このモータをアクチュエータ制御装置で制御して、アクチュエータが発生する推力を調節して車体の振動を抑制できるようになっている。
【0003】
ところで、鉄道車両はトロリ線から電力供給を受けて駆動するようになっているが、トロリ線へ電力供給する電源は交流電源であって、位相が異なる電源同士をトロリ線にそのまま繋ぐと、電源間が混触して過大電流が流れるなどの不都合が生じる。
【0004】
そのため、き電の切換箇所にき電切換セクションを設けて、前記混触を防止しているが、き電切換セクションには電力供給をしないデッドセクションが設けられており、鉄道車両がデッドセクションを通過する際には、電力供給を受けられない。鉄道車両用制振装置のアクチュエータを駆動のためには比較的高圧の電圧が必要であり、デッドセクション内では、アクチュエータへ電力供給ができない停電状態となって、アクチュエータの駆動を行えない。
【0005】
そこで、アクチュエータ制御装置は、き電切換セクションの位置情報を保有しており、車両モニタから得る鉄道車両の走行位置から停電位置を把握し、停電前にモータの回転を停止して乗り心地の悪化を抑制するようにしている(たとえば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2011−2011332号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、前記アクチュエータ制御装置では、鉄道車両の現在位置情報にずれが生じると停電位置を正確に把握できず、アクチュエータの制御中に停電する可能性がある。また、パンタグラフがトロリ線から離線する場合、アクチュエータの制御ができない状況となるが、離線が生じる位置は把握するのは困難であり、このような場合もアクチュエータの制御ができない状態に陥る。
【0008】
通常、アクチュエータのモータを駆動する駆動回路には、トロリ線から得られる交流電流を直流電流に変換するコンバータと、コンバータが出力する直流電流を平滑化するコンデンサが設けられている。
【0009】
そして、停電状態にもかかわらずモータを制御し続けると、モータがコンデンサの電荷を消費するが、電力供給が可能な状態となると、コンデンサに突入電流が流れ込むサージが発生する。このようなサージが発生する状態となると、駆動回路等を保護するブレーカがトリップして電源側から駆動回路を遮断し、アクチュエータの制御を復帰できない事態となる。
【0010】
つまり、デッドセクションの通過や離線による停電は、鉄道車両の運行上避けられない事象であるが、その際に生じるサージをブレーカがシステム異常として駆動回路を遮断してしまいアクチュエータの制御に復帰できない問題がある。
【0011】
そこで、本発明は前記問題を改善するために創案されたものであって、その目的は、停電状態となってもアクチュエータの制御に復帰可能なアクチュエータ制御装置およびアクチュエータユニットの提供である。
【課題を解決するための手段】
【0012】
本発明のアクチュエータ制御装置は、アクチュエータを駆動するモータを制御する駆動回路へ入力される電圧を検知する電圧検知部と、電圧検知部で検知する電圧が所定の電圧閾値以下となるとモータを停止させるコントローラとを備えている。よって、鉄道車両がき電切換セクション内におけるデッドセクションを通過したり離線して停電しても、駆動回路からのモータへの電流供給を停止するので、サージが発生せず、ブレーカがトリップしない。また、アクチュエータ制御装置は、鉄道車両の走行位置がデッドセクション内であるか否かを把握する必要がないので、離線による停電にも対処が可能となるだけでなく、正確な走行位置情報の入手や走行位置情報そのものの入手ができない鉄道車両へも適用できる。加えて、鉄道車両の走行位置がデッドセクション内であるか否かを把握する必要がないので、コントローラの演算処理負荷が少なくなり、演算処理能力の低いプロセッサの利用が可能となってコストを削減できる。
【0013】
また、アクチュエータ制御装置において、所定の電圧閾値はモータがアクチュエータの駆動に必要なトルクと回転数を得られなくなる値に設定される。このようにアクチュエータ制御装置を構成するので、モータでアクチュエータの駆動が困難となるとモータへの電流供給を停止でき、無駄な電圧降下を避け得る。
【0014】
さらに、アクチュエータ制御装置において、所定の電圧閾値同一のトロリ線の電圧変動よりも低い値に設定される場合、停電の誤検知によるモータへの電流供給停止を回避できる。
【0015】
