【実施例】
【0067】
(参考例)
本参考例のシリコンインゴットの製造方法について説明する。シリコンインゴットを製造するために、配置工程と成長工程を行う。
【0068】
まず、配置工程において、複数のシリコン単結晶ブロックを配列した種結晶を形成した。複数のシリコン単結晶ブロックは、CZ法で製造されたものであり、結晶方位に関して3種類のブロックA、B、Cを用いた。
【0069】
図1に示すように、ブロックA、B、Cは、いずれも、平面形状が5mm×45mmの長方形で、高さが30mmである。ブロックAは、X(厚み)方向に(310)面をもち、Y(長さ)方向に(−130)面をもち、Z(高さ)方向に(001)面をもつ。ブロックBは、X方向に(111)面をもち、Y方向に(11−2)面をもち、Z(高さ)方向に(−110)面をもつ。ブロックCは、X方向に(111)面をもち、Y方向に(−1−12)面をもち、Z(高さ)方向に(1−10)面をもつ。ブロックA,B,Cの転位密度はいずれも0/cm
2であった。
【0070】
図1に示すように、X方向に、順に、ブロックA、A、A、A、B、B、C、B、Bを配列させて、種結晶を得た。
【0071】
50mm×50mmの大きさの坩堝底と高さ100mmの側壁で囲まれた空間をもつシリカ製の坩堝を準備した。坩堝の側壁内面に、窒化珪素粉末を含む離型材を塗布した。坩堝底に、種結晶を配置した。種結晶のZ方向を坩堝底面に対して垂直な方向に向け、X方向を坩堝平面の一方向に向け、Y方向を坩堝平面の他方向に向けた。
【0072】
成長工程において、坩堝内の種結晶の上に、シリコン原料226gを配置した。上下方向で温度勾配がある加熱炉に坩堝を配置した。加熱炉の温度勾配は、上方に向けて約1℃/mm高くなるようにした。加熱炉内で坩堝のシリコン原料をシリコン融点以上の温度(1430℃)に加熱して、シリコン融液とした。このとき、種結晶の上部の一部がシリコン原料とともに溶融させたが、種結晶の下部は溶融させない。
【0073】
次に、加熱炉内で坩堝を0.3mm/分の速度で引き下げて、シリコン融液を下側から上側に徐々に冷却した。冷却速度は0.05℃/分とした。結晶成長速度は約0.5mm/分とした。これにより、シリコンインゴットを形成した。
【0074】
図2は、得られたシリコンインゴットの切断面のエッチピット像を示す図である。
図2において、下側部分に種結晶があり、上側部分には成長した結晶粒が認められた。成長した結晶粒には、白い線で示されているように、多数の転位が発生していた。
【0075】
ブロックAとAの間の境界から受け継いだ粒界、ブロックBとBの間の境界から受け継いだ粒界、ブロックBとCの間の境界から受け継いだ粒界を起点として、転位が発生した。一方、ブロックAとBの間の境界を受け継いだ粒界からは転位が発生しなかった。
【0076】
ブロックAとAの間の境界、ブロックBとBの間の境界、ブロックBとCの間の境界は、結晶成長に伴って転位を発生させ得る転位発生粒界を形成させる転位発生境界である。転位発生境界から引き継いだ転位発生粒界は、Σ値が1であり、Σ値1から1°程度のズレ角を有する粒界となり、小角粒界であった。転位発生境界に対面するブロックAの結晶方位に対する、転位発生粒界に対面する結晶粒の結晶方位のズレ角度は0.8°であった。転位発生境界に対面するブロックBの結晶方位に対する、転位発生粒界に対面する結晶粒の結晶方位のズレ角度は1.1°であった。転位発生境界に対面するブロックCの結晶方位に対する、転位発生粒界に対面する結晶粒の結晶方位のズレ角度は1°であった。
【0077】
ブロックAとBの間の境界は、結晶成長に伴って転位発生を抑制する転位抑制粒界を形成させ得る転位抑制境界である。転位抑制境界から引き継いだ転位抑制粒界のΣ値は29以上であり、ランダム粒界であった。
【0078】
本参考例より、Σ値の大きい粒界は転位が生じにくく、Σ値が小さい粒界は転位が発生しやすいことがわかった。この点を踏まえて、次に、実施例1のシリコンインゴットを製造した。
【0079】
(実施例1)
本実施例のシリコンインゴットの製造方法について説明する。シリコンインゴットを製造するために、配置工程と成長工程を行う。
