特許第6588825号(P6588825)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 積水化学工業株式会社の特許一覧

特許6588825液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6588825
(24)【登録日】2019年9月20日
(45)【発行日】2019年10月9日
(54)【発明の名称】液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
(51)【国際特許分類】
   G02F 1/1339 20060101AFI20191001BHJP
   C09K 3/10 20060101ALI20191001BHJP
【FI】
   G02F1/1339 505
   C09K3/10 B
   C09K3/10 Q
   C09K3/10 E
【請求項の数】9
【全頁数】27
(21)【出願番号】特願2015-541350(P2015-541350)
(86)(22)【出願日】2015年8月5日
(86)【国際出願番号】JP2015072207
(87)【国際公開番号】WO2016021628
(87)【国際公開日】20160211
【審査請求日】2018年4月19日
(31)【優先権主張番号】特願2014-161453(P2014-161453)
(32)【優先日】2014年8月7日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000002174
【氏名又は名称】積水化学工業株式会社
(74)【代理人】
【識別番号】110000914
【氏名又は名称】特許業務法人 安富国際特許事務所
(72)【発明者】
【氏名】上田 沙織
(72)【発明者】
【氏名】林 秀幸
(72)【発明者】
【氏名】山田 恭幸
【審査官】 磯崎 忠昭
(56)【参考文献】
【文献】 特開2003−215598(JP,A)
【文献】 特開2001−005005(JP,A)
【文献】 特開平09−211469(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/1339
C09K 3/10
(57)【特許請求の範囲】
【請求項1】
液晶滴下工法による液晶表示素子の製造に用いる液晶滴下工法用シール剤であって、
硬化性樹脂と、重合開始剤及び/又は熱硬化剤と、柔軟粒子とを含有し、
前記柔軟粒子は、粒度分布において、最頻粒子径が中位粒子径の1.07倍以上であり、
前記硬化性樹脂は、(メタ)アクリル樹脂を含み、
前記柔軟粒子は、シリコーン系粒子及び/又はビニル系粒子を含み、
前記柔軟粒子の含有量が、前記硬化性樹脂100重量部に対して、15重量部以上50重量部以下である
ことを特徴とする液晶滴下工法用シール剤。
【請求項2】
柔軟粒子は、粒度分布において、累積分布におけるD90が中位粒子径の1.40倍未満であることを特徴とする請求項1記載の液晶滴下工法用シール剤。
【請求項3】
柔軟粒子は、粒度分布において、最小粒子径から中位粒子径よりも2μm小さい粒子径までの体積頻度の割合をW(%)、中位粒子径よりも2μm大きい粒子径から最大粒子径までの体積頻度の割合をZ(%)としたとき、W/Z≧1.1であることを特徴とする請求項1又は2記載の液晶滴下工法用シール剤。
【請求項4】
柔軟粒子は、粒度分布において、中位粒子径よりも2μm小さい粒子径から中位粒子径までの体積頻度の割合をX(%)、中位粒子径から中位粒子径よりも2μm大きい粒子径までの体積頻度の割合をY(%)としたとき、X+Y≧60であることを特徴とする請求項1、2又は3記載の液晶滴下工法用シール剤。
【請求項5】
柔軟粒子は、粒度分布において、中位粒子径よりも2μm大きい粒子径から最大粒子径までの体積頻度の合計が全体の10%未満であり、かつ、最小粒子径から中位粒子径よりも2μm小さい粒子径までの体積頻度の合計が全体の20%未満であることを特徴とする請求項1、2、3又は4記載の液晶滴下工法用シール剤。
【請求項6】
柔軟粒子は、最大粒子径が、液晶表示素子のセルギャップの100%以上であり、かつ、5〜50μmであることを特徴とする請求項1、2、3、4又は5記載の液晶滴下工法用シール剤。
【請求項7】
遮光剤を含有することを特徴とする請求項1、2、3、4、5又は6記載の液晶滴下工法用シール剤。
【請求項8】
請求項1、2、3、4、5、6又は7記載の液晶滴下工法用シール剤と、導電性微粒子とを含有することを特徴とする上下導通材料。
【請求項9】
請求項1、2、3、4、5、6若しくは7記載の液晶滴下工法用シール剤又は請求項8記載の上下導通材料を有することを特徴とする液晶表示素子。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シールブレイクや液晶汚染の抑制とスプリングバックによるギャップ不良の抑制とを両立できる液晶滴下工法用シール剤に関する。また、本発明は、該液晶滴下工法用シール剤を用いて製造される上下導通材料及び液晶表示素子に関する。
【背景技術】
【0002】
近年、液晶表示セル等の液晶表示素子の製造方法は、タクトタイム短縮、使用液晶量の最適化といった観点から、従来の真空注入方式から、例えば、特許文献1、特許文献2に開示されているような光熱併用硬化型のシール剤を用いた滴下工法と呼ばれる液晶滴下方式が主流となっている。
【0003】
滴下工法では、まず、2枚の電極付き透明基板の一方に、ディスペンスにより長方形状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下し、すぐに他方の透明基板を重ねあわせ、シール部に紫外線等の光を照射して仮硬化を行う。その後、液晶アニール時に加熱して本硬化を行い、液晶表示素子を作製する。基板の貼り合わせを減圧下で行うようにすれば、極めて高い効率で液晶表示素子を製造することができる。
【0004】
ところで、携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、装置の小型化は最も求められている課題である。小型化の手法として、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、「狭額縁設計」ともいう)。
しかしながら、滴下工法で狭額縁設計の液晶表示素子を製造すると、ブラックマトリックスによりシール部に光の当たらない箇所が存在するため、充分に光照射されず硬化が進行しない光硬化性樹脂の部分が生じ、未硬化のシール剤が液晶と接するため、液晶がシール剤に差し込み、シールブレイクが発生して液晶が漏れ出してしまうことや、仮硬化工程後に未硬化の光硬化性樹脂が溶出してしまい、液晶が汚染されることがあるという問題があった。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2001−133794号公報
【特許文献2】国際公開第02/092718号
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、シールブレイクや液晶汚染の抑制とスプリングバックによるギャップ不良の抑制とを両立できる液晶滴下工法用シール剤を提供することを目的とする。また、本発明は、該液晶滴下工法用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明は、液晶滴下工法による液晶表示素子の製造に用いる液晶滴下工法用シール剤であって、硬化性樹脂と、重合開始剤及び/又は熱硬化剤と、柔軟粒子とを含有し、上記柔軟粒子は、粒度分布において、最頻粒子径が中位粒子径の1.07倍以上であり、上記硬化性樹脂は、(メタ)アクリル樹脂を含み、上記柔軟粒子は、シリコーン系粒子及び/又はビニル系粒子を含み、上記柔軟粒子の含有量が、上記硬化性樹脂100重量部に対して、15重量部以上50重量部以下である液晶滴下工法用シール剤である。
以下に本発明を詳述する。
【0008】
本発明者らは、液晶滴下工法用シール剤に柔軟粒子を配合し、該柔軟粒子を他のシール剤成分と液晶との間の障壁となるようにすることにより、シールブレイクや液晶汚染の発生を抑制することを検討した。
しかしながら、このような柔軟粒子を配合した場合、得られる液晶表示素子にスプリングバックによるセルギャップ不良が発生することがあった。
そこで本発明者らは鋭意検討した結果、粒度分布において、最頻粒子径が中位粒子径よりも特定の値以上大きい柔軟粒子を配合することにより、シールブレイクや液晶汚染の抑制とスプリングバックによるギャップ不良の抑制とを両立できる液晶滴下工法用シール剤を得ることができることを見出し、本発明を完成させるに至った。