また、アクチュエータ制御装置では、電圧検知部がコンバータと駆動回路との間の電圧を検知するようになっているので、電圧閾値との比較のみでモータへの電流供給を停止させる判断をタイムリーに行える。
【0016】
さらに、アクチュエータ制御装置では、電圧センサがコンバータと駆動回路との間に設けられた平滑回路により平滑化された電圧を検知するようになっている。このように構成すると、電圧検知部が検知する電圧は、リップルが取り除かれた電圧であって駆動回路に印加される電圧となるので、より正確にモータ停止判断を行える。
【0017】
また、アクチュエータユニットによれば、アクチュエータがシリンダと、シリンダ内に摺動自在に挿入されるピストンと、シリンダ内に挿入されてピストンに連結されるロッドと、シリンダ内にピストンで区画したロッド側室およびピストン側室と、タンクと、ロッド側室とピストン側室とを連通する第一通路と、第一通路に設けた第一開閉弁と、ピストン側室とタンクとを連通する第二通路と、第二通路に設けた第二開閉弁と、ロッド側室へ液体を供給するポンプと、ポンプを駆動するモータと、ロッド側室とタンクとを連通する排出通路と、排出通路に設けた開弁圧を変更可能な可変リリーフ弁と、ピストン側室からロッド側室へ向かう液体の流れのみを許容する整流通路と、タンクからピストン側室へ向かう液体の流れのみを許容する吸込通路とを有している。このように構成するとアクチュエータは、モータへの通電を停止しても、セミアクティブダンパとして機能でき、デッドセクションの通過の際に振動抑制機能が切れ目なく発揮され、車両における乗心地を向上できる。
【発明の効果】
【0018】
本発明によれば、停電状態となってもアクチュエータの制御に復帰可能となる。
【図面の簡単な説明】
【0019】
図1】一実施の形態におけるアクチュエータユニットの概略図である。
図2】一実施の形態におけるアクチュエータの概略図である。
図3】一実施の形態におけるアクチュエータを鉄道車両の車体と台車との間に介装した状態を示す図である。
図4】き電切換セクションにおけるき電切換の説明図である。
【発明を実施するための形態】
【0020】
以下、図に示した実施の形態に基づき、本発明を説明する。一実施の形態におけるアクチュエータユニット1は、図1および図2に示すように、アクチュエータAと、アクチュエータAを制御するアクチュエータ制御装置Cを備えている。また、制御装置Cは、モータ15を駆動する駆動回路Dに入力される電流による電圧を検知する電圧検知部としての電圧センサ40と、駆動回路Dを制御するコントローラ41とを備えて構成されている。アクチュエータAは、たとえば、図3に示すように、二本が対を成して鉄道車両Tの車体Bと台車Wとの間に並列して介装されている。
【0021】
そして、このアクチュエータユニット1は、アクティブ制御で車体Bの車両進行方向に対して水平横方向の振動を抑制するようになっており、たとえば、スカイフック制御を行って、前記車体Bの横方向の振動を抑制するようになっている。具体的には、アクチュエータユニット1は、車体Bの車両進行方向に対して水平横方向の速度と、車体Bと台車Wの相対速度とからアクチュエータAで発生すべき推力をアクチュエータ制御装置Cで求める。そして、アクチュエータ制御装置Cにおけるコントローラ41は、求めた推力通りにアクチュエータAの推力を制御して、車体Bの前記横方向の振動を抑制する。
【0022】
まず、アクチュエータ制御装置Cの制御対象であるアクチュエータAについて説明する。アクチュエータAは、図2に示すように、シリンダ2と、シリンダ2内に摺動自在に挿入されるピストン3と、シリンダ2内に挿入されてピストン3に連結されるロッド4と、シリンダ2内にピストン3で区画したロッド側室5とピストン側室6と、タンク7と、ロッド側室5とピストン側室6とを連通する第一通路8の途中に設けた第一開閉弁9と、ピストン側室6とタンク7とを連通する第二通路10の途中に設けた第二開閉弁11と、ロッド側室5へ液体を供給するポンプ12と、ポンプ12を駆動するモータ15と、ロッド側室5とタンク7とを連通する排出通路21と、排出通路21に設けた開弁圧を変更可能な可変リリーフ弁22と、ピストン側室6からロッド側室5へ向かう液体の流れのみを許容する整流通路18と、タンク7からピストン側室6へ向かう液体の流れのみを許容する吸込通路19とを備えており、片ロッド型液圧式のアクチュエータとして構成されている。また、前記ロッド側室5とピストン側室6には作動油等の液体が充填されるとともに、タンク7には、液体のほかに気体が充填されている。なお、タンク7内は、特に、気体を圧縮して充填することによって加圧状態とする必要は無い。