【0080】
まず、配置工程において、複数のシリコン単結晶ブロックを配列した種結晶を形成した。複数のシリコン単結晶ブロックは、CZ法で製造されたものであり、結晶方位に関して2種類のブロックA、Dを用いた。
図3に示すように、本実施例で用いるブロックAの各方向に対する結晶方位は、参考例のブロックAと同様である。ブロックDは、X方向に(210)面、Y方向に(−120)面、Z方向に(001)面をもつ。ブロックA,Dの転位密度はいずれも0/cm
2と同じであった。
【0081】
ブロックA、Dについて、それぞれ長さ45mm、高さ30mmであるが、厚みが異なるものを準備した。ブロックA、Dの薄い厚み(2mm)をもつものをブロックA1、D1とし、それぞれ3枚準備した。ブロックA、Dの厚い厚み(18mm)をもつものをブロックA2、D2とし、それぞれ1枚準備した。
【0082】
間隔45mmを開けた平行な薄板8の間に、順に、ブロックA1、A1、A1、D2、A2、D1、D1、D1を配置させて、種結晶を得た。
【0083】
参考例と同様の坩堝を準備し、側壁内面に離型材を塗布した。坩堝底に、上記の1つの種結晶を配置した。種結晶のZ方向を坩堝底面に対して垂直な方向に向け、X方向を坩堝平面の一方向に向け、Y方向を坩堝平面の他方向に向けた。
【0084】
参考例と同様に、成長工程を行って、シリコンインゴットを成長させた。
【0085】
図4は、得られたシリコンインゴットの切断面の断面写真である。
図5は、当該切断面のエッチピット像である。まず、
図4、
図5に示すように、種結晶からZ方向に結晶粒が成長していた。
【0086】
図5に示すように、坩堝の側壁近傍の結晶粒には、多数の転位が発生していた。しかし、ブロックA1とD2の間の境界、及びブロックA2とD1の間の境界をそれぞれ引き継いだ粒界を挟んで中央側では、側壁に接していた端部側に比べて格段に転位の発生が抑えられていた。
【0087】
端部近傍に位置するブロックA1とA1の間の境界、及びブロックD1とD1の間の境界をそれぞれ引き継いで形成された粒界は、転位を発生させやすい転位発生粒界であった。
【0088】
ブロックA1とD2の間の境界、及びブロックA2とD1の間の境界をそれぞれ引き継いで形成された粒界は、中央側の結晶粒への転位の伝播を抑制する第1転位抑制粒界であることがわかった。ブロックD2とA2の間の境界を引き継いで形成された粒界は、結晶粒の転位の発生を抑制する第2転位抑制粒界であることがわかった。
【0089】
図4、
図5に示すように、シリコンインゴットの端部には、方位が種結晶とは異なる多結晶が形成されていた。一方、ブロックA1とD2の間の境界、及びブロックA2とD1の間の境界をそれぞれ引き継いだ第1転位抑制粒界を挟んで、中央部分の結晶粒については多結晶化が抑制されていた。
【0090】
図6は、結晶粒の転位発生領域での鉄濃度分布を表面光起電力法(Surface PhotoVoltage)により測定した。坩堝の側壁には離型材が塗布されるが、離型材には微量成分として鉄が含まれている。転位発生領域での鉄濃度分布を測定したところ、転位が発生している部分に著しく高い濃度で鉄が存在していることがわかった。このことから、転位発生粒界に面する結晶粒の転位領域では、多量の不純物がトラップされることがわかった。本実施例では、側壁近傍に転位発生粒界を形成しているため、側壁から拡散してきた鉄などの不純物が転位発生粒界に面する結晶粒の転位領域でトラップされる。このため、中央側の結晶粒への不純物の拡散が抑制される。
【0091】
図7を用いて、本実施例により形成されたシリコンインゴット7を説明する。シリコンインゴット7は、複数の単結晶シリコンのブロックを配列させてなる種結晶6を用いて、結晶粒5を結晶成長させることにより形成される。坩堝9の側壁91から順に配列されたブロック間の境界のうち、ブロックA1とD2の間の境界、及びブロックA2とD1の間の境界は、第1転位抑制境界1であり、結晶成長に伴って転位発生を抑制する第1転位抑制粒界51を形成させる。ブロックD2とA2との間の境界は、第2転位抑制境界2であり、結晶成長に伴って転位発生を抑制する第2転位抑制粒界52を形成させ得る。ブロックA1とA1の間の境界、及びブロックD1とD1の間の境界は、第1転位抑制境界1よりも側壁91側に位置する転位発生境界4であり、結晶成長に伴って転位を発生させ得る転位発生粒界54を形成させ得る。