【0009】
本発明の液晶滴下工法用シール剤は、液晶滴下工法による液晶表示素子の製造に用いられる。
本発明の液晶滴下工法用シール剤は、柔軟粒子を含有する。
上記柔軟粒子は、液晶表示素子を製造する際に、他のシール剤成分と液晶との間の障壁となって、液晶がシール剤に差し込むこと、及び、シール剤が液晶へ溶出することを防止する役割を有する。また、上記柔軟粒子を配合することにより、基板を貼り合わせた後、シール剤が硬化するまでの基板のずれを防止することができる。
【0010】
上記柔軟粒子は、粒度分布において、最頻粒子径が中位粒子径の1.07倍以上である。上記柔軟粒子の最頻粒子径が中位粒子径の1.07倍以上であることにより、シールブレイクや液晶汚染の抑制とスプリングバックによるセルギャップ不良の抑制とを両立できる。上記柔軟粒子は、粒度分布において、最頻粒子径が中位粒子径の1.07倍よりも大きいことが好ましく、1.10倍よりも大きいことがより好ましい。
なお、本明細書において、上記柔軟粒子における、最頻粒子径、中位粒子径、最大粒子径、最小粒子径、及び、平均粒子径は、コールター式粒度分布測定装置を用いて粒度分布を測定することにより得られる値を意味する。上記コールター式分布測定装置としてはマルチサイザー4(ベックマン・コールター社製)等を用いることができ、具体的には、粒子0.1gをメタノール10gに添加して馴染ませ、超音波分散を5分間行い粒子分散液を調製し、サンプルスタンド内の電解液「ISOTON II」(ベックマン・コールター社製)の入ったビーカーに、得られた粒子分散液を測定装置の表示濃度が5%になるまでスポイトで注入する。この濃度にすることにより、再現性のある測定値を得ることができる。測定は2回行い、算出された値の算術平均値を用いる。
【0011】
上記「最頻粒子径」は、体積頻度による粒度分布の最大頻度を示す粒子径を意味し、上記コールター式粒度分布測定装置を用いて測定された粒度分布において、データ処理用のコンピュータシステム(ベックマン・コールター社製)を接続した装置を用いて算出することができる。測定装置において、アパチャーの細孔径を50μmにし、測定範囲1〜30μmの範囲を300に分割し、体積基準でその頻度値を算出し、最大頻度を示す粒子径を算出することができる。
【0012】
上記「中位粒子径」は、体積頻度による粒度分布において、その粒子径より大きい粒子の体積が全粒子の体積の50%を占めるときの粒子径を意味し、上記コールター式粒度分布測定装置を用いて測定された粒度分布において、データ処理用のコンピュータシステム(ベックマン・コールター社製)を接続した装置を用いて算出することができる。測定装置において、アパチャーの細孔径を50μmにし、測定範囲1〜30μmの範囲を300に分割し、体積基準でその頻度値を算出し、体積積分率の小さい方から50%の粒子径を中位粒子径として算出することができる。
【0013】
上記「最大粒子径」は、上記コールター式粒度分布測定装置を用いて測定された粒度分布において、最頻粒子径から粒子径が大きくなるに従い、連続して体積頻度が小さくなり、該粒子が検出されなくなる直前の粒子径を最大粒子径とする。なお、体積頻度が不連続に検出されたものは凝集粒子である可能性が高いため、最大粒子径からは除外する。
【0014】
上記「最小粒子径」は、測定するサンプルによらず一様に、使用する50μmのアパチャーでの検出下限値である1.05μmとする。
【0015】
上記「平均粒子径」は、上記コールター式粒度分布測定装置を用いて測定された粒度分布において、データ処理用のコンピュータシステム(ベックマン・コールター社製)を接続した装置を用いて算出することができる。測定装置において、アパチャーの細孔径を50μmにし、測定範囲1〜30μmの範囲を300に分割し、体積基準で平均粒子径を算出することができる。
【0016】
後述する「D90」は、体積頻度による粒度分布において、その粒子径より大きい粒子の体積が全粒子の体積の10%を占めるときの粒子径を意味し、上記コールター式粒度分布測定装置を用いて測定された粒度分布において、データ処理用のコンピュータシステム(ベックマン・コールター社製)を接続した装置を用いて算出することができる。測定装置において、アパチャーの細孔径を50μmにし、測定範囲1〜30μmの範囲を300に分割し、体積積分率が小さい方から90%の粒子径をD90として算出することができる。
【0017】
上記柔軟粒子は、より効果的にシールブレイクや液晶汚染の抑制とスプリングバックによるセルギャップ不良の抑制とを両立するため、粒度分布において、累積分布におけるD90が中位粒子径の1.40倍未満であることが好ましく、1.35倍未満であることがより好ましい。
【0018】
上記柔軟粒子は、より効果的にシールブレイクや液晶汚染の抑制とスプリングバックによるセルギャップ不良の抑制とを両立する観点から、粒度分布において、最小粒子径から中位粒子径よりも2μm小さい粒子径までの体積頻度の割合をW(%)、中位粒子径よりも2μm大きい粒子径から最大粒子径までの体積頻度の割合をZ(%)としたとき、W/Z≧1.1であることが好ましく、W/Z≧1.2であることがより好ましい。
【0019】
上記柔軟粒子は、より効果的にシールブレイクや液晶汚染の抑制とスプリングバックによるセルギャップ不良の抑制とを両立する観点から、粒度分布において、中位粒子径よりも2μm小さい粒子径から中位粒子径までの体積頻度の割合をX(%)、中位粒子径から中位粒子径よりも2μm大きい粒子径までの体積頻度の割合をY(%)としたとき、X+Y≧60であることが好ましく、X+Y≧70であることがより好ましい。
【0020】
上記柔軟粒子は、より効果的にシールブレイクや液晶汚染の抑制とスプリングバックによるセルギャップ不良の抑制とを両立する観点から、粒度分布において、中位粒子径よりも2μm大きい粒子径から最大粒子径までの体積頻度の合計、即ち、上記Zが全体の10%未満であり、かつ、最小粒子径から中位粒子径よりも2μm小さい粒子径までの体積頻度の合計、即ち、上記Wが全体の20%未満であることが好ましい。
【0021】
上記柔軟粒子の最頻粒子径を中位粒子径の1.07倍以上とする方法としては、例えば、最頻粒子径が中位粒子径の1.07倍未満である柔軟粒子を分級する方法や、粒度分布の異なる2種以上の柔軟粒子を混合する方法等が挙げられる。
【0022】
上記柔軟粒子を分級する方法としては、例えば、湿式分級、乾式分級等の方法が挙げられる。なかでも、湿式分級が好ましく、湿式篩分級がより好ましい。
具体的には例えば、柔軟粒子を適当な分散媒に分散させたスラリーを、目開きが均一に揃った高精度篩等を用いて篩う方法が好適に用いられる。
【0023】
上記柔軟粒子は、最大粒子径が、液晶表示素子のセルギャップの100%以上であり、かつ、5〜50μmであることが好ましい。上記柔軟粒子の最大粒子径が液晶表示素子のセルギャップの100%未満であったり、5μm未満であったりすると、シールブレイクや液晶汚染を充分に抑制することができなくなることがある。上記柔軟粒子の最大粒子径が50μmを超えると、スプリングバックを起こし、得られる液晶滴下工法用シール剤が接着性に劣るものとなったり、得られる液晶表示素子にギャップ不良が生じたりすることがある。上記柔軟粒子の最大粒子径のより好ましい上限は12μm、更に好ましい上限は15μmである。
また、上記柔軟粒子の最大粒子径は、セルギャップの2.6倍以下であることが好ましい。上記柔軟粒子の最大粒子径がセルギャップの2.6倍を超えると、スプリングバックを起こし、得られる液晶滴下工法用シール剤が接着性に劣るものとなったり、得られる液晶表示素子にギャップ不良が生じたりすることがある。上記柔軟粒子の最大粒子径のより好ましい上限はセルギャップの2.2倍、更に好ましい上限はセルギャップの1.7倍である。
なお、液晶表示素子のセルギャップは、表示素子により異なるため限定されないが、一般的な液晶表示素子のセルギャップは、2〜10μmである。
【0024】
上記柔軟粒子は、上記コールター式分布測定装置により測定された柔軟粒子の粒度分布のうち、5μm以上の粒子径の粒子の含有割合が、体積頻度で60%以上であることが好ましい。5μm以上の粒子径の粒子の含有割合が、体積頻度で60%未満であると、シールブレイクや液晶汚染を充分に抑制することができなくなることがある。5μm以上の粒子径の粒子の含有割合は、80%以上であることがより好ましい。
【0025】
上記柔軟粒子は、シールブレイクや液晶汚染の発生を抑制する効果をより発揮する観点から、液晶表示素子のセルギャップの100%以上の粒子を、柔軟粒子全体中における粒度分布の70%以上含有することが好ましく、液晶表示素子のセルギャップの100%以上の粒子のみで構成されることがより好ましい。