【0023】
そして、このように構成されたアクチュエータAは、第一開閉弁9で第一通路8を連通状態とするとともに第二開閉弁11を閉じた状態でポンプ12を駆動すると伸長駆動できる。また、アクチュエータAは、第二開閉弁11で第二通路10を連通状態とするとともに第一開閉弁9を閉じた状態でポンプ12を駆動すると収縮駆動できる。
【0024】
アクチュエータAの各部について詳細に説明する。シリンダ2は筒状であって、その図2中右端は蓋13によって閉塞され、図2中左端には環状のロッドガイド14が取り付けられている。また、前記ロッドガイド14内には、シリンダ2内に移動自在に挿入されるロッド4が摺動自在に挿入されている。このロッド4は、一端をシリンダ2外へ突出させており、シリンダ2内の他端を同じくシリンダ2内に摺動自在に挿入されているピストン3に連結してある。
【0025】
なお、ロッド4の外周とロッドガイド14の内周との間は図示を省略したシール部材によってシールされており、これによりシリンダ2内は密閉状態に維持されている。そして、シリンダ2内にピストン3によって区画されるロッド側室5とピストン側室6には、前述のように液体として作動油が充填されている。
【0026】
また、このアクチュエータAの場合、ロッド4の断面積をピストン3の断面積の二分の一にして、ピストン3のロッド側室5側の受圧面積がピストン側室6側の受圧面積の二分の一となるようにしてある。よって、伸長駆動時と収縮駆動時とでロッド側室5の圧力を同じくすると、伸縮の双方で発生される推力が等しくなり、アクチュエータAの変位量に対する流量も伸縮両側で同じとなる。
【0027】
詳しくは、アクチュエータAを伸長駆動させる場合、ロッド側室5とピストン側室6を連通させるため、ロッド側室5内とピストン側室6内の圧力が等しくなる。よって、アクチュエータAは、伸長駆動される場合、ピストン3におけるロッド側室5側とピストン側室6側の受圧面積差に前記圧力を乗じた推力を発生する。
【0028】
反対に、アクチュエータAを収縮駆動させる場合、ロッド側室5とピストン側室6との連通ってピストン側室6をタンク7に連通させる。そのため、アクチュエータAは、ロッド側室5内の圧力とピストン3におけるロッド側室5側の受圧面積を乗じた推力を発生する。以上より、アクチュエータAの発生推力は伸縮の双方でピストン3の断面積の二分の一にロッド側室5の圧力を乗じた値となるのである。したがって、このアクチュエータAの推力を制御する場合、伸長駆動、収縮駆動共に、ロッド側室5の圧力を制御すればよい。また、ピストン3のロッド側室5側の受圧面積をピストン側室6側の受圧面積の二分の一に設定しているので、伸縮両側で同じ推力を発生する場合に伸長側と収縮側でロッド側室5の圧力が同じとなるので制御が簡素となる。さらに、ピストン3の変位量に対する流量も同じとなるのでアクチュエータAの伸縮両側の応答性が同じとなる利点もある。なお、ピストン3のロッド側室5側の受圧面積をピストン側室6側の受圧面積の二分の一に設定しない場合にあっても、ロッド側室5の圧力でアクチュエータAの伸縮両側の推力の制御できる点は変わらない。
【0029】
戻って、ロッド4の図2中左端とシリンダ2の右端を閉塞する蓋13には、図示しない取付部を備えており、このアクチュエータAを鉄道車両Tにおける車体Bと台車Wとの間に介装できるようになっている。
【0030】
そして、ロッド側室5とピストン側室6とは、第一通路8によって連通されており、この第一通路8の途中には、第一開閉弁9が設けられている。この第一通路8は、シリンダ2外でロッド側室5とピストン側室6とを連通しているが、ピストン3に設けられてもよい。
【0031】
第一開閉弁9は、この実施の形態の場合、電磁開閉弁とされており、第一通路8を開放してロッド側室5とピストン側室6とを連通する連通ポジション9bと、ロッド側室5とピストン側室6との連通を遮断する遮断ポジション9cとを備えたバルブ9aと、遮断ポジション9cを採るようにバルブ9aを附勢するバネ9dと、通電時にバルブ9aをバネ9dに対抗して連通ポジション9bに切換えるソレノイド9eとを備えて構成されている。
【0032】