【0026】
上記柔軟粒子の平均粒子径の好ましい下限は2μm、好ましい上限は15μmである。上記柔軟粒子の平均粒子径が2μm未満であると、シールブレイクや液晶汚染の発生を充分に抑制できないことがある。上記柔軟粒子の平均粒子径が15μmを超えると、得られる液晶滴下工法用シール剤が接着性に劣るものとなったり、得られる液晶表示素子にギャップ不良が生じたりすることがある。上記柔軟粒子の平均粒子径のより好ましい下限は4μm、より好ましい上限は12μm、更に好ましい下限は5μmである。
【0027】
上記柔軟粒子の粒子径の変動係数(以下、「CV値」ともいう)は、30%以下であることが好ましい。上記柔軟粒子の粒子径のCV値が30%を超えると、セルギャップ不良を引き起こすことがある。上記柔軟粒子の粒子径のCV値は、28%以下であることがより好ましい。
なお、本明細書において粒子径のCV値とは、上記コールター式粒度分布測定装置を用いて測定された粒度分布において、下記式により求められる数値のことである。
粒子径のCV値(%)=(粒子径の標準偏差/平均粒子径)×100
【0028】
上記柔軟粒子は、最大粒子径や平均粒子径やCV値が上述した範囲外のものであっても、上述した方法によって分級することにより、最大粒子径や平均粒子径やCV値を上述した範囲内とすることができる。また、粒子径が液晶表示素子のセルギャップの100%未満である柔軟粒子は、シールブレイクや液晶汚染の抑制に寄与せず、シール剤に配合するとチクソ値を上昇させることがあるため、分級により除去しておくことが好ましい。
【0029】
上記柔軟粒子は、負荷を与えるときの原点用荷重値から反転荷重値に至るまでの圧縮変位をL1とし、負荷を解放するときの反転荷重値から原点用荷重値に至るまでの除荷変位をL2としたとき、L2/L1を百分率で表した回復率が80%以下であることが好ましい。上記柔軟粒子の回復率が80%を超えると、シールブレイクや液晶汚染の発生を抑制する効果が充分に発揮されないことがある。上記柔軟粒子の回復率のより好ましい上限は70%、更に好ましい上限は60%である。
なお、上記柔軟粒子の回復率は、微小圧縮試験機を用いて、粒子1個に一定負荷(1g)をかけ、その負荷を除去した後の回復挙動を解析することにより導出することができる。
【0030】
上記柔軟粒子は、1gの負荷を与えたときの圧縮変位をL3とし、粒子径をDnとしたとき、L3/Dnを百分率で表した1g歪みが30%以上であることが好ましい。上記柔軟粒子の1g歪みが30%未満であると、シールブレイクや液晶汚染の発生を抑制する効果が充分に発揮されないことがある。上記柔軟粒子の1g歪みのより好ましい下限は40%である。
なお、上記柔軟粒子の1g歪みは、微小圧縮試験機を用いて、粒子1個に1gの負荷をかけ、その時の変位量を測定することにより導出することができる。
【0031】
上記柔軟粒子は、粒子が破壊した時点の圧縮変位をL4とし、粒子径をDnとしたとき、L4/Dnを百分率で表した破壊歪みが50%以上であることが好ましい。上記柔軟粒子の破壊歪みが50%未満であると、シールブレイクや液晶汚染の発生を抑制する効果が充分に発揮されないことがある。上記柔軟粒子の破壊歪みのより好ましい下限は60%である。
なお、上記柔軟粒子の破壊歪みは、微小圧縮試験機を用いて、粒子1個に負荷をかけていき、その粒子が破壊する変位量を測定することにより導出することができる。上記圧縮変位L4は、負荷荷重に対して変位量が不連続に大きくなる時点を、粒子が破壊した時点として算出する。負荷荷重を大きくしても変形するだけで破壊しない場合、破壊歪みは100%以上と考える。
【0032】
上記柔軟粒子は、ガラス転移温度の好ましい下限が−200℃、好ましい上限が40℃である。上記柔軟粒子のガラス転移温度は、低いほどシールブレイクや液晶汚染性に対しては良好であるが、−200℃未満であると粒子としてのハンドリングが問題が生じたり、加熱途中にシール剤が潰れやすくなり、硬化途中のシール剤と液晶とが接触して液晶汚染が生じたりすることがある。上記柔軟粒子のガラス転移温度が40℃を超えると、ギャップ不良が発生することがある。上記柔軟粒子のガラス転移温度のより好ましい下限は−150℃、より好ましい上限は35℃である。
なお、上記柔軟粒子のガラス転移温度は、JIS K 7121の「プラスチックスの転移温度測定方法」に基づいた示差走査熱量測定(DSC)により測定される値を示す。
【0033】
上記柔軟粒子としては、例えば、シリコーン系粒子、ビニル系粒子、ウレタン系粒子、フッ素系粒子、ニトリル系粒子等が挙げられる。なかでも、シリコーン系粒子、ビニル系粒子が好ましい。
【0034】
上記シリコーン系粒子は、樹脂への分散性の観点からシリコーンゴム粒子が好ましい。
上記シリコーン系粒子のうち市販されているものとしては、例えば、KMP−594、KMP−597、KMP−598、KMP−600、KMP−601、KMP−602(信越化学工業社製)、トレフィルE−506S、EP−9215(東レ・ダウコーニング社製)等が挙げられ、これらを分級や混合等により最頻粒子径が中位粒子径の1.07倍以上となるように調整して用いることができる。上記シリコーン系粒子は、単独で用いられてもよいし、2種以上が併用されてもよい。
【0035】
上記ビニル系粒子としては、(メタ)アクリル粒子が好適に用いられる。
上記(メタ)アクリル粒子は、原料となる単量体を公知の方法により重合させることで得ることができる。具体的には例えば、ラジカル重合開始剤の存在下で単量体を懸濁重合する方法、ラジカル重合開始剤の存在下で非架橋の種粒子に単量体を吸収させることにより種粒子を膨潤させてシード重合する方法等が挙げられる。得られた粒子の最頻粒子径が中位粒子径の1.07倍未満である場合には、分級や混合等により最頻粒子径が中位粒子径の1.07倍以上となるように調整する。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味する。
【0036】
上記(メタ)アクリル粒子を形成するための原料となる単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート類や、2−ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート類や、(メタ)アクリロニトリル等のニトリル含有単量体や、トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート等のフッ素含有(メタ)アクリレート類等の単官能単量体が挙げられる。なかでも、単独重合体のTgが低く、1g荷重を加えたときの変形量を大きくすることができることから、アルキル(メタ)アクリレート類が好ましい。
なお、本明細書において、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。
【0037】
また、架橋構造を持たせるため、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレンジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、イソシアヌル酸骨格トリ(メタ)アクリレート等の多官能単量体を用いてもよい。なかでも、架橋点間分子量が大きく、1g荷重を加えたときの変形量を大きくすることができることから、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレンジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレートが好ましい。
【0038】
上記架橋性単量体の使用量は、単量体全体において、好ましい下限は1重量%、好ましい上限は90重量%である。上記架橋性単量体の使用量が1重量%以上であることにより、耐溶剤性が上がり、種々のシール剤原料と混練したときに膨潤等の問題を引き起こさず、均一に分散しやすくなる。上記架橋性単量体の使用量が90重量%以下であることにより、回復率を低くすることができ、スプリングバック等の問題が起こりにくくなる。上記架橋性単量体の使用量のより好ましい下限は3重量%、より好ましい上限は80重量%である。
【0039】