つづいて、ピストン側室6とタンク7とは、第二通路10によって連通されており、この第二通路10の途中には、第二開閉弁11が設けられている。第二開閉弁11は、この実施の形態の場合、電磁開閉弁とされており、第二通路10を開放してピストン側室6とタンク7とを連通する連通ポジション11bと、ピストン側室6とタンク7との連通を遮断する遮断ポジション11cとを備えたバルブ11aと、遮断ポジション11cを採るようにバルブ11aを附勢するバネ11dと、通電時にバルブ11aをバネ11dに対抗して連通ポジション11bに切換えるソレノイド11eとを備えて構成されている。
【0033】
ポンプ12は、モータ15によって駆動されるようになっており、ポンプ12は、一方向のみに液体を吐出するポンプとされ、吐出口は供給通路16によってロッド側室5へ連通され、吸込口はタンク7に通じている。よって、ポンプ12は、モータ15によって駆動されると、タンク7から液体を吸込んでロッド側室5へ液体を供給する。モータ15は、アクチュエータ制御装置Cに設けた駆動回路Dから電流供給を受けて駆動される。駆動回路Dへの電力供給は、図1に示すように、鉄道車両T内に設置された図外の変圧器によってトロリ線の電圧を降圧して得た単相あるいは三相の交流電流をコンバータ30で直流電流に変換して供給される。
【0034】
ここで、き電切換セクションKについて説明する。図4に示すように、鉄道車両Tの進行方向手前側にある電源Xに接続されるトロリ線L1と、鉄道車両Tの進行方向先側にある電源Yに接続されるトロリ線L2との間に各トロリ線L1,L2にスイッチS1,S2を介して接続される中間トロリ線L3が設けてある。そして、中間トロリ線L3は、基本的には、前記スイッチS1にて進行方向手前側にある電源Xに接続されていて、鉄道車両Tが中間トロリ線L3の区間に入ると、一端、双方の電源X,Yと中間トロリ線との接続を断った後、中間トロリ線L3に進行方向先側にある電源Yを接続して、き電を切換えるようにしている。すなわち、鉄道車両Tがこのき電切換セクションKを通過する際には、中間トロリ線L3は双方の電源X,Yとの接続が断たれるので、一瞬停電となって電力供給を受けることができない時間が生じる。前述したように、モータ15への電流供給は、トロリ線L1,L2から直接得ているため、デッドセクションに当たる中間トロリ線L3を走行時に停電すると、モータ15へ電流供給ができなくなるのである。このように、モータ15への電流供給は、鉄道車両が図4に示したき電切換セクションKにおける中間トロリ線L3の区間を走行中に、前述したようなき電切換動作によって瞬間的に断たれる。
【0035】
戻って、前述のようにポンプ12は、一方向のみに液体を吐出するのみで回転方向の切換動作がないので、回転切換時に吐出量変化するといった問題は皆無であり、安価なギアポンプ等を使用できる。さらに、ポンプ12の回転方向が常に同一方向であるので、ポンプ12を駆動する駆動源であるモータ15にあっても回転切換に対する高い応答性が要求されず、その分、モータ15も安価なものを使用できる。なお、供給通路16の途中には、ロッド側室5からポンプ12への液体の逆流を阻止する逆止弁17を設けてある。
【0036】
また、本例では、ロッド側室5とタンク7とが排出通路21を通じて接続されており、この排出通路21の途中に開弁圧を変更可能な可変リリーフ弁22を設けている。可変リリーフ弁22は、排出通路21の途中に設けた弁体22aと、排出通路21を遮断するように弁体22aを附勢するバネ22bと、通電時にバネ22bに対抗する推力を発生する比例ソレノイド22cとを備えて構成されている。そして、可変リリーフ弁22は、比例ソレノイド22cに流れる電流量の調節により開弁圧の調節が可能となっている。
【0037】
そして、弁体22aに作用する排出通路21の上流のロッド側室5の圧力がリリーフ圧(開弁圧)を超えると、この圧力と比例ソレノイド22cが弁体22aを押す力が、この力に対抗して弁体22aを附勢するバネ22bの力に打ち勝つようになる。すると、弁体22aが後退し、可変リリーフ弁22は、排出通路21を開放する。
【0038】
また、可変リリーフ弁22にあっては、比例ソレノイド22cに供給する電流量を増大させると、比例ソレノイド22cが発生する推力を増大できるようになっている。よって、比例ソレノイド22cに供給する電流量を最大とすると可変リリーフ弁22の開弁圧が最小となり、反対に、比例ソレノイド22cに全く電流を供給しないと可変リリーフ弁22の開弁圧が最大となる。
【0039】