更に、これらのアクリル系の単量体に加えて、スチレン、α−メチルスチレン等のスチレン系単量体や、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル類や、酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル類や、エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素や、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体や、トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ−(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等の単量体を用いてもよい。
【0040】
また、上記ビニル系粒子としては、例えば、ポリジビニルベンゼン粒子、ポリクロロプレン粒子、ブタジエンゴム粒子等を用いてもよい。
【0041】
上記ウレタン系粒子のうち市販されているものとしては、例えば、アートパール(根上工業社製)、ダイミックビーズ(大日精化工業社製)等が挙げられ、これらを分級や混合等により最頻粒子径が中位粒子径の1.07倍以上となるように調整して用いることができる。
【0042】
上記柔軟粒子の硬度の好ましい下限は10、好ましい上限は50である。上記柔軟粒子の硬度が50を超えると、得られる液晶滴下工法用シール剤が接着性に劣るものとなったり、得られる液晶表示素子にギャップ不良が生じたりすることがある。上記柔軟粒子の硬度のより好ましい下限は20、より好ましい上限は40である。
なお、本明細書において上記柔軟粒子の硬度は、JIS K 6253に準拠した方法により測定されるデュロメータA硬さを意味する。
【0043】
上記柔軟粒子の含有量は、硬化性樹脂100重量部に対して、好ましい下限が15重量部、好ましい上限が50重量部である。上記柔軟粒子の含有量が15重量部未満であると、シール剤の液晶への溶出を充分に防止できなくなることがある。上記柔軟粒子の含有量が50重量部を超えると、得られる液晶滴下工法用シール剤が塗布性や接着性に劣るものとなることがある。上記柔軟粒子の含有量のより好ましい下限は20重量部、より好ましい上限は40重量部である。
【0044】
本発明の液晶滴下工法用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、(メタ)アクリル樹脂を含有することが好ましい。
本発明の液晶滴下工法用シール剤は、速やかに硬化させることができるため、硬化性樹脂として(メタ)アクリル樹脂を含有し、かつ、重合開始剤として後述するラジカル重合開始剤を含有することが好ましく、加熱のみで本発明の液晶滴下工法用シール剤を速やかに硬化させることが可能となり、狭額縁設計の液晶表示素子であっても、液晶汚染の発生を充分に抑制することができるため、(メタ)アクリル樹脂と後述する熱ラジカル重合開始剤とを含有することがより好ましい。
上記硬化性樹脂は、エポキシ(メタ)アクリレートを含有することがより好ましい。
なお、本明細書において、上記「(メタ)アクリル樹脂」とは、(メタ)アクリロイル基を有する樹脂を意味し、上記「(メタ)アクリロイル基」とは、アクリロイル基又はメタクリロイル基を意味する。また、上記「エポキシ(メタ)アクリレート」とは、エポキシ樹脂中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを意味する。
【0045】
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’−ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物、ビスフェノールA型エピスルフィド樹脂等が挙げられる。
【0046】
上記ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、jER828EL、jER1001、jER1004(いずれも三菱化学社製)、エピクロン850−S(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ樹脂のうち市販されているものとしては、例えば、jER806、jER4004(いずれも三菱化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記2,2’−ジアリルビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、RE−810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、EP−4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX−201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、jERYX−4000H(三菱化学社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV−50TE(新日鉄住金化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV−80DE(新日鉄住金化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP−4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA−4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN−770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN−670−EXP−S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC−3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN−165S(新日鉄住金化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、jER630(三菱化学社製)、エピクロン430(DIC社製)、TETRAD−X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX−1542(新日鉄住金化学社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX−611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR−450、YR−207(いずれも新日鉄住金化学社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX−147(ナガセケムテックス社製)等が挙げられる。
上記ビスフェノールA型エピスルフィド樹脂のうち市販されているものとしては、例えば、jERYL−7000(三菱化学社製)等が挙げられる。
上記エポキシ樹脂のうちその他に市販されているものとしては、例えば、YDC−1312、YSLV−80XY、YSLV−90CR(いずれも新日鉄住金化学社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱化学社製)、EXA−7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
【0047】
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3800、EBECRYL6040、EBECRYLRDX63182(いずれもダイセル・オルネクス社製)、EA−1010、EA−1020、EA−5323、EA−5520、EA−CHD、EMA−1020(いずれも新中村化学工業社製)、エポキシエステルM−600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA(いずれも共栄社化学社製)、デナコールアクリレートDA−141、デナコールアクリレートDA−314、デナコールアクリレートDA−911(いずれもナガセケムテックス社製)等が挙げられる。
【0048】
上記エポキシ(メタ)アクリレート以外の他の(メタ)アクリル樹脂としては、例えば、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物、イソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等が挙げられる。
【0049】
上記(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、n−オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−ブトキシエチル(メタ)アクリレート、2−フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2−トリフルオロエチル(メタ)アクリレート、2,2,3,3−テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H−オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2−(メタ)アクリロイロキシエチルコハク酸、2−(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2−(メタ)アクリロイロキシエチル2−ヒドロキシプロピルフタレート、2−(メタ)アクリロイロキシエチルホスフェート、グリシジル(メタ)アクリレート等が挙げられる。
【0050】
上記エステル化合物のうち2官能のものとしては、例えば、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2−n−ブチル−2−エチル−1,3−プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2−ヒドロキシ−3−(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。
【0051】
上記エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
【0052】
上記ウレタン(メタ)アクリレートは、例えば、2つのイソシアネート基を有するイソシアネート化合物1当量に対して水酸基を有する(メタ)アクリル酸誘導体2当量を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。
【0053】
上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5−ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシレンジイソシアネート、1,6,11−ウンデカントリイソシアネート等が挙げられる。
【0054】
また、上記イソシアネート化合物としては、例えば、エチレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、プロピレングリコール、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。
【0055】
上記ウレタン(メタ)アクリレートの原料となる、水酸基を有する(メタ)アクリル酸誘導体としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキルモノ(メタ)アクリレートや、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレート、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレート、ビスフェノールA型エポキシアクリレート等のエポキシ(メタ)アクリレート等が挙げられる。
【0056】
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、M−1100、M−1200、M−1210、M−1600(いずれも東亞合成社製)、EBECRYL230、EBECRYL270、EBECRYL4858、EBECRYL8402、EBECRYL8804、EBECRYL8803、EBECRYL8807、EBECRYL9260、EBECRYL1290、EBECRYL5129、EBECRYL4842、EBECRYL210、EBECRYL4827、EBECRYL6700、EBECRYL220、EBECRYL2220(いずれもダイセル・オルネクス社製)、アートレジンUN−9000H、アートレジンUN−9000A、アートレジンUN−7100、アートレジンUN−1255、アートレジンUN−330、アートレジンUN−3320HB、アートレジンUN−1200TPK、アートレジンSH−500B(いずれも根上工業社製)、U−122P、U−108A、U−340P、U−4HA、U−6HA、U−324A、U−15HA、UA−5201P、UA−W2A、U−1084A、U−6LPA、U−2HA、U−2PHA、UA−4100、UA−7100、UA−4200、UA−4400、UA−340P、U−3HA、UA−7200、U−2061BA、U−10H、U−122A、U−340A、U−108、U−6H、UA−4000(いずれも新中村化学工業社製)、AH−600、AT−600、UA−306H、AI−600、UA−101T、UA−101I、UA−306T、UA−306I(いずれも共栄社化学社製)等が挙げられる。
【0057】
上記(メタ)アクリル樹脂は、液晶への悪影響を抑える点で、−OH基、−NH−基、−NH基等の水素結合性のユニットを有するものが好ましい。
また、上記(メタ)アクリル樹脂は、反応性の高さから分子中に(メタ)アクリロイル基を2〜3個有するものが好ましい。
【0058】
上記硬化性樹脂は、得られる液晶滴下工法用シール剤の接着性を向上させること等を目的として、エポキシ樹脂を含有してもよい。
上記エポキシ樹脂としては、例えば、上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ樹脂や、部分(メタ)アクリル変性エポキシ樹脂等が挙げられる。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ樹脂とは、1分子中にエポキシ基と(メタ)アクリロイル基とをそれぞれ1つ以上有する樹脂を意味し、例えば、2つ以上のエポキシ基を有する樹脂の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる。
【0059】
上記部分(メタ)アクリル変性エポキシ樹脂のうち、市販されているものとしては、例えば、UVACURE1561(ダイセル・オルネクス社製)等が挙げられる。
【0060】
上記硬化性樹脂として上記エポキシ樹脂を含有する場合、上記硬化性樹脂全体における(メタ)アクリロイル基とエポキシ基との合計量に対するエポキシ基の比率の好ましい上限は50モル%である。上記エポキシ基の比率が50モル%を超えると、得られる液晶滴下工法用シール剤の液晶に対する溶解性が高くなって液晶汚染を引き起こし、得られる液晶表示素子が表示性能に劣るものとなることがある。上記エポキシ基の比率のより好ましい上限は20モル%である。
【0061】
本発明の液晶滴下工法用シール剤は、重合開始剤及び/又は熱硬化剤を含有する。
なかでも、重合開始剤としてラジカル重合開始剤を含有することが好ましい。スプリングバックは、上記柔軟粒子の粒度分布の影響だけでなくシール剤の硬化速度にも影響を受ける。上記ラジカル重合開始剤は、熱硬化剤に比べて硬化速度が格段に速くすることができるため、上記柔軟粒子と組み合わせて用いることにより、上記柔軟粒子により発生しやすいスプリングバックの発生を抑制する効果に更に優れるものとすることができる。
【0062】
上記ラジカル重合開始剤としては、加熱によりラジカルを発生する熱ラジカル重合開始剤、光照射によりラジカルを発生する光ラジカル重合開始剤等が挙げられる。
上述したように、上記ラジカル重合開始剤は熱硬化剤に比べて硬化速度が格段に速いため、ラジカル重合開始剤を用いることにより、シールブレイクや、液晶汚染の発生を抑制し、かつ、上記柔軟粒子を配合することにより発生しやすいスプリングバックもより効果的に抑制できる。
なかでも、得られる液晶滴下工法用シール剤を熱により速やかに硬化させることができるため、熱ラジカル重合開始剤が好ましい。
【0063】
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。なかでも、高分子アゾ化合物からなる高分子アゾ開始剤が好ましい。
なお、本明細書において高分子アゾ開始剤とは、アゾ基を有し、熱によって(メタ)アクリロイルオキシ基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
【0064】