そして、可変リリーフ弁22は、第一開閉弁9および第二開閉弁11の開閉状態に関わらず、アクチュエータAに伸縮方向の過大な入力がありロッド側室5の圧力が開弁圧を超えると、排出通路21を開放してロッド側室5をタンク7へ連通する。このように、アクチュエータAへの過大入力に対し、可変リリーフ弁22は、ロッド側室5内の圧力をタンク7へ逃がして、アクチュエータAのシステム全体を保護する。
【0040】
また、ピストン3には、ピストン側室6とロッド側室5とを連通する整流通路18が設けられており、整流通路18には逆止弁18aが設けられている。よって、整流通路18は、ピストン側室6からロッド側室5へ向かう液体の流れのみを許容する一方通行の通路に設定されている。さらに、蓋13には、タンク7とピストン側室6とを連通する吸込通路19が設けられており、この吸込通路19には逆止弁19aが設けられている。よって、吸込通路19は、タンク7からピストン側室6へ向かう液体の流れのみを許容する一方通行の通路に設定されている。なお、整流通路18は、第一開閉弁9の遮断ポジション9cを逆止弁とすれば、第一通路8に集約でき、吸込通路19についても、第二開閉弁11の遮断ポジション11cを逆止弁とすれば第二通路10に集約できる。
【0041】
このように構成されたアクチュエータAに所望の伸長方向の推力を発揮させる場合、第一開閉弁9を連通ポジション9bとし第二開閉弁11を遮断ポジション11cとしてモータ15を回転させつつポンプ12からシリンダ2内へ液体を供給する。このようにすることで、ロッド側室5とピストン側室6とが連通状態におかれて両者にポンプ12から液体が供給され、ピストン3が図2中左方へ押されアクチュエータAは伸長方向の推力を発揮する。ロッド側室5内およびピストン側室6内の圧力が可変リリーフ弁22の開弁圧を上回ると、可変リリーフ弁22が開弁して液体が排出通路21を介してタンク7へ逃げて、ロッド側室5内およびピストン側室6内の圧力は、可変リリーフ弁22の開弁圧に等しくなる。すなわち、可変リリーフ弁22の開弁圧の調節で、ピストン3におけるピストン側室6側とロッド側室5側の受圧面積差に可変リリーフ弁22の開弁圧を乗じた伸長方向の推力をアクチュエータAに発揮させうる。なお、アクチュエータAが外力によって強制的に収縮させられても、ロッド側室5内およびピストン側室6内の圧力が可変リリーフ弁22の開弁圧に制御されるので、収縮を抑制する伸長方向の推力を発揮する。
【0042】
これに対して、アクチュエータAに所望の収縮方向の推力を発揮させる場合、第一開閉弁9を遮断ポジション9cとし第二開閉弁11を連通ポジション11bとし、モータ15を回転させつつポンプ12からロッド側室5内へ液体を供給する。このようにすることで、ピストン側室6とタンク7が連通状態におかれるとともにロッド側室5にポンプ12から液体が供給され、ピストン3が図2中右方へ押されアクチュエータAは収縮方向の推力を発揮する。前述したところと同様に、可変リリーフ弁22の開弁圧の調節で、ピストン3におけるロッド側室5側の受圧面積と可変リリーフ弁22の開弁圧を乗じた収縮方向の推力をアクチュエータAに発揮させうる。なお、アクチュエータAが外力によって強制的に伸長させられても、ロッド側室5内の圧力が可変リリーフ弁22の開弁圧に制御されるので、伸長を抑制する収縮方向の推力を発揮する。
【0043】
また、このアクチュエータAにあっては、第一開閉弁9と第二開閉弁11がともに遮断ポジション9c,11cを採ると、整流通路18および吸込通路19と排出通路21で、ロッド側室5、ピストン側室6およびタンク7が数珠繋ぎに連通される。この状態では、ポンプ12の駆動の有無に関わらず、アクチュエータAが外力により伸縮させられると、ロッド側室5内の圧力が可変リリーフ弁22の開弁圧に制御されるため、アクチュエータAは伸縮を抑制する推力を発揮するパッシブダンパとして機能する。そして、モータ15、第一開閉弁9、第二開閉弁11および可変リリーフ弁22への電流供給が絶たれると、第一開閉弁9と第二開閉弁11が遮断ポジション9c,11cを採り、可変リリーフ弁22が開弁圧が最大に固定された圧力制御弁として機能する。よって、アクチュエータAは、電力供給が絶たれる状態や失陥時には自動的に、パッシブダンパとして機能できる。
【0044】
なお、アクチュエータAは、モータによって伸縮可能な構成となっていればよいが、前述した構成のアクチュエータAを用いれば、電力供給ができない状態となると自動的にパッシブダンパとして機能できる利点がある。また、アクチュエータAは、この例では、液体を作動媒体として利用しているが、気体を作動媒体として利用するものであってもよいし、モータのトルクをそのまま推力として利用する電磁アクチュエータとされてもよい。