上記高分子アゾ開始剤の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ開始剤の数平均分子量が1000未満であると、高分子アゾ開始剤が液晶に悪影響を与えることがある。上記高分子アゾ開始剤の数平均分子量が30万を超えると、硬化性樹脂への混合が困難になることがある。上記高分子アゾ開始剤の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。
なお、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF−804(昭和電工社製)等が挙げられる。
【0065】
上記高分子アゾ開始剤としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ開始剤としては、ポリエチレンオキサイド構造を有するものが好ましい。このような高分子アゾ開始剤としては、例えば、4,4’−アゾビス(4−シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’−アゾビス(4−シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられ、具体的には例えば、VPE−0201、VPE−0401、VPE−0601、VPS−0501、VPS−1001(いずれも和光純薬工業社製)等が挙げられる。
また、高分子アゾ開始剤以外のアゾ開始剤の例としては、例えば、V−65、V−501(いずれも和光純薬工業社製)等が挙げられる。
【0066】
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。
【0067】
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン等が挙げられる。
【0068】
上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、IRGACURE 184、IRGACURE 369、IRGACURE 379、IRGACURE 651、IRGACURE 819、IRGACURE 907、IRGACURE 2959、IRGACURE OXE01、ルシリンTPO(いずれもBASF社製)、ベンソインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。
【0069】
上記重合開始剤としてカチオン重合開始剤を用いてもよい。
上記カチオン重合開始剤としては、光カチオン重合開始剤を好適に用いることができる。上記光カチオン重合開始剤は、光照射によりプロトン酸又はルイス酸を発生するものであれば特に限定されず、イオン性光酸発生タイプのものであってもよいし、非イオン性光酸発生タイプであってもよい。
上記光カチオン重合開始剤としては、例えば、芳香族ジアゾニウム塩、芳香族ハロニウム塩、芳香族スルホニウム塩等のオニウム塩類、鉄−アレン錯体、チタノセン錯体、アリールシラノール−アルミニウム錯体等の有機金属錯体類等が挙げられる。
【0070】
上記光カチオン重合開始剤のうち市販されているものとしては、例えば、アデカオプトマーSP−150、アデカオプトマーSP−170(いずれもADEKA社製)等が挙げられる。
【0071】
上記重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が30重量部である。上記重合開始剤の含有量が0.1重量部未満であると、得られる液晶滴下工法用シール剤を充分に硬化させることができないことがある。上記重合開始剤の含有量が30重量部を超えると、得られる液晶滴下工法用シール剤の貯蔵安定性が低下することがある。上記重合開始剤の含有量のより好ましい下限は1重量部、より好ましい上限は10重量部であり、更に好ましい上限は5重量部である。
【0072】
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、固形の有機酸ヒドラジドが好適に用いられる。
【0073】
上記固形の有機酸ヒドラジドとしては、例えば、1,3−ビス(ヒドラジノカルボエチル)−5−イソプロピルヒダントイン、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられ、市販されているものとしては、例えば、アミキュアVDH、アミキュアUDH(いずれも味の素ファインテクノ社製)、SDH、IDH、ADH(いずれも大塚化学社製)、MDH(日本ファインケム社製)等が挙げられる。
【0074】
上記熱硬化剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量が1重量部未満であると、得られる液晶滴下工法用シール剤を充分に熱硬化させることができないことがある。上記熱硬化剤の含有量が50重量部を超えると、得られる液晶滴下工法用シール剤の粘度が高くなりすぎ、塗布性が悪くなることがある。上記熱硬化剤の含有量のより好ましい上限は30重量部である。
【0075】
本発明の液晶滴下工法用シール剤は、硬化促進剤を含有することが好ましい。上記硬化促進剤を用いることにより、高温で加熱しなくても充分にシール剤を硬化させることができる。
【0076】
上記硬化促進剤としては、例えば、イソシアヌル環骨格を有する多価カルボン酸やエポキシ樹脂アミンアダクト物等が挙げられ、具体的には例えば、トリス(2−カルボキシメチル)イソシアヌレート、トリス(2−カルボキシエチル)イソシアヌレート、トリス(3−カルボキシプロピル)イソシアヌレート、ビス(2−カルボキシエチル)イソシアヌレート等が挙げられる。
【0077】
上記硬化促進剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記硬化促進剤の含有量が0.1重量部未満であると、得られる液晶滴下工法用シール剤が充分に硬化しなかったり、硬化させるために高温での加熱が必要となったりすることがある。上記硬化促進剤の含有量が10重量部を超えると、得られる液晶滴下工法用シール剤が接着性に劣るものとなることがある。
【0078】
本発明の液晶滴下工法用シール剤は、粘度の向上、応力分散効果による接着性の改善、線膨張率の改善、硬化物の耐湿性の向上等を目的として充填剤を含有することが好ましい。
【0079】
上記充填剤としては、例えば、タルク、石綿、シリカ、珪藻土、スメクタイト、ベントナイト、炭酸カルシウム、炭酸マグネシウム、アルミナ、モンモリロナイト、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、水酸化マグネシウム、水酸化アルミニウム、ガラスビーズ、窒化珪素、硫酸バリウム、石膏、珪酸カルシウム、セリサイト、活性白土、窒化アルミニウム等の無機充填剤や、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子、コアシェルアクリレート共重合体微粒子等の有機充填剤等が挙げられる。これらの充填剤は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
【0080】
上記充填剤の含有量は、液晶滴下工法用シール剤全体に対して、好ましい下限が10重量%、好ましい上限が70重量%である。上記充填剤の含有量が10重量%未満であると、接着性の改善等の効果が充分に発揮されないことがある。上記充填剤の含有量が70重量%を超えると、得られる液晶滴下工法用シール剤の粘度が高くなり、塗布性が悪くなることがある。上記充填剤の含有量のより好ましい下限は20重量%、より好ましい上限は60重量%である。
【0081】
本発明の液晶滴下工法用シール剤は、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。
【0082】
上記シランカップリング剤としては、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより液晶中への硬化性樹脂の流出を抑制することができることから、例えば、N−フェニル−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらのシランカップリング剤は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
【0083】
上記シランカップリング剤の含有量は、液晶滴下工法用シール剤全体に対して、好ましい下限が0.1重量%、好ましい上限が20重量%である。上記シランカップリング剤の含有量が0.1重量%未満であると、シランカップリング剤を配合することによる効果が充分に発揮されないことがある。上記シランカップリング剤の含有量が20重量%を超えると、得られる液晶滴下工法用シール剤が液晶を汚染することがある。上記シランカップリング剤の含有量のより好ましい下限は0.5重量%、より好ましい上限は10重量%である。
【0084】
本発明の液晶滴下工法用シール剤は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の液晶滴下工法用シール剤は、遮光シール剤として好適に用いることができる。
【0085】
上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。なかでも、チタンブラックが好ましい。
【0086】
上記チタンブラックは、波長300〜800nmの光に対する平均透過率と比較して、紫外線領域付近、特に波長370〜450nmの光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで本発明の液晶滴下工法用シール剤に遮光性を付与する一方、紫外線領域付近の波長の光は透過させる性質を有する遮光剤である。本発明の液晶滴下工法用シール剤に含有される遮光剤としては、絶縁性の高い物質が好ましく、絶縁性の高い遮光剤としてもチタンブラックが好適である。
上記チタンブラックは、1μmあたりの光学濃度(OD値)が、3以上であることが好ましく、4以上であることがより好ましい。上記チタンブラックの遮光性は高ければ高いほどよく、上記チタンブラックのOD値に好ましい上限は特にないが、通常は5以下となる。
【0087】
上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを含有する本発明の液晶滴下工法用シール剤を用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。
【0088】
上記チタンブラックのうち市販されているものとしては、例えば、12S、13M、13M−C、13R−N、14M−C(いずれも三菱マテリアル社製)、ティラックD(赤穂化成社製)等が挙げられる。
【0089】
上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
【0090】
上記遮光剤の一次粒子径は、液晶表示素子のセルギャップ以下であれば特に限定されないが、好ましい下限は1nm、好ましい上限は5μmである。上記遮光剤の一次粒子径が1nm未満であると、得られる液晶滴下工法用シール剤の粘度やチクソトロピーが大きく増大してしまい、作業性が悪くなることがある。上記遮光剤の一次粒子径が5μmを超えると、得られる液晶滴下工法用シール剤の基板への塗布性が悪くなることがある。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。
【0091】
上記遮光剤の含有量は、液晶滴下工法用シール剤全体に対して、好ましい下限が5重量%、好ましい上限が80重量%である。上記遮光剤の含有量が5重量%未満であると、充分な遮光性が得られないことがある。上記遮光剤の含有量が80重量%を超えると、得られる液晶滴下工法用シール剤の基板に対する密着性や硬化後の強度が低下したり、描画性が低下したりすることがある。上記遮光剤の含有量のより好ましい下限は10重量%、より好ましい上限は70重量%であり、更に好ましい下限は30重量%、更に好ましい上限は60重量%である。
【0092】
本発明の液晶滴下工法用シール剤は、更に、必要に応じて、粘度調整の為の反応性希釈剤、パネルギャップ調整の為のポリマービーズ等のスペーサー、消泡剤、レベリング剤、重合禁止剤、その他のカップリング剤等の添加剤を含有してもよい。
【0093】
本発明の液晶滴下工法用シール剤を製造する方法は特に限定されず、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、重合開始剤及び/又は熱硬化剤と、柔軟粒子と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。
【0094】
本発明の液晶滴下工法用シール剤における、E型粘度計を用いて25℃、1rpmの条件で測定した粘度の好ましい下限は5万Pa・s、好ましい上限は50万Pa・sである。上記粘度が5万Pa・s未満であったり、50万Pa・sを超えたりすると、液晶滴下工法用シール剤を基板等に塗布する際の作業性が悪くなることがある。上記粘度のより好ましい上限は40万Pa・sである。
【0095】
本発明の液晶滴下工法用シール剤に導電性微粒子を配合することにより、上下導通材料を製造することができる。このような本発明の液晶滴下工法用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。
【0096】
上記導電性微粒子としては、例えば、金属ボールや、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。
【0097】
本発明の液晶滴下工法用シール剤又は本発明の上下導通材料を有する液晶表示素子もまた、本発明の1つである。
【0098】
本発明の液晶表示素子を製造する方法としては、例えば、ITO薄膜等の電極付きのガラス基板やポリエチレンテレフタレート基板等の2枚の透明基板の一方に、本発明の液晶滴下工法用シール剤等をスクリーン印刷、ディスペンサー塗布等により長方形状のシールパターンを形成する工程、本発明の液晶滴下工法用シール剤等が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下塗布し、すぐに別の基板を重ね合わせる工程、及び、本発明の液晶滴下工法用シール剤を加熱して硬化させる工程を有する方法等が挙げられる。また、本発明の液晶滴下工法用シール剤を加熱して硬化させる工程の前に、シールパターン部分に紫外線等の光を照射してシール剤を仮硬化させる工程を行なってもよい。
【発明の効果】
【0099】
本発明によれば、シールブレイクや液晶汚染の抑制とスプリングバックによるギャップ不良の抑制とを両立できる液晶滴下工法用シール剤を提供することができる。また、本発明によれば、該液晶滴下工法用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することができる。
【発明を実施するための形態】
【0100】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
なお、実施例及び比較例の有機EL表示素子用封止剤は、セルギャップが5μmの有機EL表示素子の製造に用いられるものとする。
【0101】
(柔軟粒子Aの調製)
シリコーンゴム粒子(信越化学工業社製、「KMP−601」)をメタノール中に分散させ、8μmの目開きの篩で湿式篩分級し、篩を通過したものを回収して乾燥させ、シリコーンゴム粒子の分級処理品である柔軟粒子Aを得た。篩はポリイミドフィルムにレーザーで超高精度微細加工を施して得た極めて精度の高い穴を有するものを用いた。
得られた柔軟粒子Aについて、コールター式分布測定装置(ベックマン・コールター社製、「マルチサイザー4」)を用いて測定した最頻粒子径、中位粒子径、最大粒子径、最小粒子径、平均粒子径、D90、粒子径のCV値、最小粒子径から中位粒子径よりも2μm小さい粒子径までの体積頻度の割合W、中位粒子径から2μm小さい粒子径から中位粒子径までの体積頻度の割合X、中位粒子径から中位粒子径よりも2μm大きい粒子径までの体積頻度の割合Y、中位粒子径よりも2μm大きい粒子径から最大粒子径までの体積頻度の割合Zを表1に示した。
上記コールター式分布測定装置による測定は、粒子0.1gをメタノール10gに添加して馴染ませ、超音波分散を5分間行い粒子分散液を調製し、サンプルスタンド内の電解液「ISOTON II」(ベックマン・コールター社製)の入ったビーカーに、得られた粒子分散液を測定装置の表示濃度が5%になるまでスポイトで注入した。測定は2回行い、算出された値の算術平均値を用いた。
【0102】
(柔軟粒子Bの調製)
シリコーンゴム粒子(信越化学工業社製、「KMP−601」)をメタノール中に分散させ、8μmの目開きの篩で湿式篩分級し、篩を通過したものを回収し、次いで、5μmの目開きの篩で湿式篩分級し、篩に残ったものを回収して乾燥させ、シリコーンゴム粒子の分級処理品である柔軟粒子Bを得た。篩はポリイミドフィルムにレーザーで超高精度微細加工を施して得た極めて精度の高い穴を有するものを用いた。
得られた柔軟粒子Bについて、柔軟粒子Aと同様にして測定した最頻粒子径、中位粒子径、最大粒子径、最小粒子径、平均粒子径、D90、粒子径のCV値、W、X、Y、及び、Zを表1に示した。
【0103】
(柔軟粒子Cの調製)