【0045】
他方、アクチュエータ制御装置Cは、アクチュエータAの推力を制御するため、図1に示すように、車体Bの水平横方向の加速度を検知する加速度センサ43と、アクチュエータAの変位を検知するストロークセンサ44と、これらから得られる情報に基づいてアクチュエータAを制御するコントローラ41と、コントローラ41の指令通りにモータ15へ電流供給する駆動回路Dと、コントローラ41からの指令によりアクチュエータAにおける推力の発揮方向と推力の大きさを調節するため第一開閉弁9、第二開閉弁11および可変リリーフ弁22の各ソレノイド9e,11e,22cへ電流供給するドライバ42と、モータ15を駆動する駆動回路Dに入力される電流による電圧を検知する電圧センサ40とを備えて構成されている。
【0046】
モータ15へ電流供給する駆動回路Dへの電力供給は、前述したように、鉄道車両T内に設置された図外の変圧器によってトロリ線の電圧を降圧して得た単相あるいは三相の交流電圧をコンバータ30で直流電圧に変換して供給される。
【0047】
なお、コンバータ30より電源側には、過電流を検知すると、コンバータ30と電源との間の配線を開いて、駆動回路D側へ過電流が流れるのを防止するブレーカ32が設けられている。
【0048】
また、コンバータ30と駆動回路Dとを接続する回路中には、平滑回路として平滑コンデンサ31が設けられている。平滑回路としては、コンデンサのみを備えるもののほか、平滑コンデンサとコイルを組み合わせて構成したコンデンサ入力型の平滑回路やチョーク入力型の平滑回路を用いてもよい。
【0049】
コンバータ30は、この場合、全波整流を行って、交流電圧を直流電圧に変換するようになっている。コンバータ30は、半波整流を行うものの使用も可能ではあるが、全波整流可能なものを使用する方が効率的である。
【0050】
電圧センサ40は、平滑コンデンサ31の電圧を検知してコントローラ41へ入力するようになっている。電圧センサ40は、コンバータ30と平滑コンデンサ31との間の配線における電圧を検知してもよい。
【0051】
モータ15は、本例では三相のブラシレスモータとされており、駆動回路Dは、モータ15の三相の巻線へ電流を供給するために、一対のスイッチング素子を備えた三つのアームを備えるインバータ回路とされている。なお、モータ15は、ブラシレスモータ以外のモータであってもよく、駆動回路Dは、モータ15の駆動に適した回路を用いればよい。
【0052】
また、ドライバ42は、各ソレノイド9e,11e,22cの駆動に適したものを使用すればよく、各ソレノイド9e,11e,22cへの電流の供給と停止を行えるように、各ソレノイド9e,11e,22cに対応して三つのスイッチング素子を備える。
【0053】
コントローラ41は、加速度センサ43と、ストロークセンサ44から車体Bの横方向の速度と、車体Bと台車Wの横方向の相対速度を求め、スカイフック制御則に則りアクチュエータAが発生すべき推力の大きさ、方向を求める。そして、コントローラ41は、アクチュエータAに前述のようにして求めた推力を発生させるべく、駆動回路Dとドライバ42のスイッチング素子のオンオフ制御ができるようになっている。
【0054】
そして、コントローラ41は、電圧センサ40で検知する電圧がモータ15の駆動が困難となる電圧となると、モータ15への電流供給を停止させるようになっている。具体的には、コントローラ41は、電圧センサ40で検知した電圧が所定の電圧閾値以下となると、駆動回路Dのスイッチング素子をすべて開いて、電源側からのモータ15への電流供給を絶つようになっている。電圧閾値は、モータ15の定格に応じて設定されるが、アクチュエータAの駆動に必要なトルクと回転数が得られなくなる程度の電圧に設定される。
【0055】
なお、アクチュエータ制御装置Cは、ハードウェア資源としては、図示はしないが具体的にはたとえば、電圧センサ40、加速度センサ43およびストロークセンサ44が出力する信号を取り込むためのA/D変換器と、駆動回路Dとドライバ42におけるスイッチング素子へ信号を出力するD/A変換器と、アクチュエータAの制御に必要な処理に使用されるプログラムが格納されるROM(Read Only Memory)等の記憶装置と、前記プログラムに基づいた処理を実行するCPU(Central Processing Unit)等の演算装置と、前記CPUに記憶領域を提供するRAM(Random Access Memory)等の記憶装置とを備えて構成されればよく、CPUが前記プログラムを実行することでアクチュエータ制御装置Cの制御動作が実現される。
【0056】
アクチュエータユニット1は、前述のように構成され、以下に作動を説明する。まず、鉄道車両Tがき電切換セクションK以外の区間を走行する場合について説明する。この場合、アクチュエータ制御装置Cは、アクチュエータAをアクティブ制御して鉄道車両Tの車体Bに作用する振動を抑制する。
【0057】
前述したように、アクチュエータ制御装置Cは、車体Bの振動抑制に必要な推力を求め、アクチュエータAに求めた推力を発揮させるべく、駆動回路Dおよびドライバ42を通じて、モータ15、第一開閉弁9、第二開閉弁11および可変リリーフ弁22を制御する。
【0058】
前述の通り、アクチュエータAに伸長方向の推力を発揮させる場合には、第一開閉弁9を連通ポジション9bとし第二開閉弁11を遮断ポジション11cとしてモータ15を回転させつつポンプ12からシリンダ2内へ液体を供給する。反対に、アクチュエータAに収縮方向の推力を発揮させる場合には、第一開閉弁9を遮断ポジション9cとし第二開閉弁11を連通ポジション11bとし、モータ15を回転させつつポンプ12からロッド側室5内へ液体を供給する。
【0059】
このように、アクチュエータ制御装置Cは、鉄道車両Tがデッドセクションを通過する際の制御を除き、通常は、アクチュエータAが発生すべき推力を求め、モータ15を回転させてアクチュエータAにこの推力を発揮させる制御を継続して行う。これにより、アクチュエータ制御装置CによってアクチュエータAの推力がアクティブ制御され、車体Bの振動が効果的に抑制される。
【0060】
他方、鉄道車両Tがき電切換セクションK中のデッドセクションを通過する際には、以下のようにモータ15の停止判断がなされ、モータ15への電流供給を停止する。
【0061】
鉄道車両Tがき電切換セクションK内におけるデッドセクションである中間トロリ線L3を通過し停電した際に、モータ15へ通電してアクチュエータAの推力を制御しつづけると、平滑コンデンサ31の放電によって、電圧センサ40が検知する電圧が低下する。この電圧低下によって、電圧センサ40が検知する電圧が所定の電圧閾値以下となると、コントローラ41が駆動回路Dからのモータ15への電流供給を停止する。すると、平滑コンデンサ31からの放電も停止して、平滑コンデンサ31の電圧が所定の電圧閾値以下ではあるが所定の電圧閾値に近い電圧となって、それ以上に降圧されない。この状況で、鉄道車両Tが電源Yに接続されたトロリ線L2に接続されて電力供給が再開されても、平滑コンデンサ31の電圧と電源側の電圧との電位差が小さいので、サージが発生せず、ブレーカ32はトリップしない。よって、本アクチュエータ制御装置Cによれば、鉄道車両Tがデッドセクションを通過するか、或いは、トロリ線L1−L3から離線して停電状態となっても、サージの発生が抑制されて、ブレーカ32のトリップが防止されるので、停電から電力供給可能な状態に復帰した際にアクチュエータAが制御不能に陥らない。つまり、デッドセクションの通過や離線に起因する停電によって、ブレーカ32がシステム異常を誤検知するのを防止できるのである。
【0062】
また、所定の電圧閾値をモータ15がアクチュエータAの駆動に必要なトルクと回転数により設定するとモータ15でアクチュエータAの駆動が困難となるとモータ15への電流供給を停止でき、平滑コンデンサ31の無駄な電圧降下を避け得る。
【0063】
なお、トロリ線L1,L2には、図外の電源に接続されており、交流電圧が印加されているが、電源が出力する電圧の変動に伴って、トロリ線L1,L2の電圧が変動する場合がある。同一のトロリ線L1(L2)の電圧変動値よりも所定の電圧閾値を低い値に設定すると、トロリ線L1(L2)の電圧変動によっては電圧センサ40が検知する電圧が所定の電圧閾値以下とならずに済む。よって、同一のトロリ線L1(L2)の電圧変動値よりも所定の電圧閾値を低い値に設定すると、トロリ線L1(L2)の電圧変動でモータ15への電流供給が停止されてしまうのを防止できる。つまり、同一のトロリ線L1(L2)の電圧変動値よりも所定の電圧閾値を低い値に設定すると、停電の誤検知によるモータ15への電流供給停止を回避できる。
【0064】
また、アクチュエータ制御装置Cは、鉄道車両Tの走行位置がデッドセクション内であるか否かを把握する必要がないので、離線による停電にも対処が可能となるだけでなく、正確な走行位置情報の入手や走行位置情報そのものの入手ができない鉄道車両へも適用できる。加えて、鉄道車両Tの走行位置がデッドセクション内であるか否かを把握する必要がないので、コントローラ31の演算処理負荷が少なくなり、演算処理能力の低いプロセッサの利用が可能となってコストを削減できる。