シリコーンゴム粒子(信越化学工業社製、「KMP−601」)をメタノール中に分散させ、10μmの目開きの篩で湿式篩分級し、篩を通過したものを回収して乾燥させ、シリコーンゴム粒子の分級処理品である柔軟粒子Cを得た。篩はポリイミドフィルムにレーザーで超高精度微細加工を施して得た極めて精度の高い穴を有するものを用いた。
得られた柔軟粒子Cについて、柔軟粒子Aと同様にして測定した最頻粒子径、中位粒子径、最大粒子径、最小粒子径、平均粒子径、D90、粒子径のCV値、W、X、Y、及び、Zを表1に示した。
【0104】
(柔軟粒子Dの調製)
シリコーンゴム粒子(信越化学工業社製、「KMP−601」)を精密空気分級機(日清エンジニアリング社製、「ターボクラシファイア TC−15」)にて供給速度5kg/h、回転数10000rpmの条件で分級し、柔軟粒子Dを得た。
得られた柔軟粒子Dについて、柔軟粒子Aと同様にして測定した最頻粒子径、中位粒子径、最大粒子径、最小粒子径、平均粒子径、D90、粒子径のCV値、W、X、Y、及び、Zを表1に示した。
【0105】
(柔軟粒子Eの調製)
シリコーン樹脂粒子(モメンティブ・パフォーマンス・マテリアルズ社製、「トスパール1100」)55重量部と、シリコーン樹脂粒子(モメンティブ・パフォーマンス・マテリアルズ社製、「トスパール2000B」)45重量部とを、粉体混合器(日本コークス工業社製、「FMミキサ(FM5RC/I)」)を用いて均一に撹拌混合し、柔軟粒子Eを得た。
得られた柔軟粒子Eについて、柔軟粒子Aと同様にして測定した最頻粒子径、中位粒子径、最大粒子径、最小粒子径、平均粒子径、D90、粒子径のCV値、W、X、Y、及び、Zを表1に示した。
【0106】
(柔軟粒子Fの調製)
ポリテトラメチレングリコールジアクリレート75重量部と、スチレン21重量部と、過酸化ベンゾイル4重量部とを混合し、均一に溶解させ、モノマー混合液を得た。得られたモノマー混合液をポリビニルアルコール1重量%水溶液の入った反応釜に投入し、2〜4時間撹拌することで、モノマーの液滴が所定の粒子径になるよう、粒子径調整を行った。次いで、85℃の窒素雰囲気下で9時間反応を行い、未分級重合体粒子を得た。得られた未分級重合体粒子を熱水にて数回洗浄し乾燥させた。その後、メタノール中に分散させ、10μmの目開きの篩で湿式篩分級し、篩を通過したものを回収して乾燥させ、ビニル系粒子の分級処理品である柔軟粒子Fを得た。篩はポリイミドフィルムにレーザーで超高精度微細加工を施して得た極めて精度の高い穴を有するものを用いた。
得られた柔軟粒子Fについて、柔軟粒子Aと同様にして測定した最頻粒子径、中位粒子径、最大粒子径、最小粒子径、平均粒子径、D90、粒子径のCV値、W、X、Y、及び、Zを表1に示した。
【0107】
(柔軟粒子Gの調製)
ポリテトラメチレングリコールジアクリレート75重量部と、スチレン21重量部と、過酸化ベンゾイル4重量部とを混合し、均一に溶解させ、モノマー混合液を得た。得られたモノマー混合液をポリビニルアルコール1重量%水溶液の入った反応釜に投入し、2〜4時間撹拌することで、モノマーの液滴が所定の粒子径になるよう、粒子径調整を行った。次いで、85℃の窒素雰囲気下で9時間反応を行い、未分級重合体粒子を得た。得られた未分級重合体粒子を熱水にて数回洗浄し乾燥させた。その後、メタノール中に分散させ、8μmの目開きの篩で湿式篩分級し、篩を通過したものを回収して乾燥させ、ビニル系粒子の分級処理品である柔軟粒子Gを得た。篩はポリイミドフィルムにレーザーで超高精度微細加工を施して得た極めて精度の高い穴を有するものを用いた。
得られた柔軟粒子Gについて、柔軟粒子Aと同様にして測定した最頻粒子径、中位粒子径、最大粒子径、最小粒子径、平均粒子径、D90、粒子径のCV値、W、X、Y、及び、Zを表1に示した。
【0108】
(実施例1)
硬化性樹脂としてビスフェノールA型エポキシアクリレート(ダイセル・オルネクス社製、「EBECRYL3700」)70重量部及びビスフェノールF型エポキシ樹脂(三菱化学社製、「jER806」)30重量部と、熱ラジカル重合開始剤として高分子アゾ開始剤(和光純薬工業社製、「VPE−0201」)7重量部と、熱硬化剤としてセバシン酸ジヒドラジド(大塚化学社製、「SDH」)8重量部と、柔軟粒子A30重量部と、充填剤としてシリカ(アドマテックス社製、「アドマファインSO−C2」)10重量部と、シランカップリング剤として3−グリシドキシプロピルトリメトキシシラン(信越化学工業社製、「KBM−403」)1重量部とを配合し、遊星式撹拌装置(シンキー社製、「あわとり練太郎」)にて撹拌した後、セラミック3本ロールにて均一に混合させて液晶滴下工法用シール剤を得た。
【0109】
(実施例2〜10、比較例1〜4)
表2、3に記載された配合比に従い、各材料を、実施例1と同様にして、遊星式撹拌機(シンキー社製「あわとり練太郎」)を用いて混合した後、更に3本ロールを用いて混合することにより実施例2〜10、比較例1〜4の液晶滴下工法用シール剤を調製した。
なお、比較例1で用いた「KMP−601未分級品」は、シリコーンゴム粒子(信越化学工業社製、「KMP−601」)を分級せずにそのまま用いたものであり、比較例2で用いた「KMP−600未分級品」は、シリコーンゴム粒子(信越化学工業社製、「KMP−600」)を分級せずにそのまま用いたものであり、比較例3で用いた「9701未分級品」は、シリコーンエラストマー複合粒子(東レ・ダウコーニング社製、「9701 コスメティックパウダー」)を分級せずにそのまま用いたものであり、それぞれについて、柔軟粒子Aと同様にして測定した最頻粒子径、中位粒子径、最大粒子径、最小粒子径、平均粒子径、D90、粒子径のCV値、W、X、Y、及び、Zを表1に示した。
【0110】
<評価>
実施例及び比較例で得られた各液晶滴下工法用シール剤について以下の評価を行った。
【0111】
(セルギャップ)
実施例及び比較例で得られた各液晶滴下工法用シール剤100重量部に対して平均粒子径4.7μmのスペーサー粒子(積水化学工業社製、「ミクロパールSI」)1重量部を遊星式撹拌装置によって均一に分散させ、得られたシール剤をディスペンス用のシリンジ(武蔵エンジニアリング社製、「PSY−10E」)に充填し、脱泡処理を行ってから、ディスペンサー(武蔵エンジニアリング社製、「SHOTMASTER300」)にて、2枚のITO薄膜付きの透明電極基板のうちの一方に長方形の枠を描く様にシール剤(メインシール)を塗布し、続いて、セルを真空に保持するため、更に外周に一周シール剤(ダミーシール)を塗布した。その後、TN液晶(チッソ社製、「JC−5001LA」)の微小滴を液晶滴下装置にて滴下塗布し、他方の透明基板を、真空貼り合わせ装置にて5Paの真空下にて貼り合わせた。貼り合わせた後のセルに高圧水銀ランプを用いて100mW/cmの紫外線を30秒間照射した後、125℃で60分間加熱してシール剤を熱硬化させ、液晶表示素子を得た。
得られた液晶表示素子のセルギャップを測定し、セル内が均一に4〜5μmとなっていた場合を「◎」、セル内のほぼ全体に4〜5μmのギャップがとれていた場合を「○」、セル内に4〜5μmのギャップがとれていない箇所が多く又は広く存在した場合を「△」、セルが形成できなかった場合を「×」としてセルギャップを評価した。結果を表2、3に示した。
【0112】
(液晶汚染性)
上記「(セルギャップ)」の評価にて得られた液晶表示素子について、シール部周辺の液晶(特にコーナー部)に生じる表示むらを目視にて観察し、表示むらが全く無かった場合を「◎」、表示むらがほとんど無かった場合を「○」、表示むらがはっきりと確認された場合を「△」、酷い表示むらが確認された場合又はセルが形成できなかった場合を「×」として液晶汚染性を評価した。結果を表2、3に示した。
【0113】
(シール剤から取り出した柔軟粒子の評価)
実施例及び比較例で得られた各液晶滴下工法用シール剤0.5重量部を、エタノール30重量部中に投入し、35℃で1時間撹拌を行った後、ろ過を行うことでシール剤から柔軟微粒子を取り出した。
各シール剤から取り出した柔軟粒子について、上記「(柔軟粒子Aの調製)」と同様にして測定した、最頻粒子径、中位粒子径、最大粒子径、最小粒子径、平均粒子径、粒子径のCV値、W、X、Y、及び、Zを表4に示した。
【0114】
【表1】
【0115】
【表2】
【0116】
【表3】
【0117】
【表4】
【産業上の利用可能性】
【0118】
本発明によれば、シールブレイクや液晶汚染の抑制とスプリングバックによるギャップ不良の抑制とを両立できる液晶滴下工法用シール剤を提供することができる。また、本発明によれば、該液晶滴下工法用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することができる。