【0065】
なお、ドライバ42を介しての第一開閉弁9のソレノイド9e、第二開閉弁11のソレノイド11eおよび可変リリーフ弁22の比例ソレノイド22cへの電流供給は、モータ15に対する電流供給と別系統とされている。よって、き電切換セクションK通過の際の停電中にあっても、鉄道車両T内の蓄電器からの電流供給を受けることができるようになっていて、アクチュエータ制御装置Cは、アクチュエータAのモータ15を除く機器を制御することができるようになっている。
【0066】
そして、モータ15の停止中は、アクチュエータ制御装置Cは、順次サンプリングされる車体Bの横加速度およびアクチュエータAの変位から車体Bの振動抑制に必要な推力を求める。そして、アクチュエータ制御装置Cは、求めた推力に基づいて、第一開閉弁9、第二開閉弁11および可変リリーフ弁22を制御して、アクチュエータAをスカイフック制御してセミアクティブダンパとして機能させる。推力の演算は、特に、モータ15が回転している通常制御時と同様の演算を行うことで得る。このように、ポンプ12からの液体供給が無いき電切換セクションKの通過時においても、アクチュエータAをセミアクティブダンパとして機能させるので、車体Bの振動抑制を切れ目なく継続できる。
【0067】
このように、本例におけるアクチュエータユニット1におけるアクチュエータAは、モータ15が停止しても、第一開閉弁9、第二開閉弁11および可変リリーフ弁22への通電によりセミアクティブダンパとして機能する。よって、電圧センサ40が検知する電圧が所定の電圧閾値以下となって、モータ15の駆動が停止されても、アクチュエータAをセミアクティブダンパとして機能させて、車体Bの振動抑制が停電中も継続的に行われる。また、復帰時には、アクチュエータAをセミアクティブダンパから積極的に推力の発生が可能なアクチュエータとして機能を発揮できるので、デッドセクションの通過の際に振動抑制機能が切れ目なく発揮され、鉄道車両Tにおける乗心地を向上できる。また、アクチュエータAに電力供給が全くできなくなっても、アクチュエータAは自動的にパッシブダンパとして機能するので、振動抑制効果を失わず、鉄道車両Tの乗心地の悪化を抑制できる。
【0068】
また、電圧センサ40は、交流電源側の電圧を検知するのではなく、交流電流を直流電流に変換するコンバータ30と駆動回路Dとの間の電圧を検知するようになっているので、電圧閾値との比較のみでモータ15への電流供給を停止させる判断をタイムリーに行える。モータ15への電流供給の停止の判断は、トロリ線からの電力供給が無くなったことを検知できればよい。したがって、電圧センサ40はコンバータ30よりも電源側に設け、電圧センサ40で検知して電圧の最大波高値と電圧閾値とを比較するような方法でも停電を検知できる。しかし、このようにすると、モータ停止までの判断に時間がかかるほか、信号処理のための装置が必要となるので、電圧センサ40でコンバータ30と駆動回路Dとの間の電圧を検知する方が有利である。
【0069】
また、本例では、電圧センサ40がコンバータ30と駆動回路Dとの間に設けられた平滑コンデンサ31により、平滑化された電圧を検知するようになっている。このように、電圧センサ40が検知する電圧は、リップルが取り除かれた電圧であって駆動回路Dに印加される電圧となるので、より正確にモータ停止判断を行える。
【0070】
以上で、本発明の実施の形態についての説明を終えるが、本発明の範囲は図示されまたは説明された詳細そのものには限定されないことは勿論である。
【符号の説明】
【0071】
1・・・アクチュエータユニット、2・・・シリンダ、3・・・ピストン、4・・・ロッド、5・・・ロッド側室、6・・・ピストン側室、7・・・タンク、8・・・第一通路、9・・・第一開閉弁、10・・・第二通路、11・・・第二開閉弁、12・・・ポンプ、15・・・モータ、16・・・供給通路、18・・・整流通路、19・・・吸込通路、21・・・排出通路、22・・・可変リリーフ弁、30・・・コンバータ、31・・・平滑コンデンサ(平滑回路)、40・・・電圧センサ(電圧検知部)、41・・・コントローラ、A・・・アクチュエータ、B・・・車体、C・・・アクチュエータ制御装置、D・・・駆動回路、T・・・鉄道車両、W・・・台車
図1
図2
図3
図4