【0092】
第1転位抑制粒界51は、Σ値が29以上であり、ランダム粒界であった。第2転位抑制粒界52は、Σ値が29以上であり、ランダム粒界であった。
【0093】
転位発生粒界54は、Σ値が1であり、Σ値1から1°程度のズレ角度を有する粒界であり、 小角粒界であった。転位発生境界4に対面するブロックA1、D1の結晶方位に対する、転位発生粒界54に対面する結晶粒5の結晶方位のズレ角度、第1転位抑制境界1に対面するブロックA1、D1の結晶方位に対する、転位発生粒界51に対面する結晶粒5の結晶方位のズレ角度、第2転位抑制境界2に対面するブロックA2、D2の結晶方位に対する、転位発生粒界52に対面する結晶粒5の結晶方位のズレ角度は、いずれも、0°以上5°以下であった。
【0094】
シリコンインゴットのうち、結晶粒5の第1転位抑制粒界51よりも中央側の部分を切り出すことにより、結晶欠陥の少ない高品質の疑似単結晶シリコンが得られる。
【0095】
ところで、本実施例で採用されているモノライクキャスト法では、
図4、
図7に示すように、シリコン融液から種結晶を用いてシリコンインゴットを育成する過程で、坩堝9の側壁91に接する端部から種結晶とは別の方位の結晶粒59が多数発生してその占有部分が拡大する多結晶化が生じた。本実施例では、第1転位抑制粒界51により別の方位をもつ結晶粒59の拡大がブロックされた。
【0096】
そこで、転位抑制粒界を転位発生粒界54よりも側壁91に接する端部70側に配置することで、多結晶化を効果的に抑制できると推定される。即ち、
図8に示すように、配置工程において、転位発生境界4よりも側壁91側に、結晶成長に伴って転位発生を抑制する第3転位抑制粒界53を形成させ得る第3転位抑制境界3を形成してもよい。第3転位抑制境界3を形成するために、実施例1の種結晶6の一方の端部70とブロックA1との間に、ブロックD1を配置し、また他方の端部70とブロックD1との間にブロックA1を配置する。かかる種結晶6を用いて結晶成長をさせて得られたシリコンインゴットは、第3転位抑制境界3を引き継いだ第3転位抑制粒界53で多結晶化が抑制されると推定される。このため、より高品質の疑似単結晶が得られる。
【0097】
また、本実施例では、側壁91に接する端部70近傍に転位発生境界4を配置させることにより、端部70近傍で成長した結晶粒に転位を発生させて、応力緩和及び不純物吸収をさせている。
図9に示すように、ブロックA1、D1の代わりに、ブロックA1、D1よりも転位密度を高くした高転位単結晶シリコンブロックであるブロックAD1、DD1を用いてもよい。この場合にも、ブロックAD1、DD1を引き継いで成長した結晶粒は、多数の転位が発生して高転位結晶粒64となる。高転位結晶粒64において、応力緩和及び不純物吸収をさせることができる。AD1、DD1に対して端部70と反対側、即ち中央側に第1転位抑制境界1を配置することで、中央側への転位伝播及び不純物拡散を効果的に抑制できる。
【0098】
また、
図10に示すように、種結晶6は、実施例1の転位発生境界に代えて、高転位単結晶ブロックを有していてもよい。この場合、坩堝9には、両側の側壁91近傍に、転位密度が高い高転位単結晶ブロックであるブロックAD1、DD1を配置し、中央には転位密度が小さいブロックD3を配置する。ブロックD3は、厚みがブロックD2の厚みの約2倍ある点を除いて、ブロックD2と同じである。ブロックAD1とD3との間およびブロックDD1とD3との間には、第1転位抑制境界1が形成されている。この種結晶6の上にシリコン融液を配置して冷却すると、シリコンインゴット7が形成される。高転位結晶シリコンブロックAD1、DD1を引き継いで成長した結晶粒は、多数の転位が発生して高転位結晶粒64となる。シリコンインゴット7の両端部は、転位が多く不純物が蓄積されているが、中央部では転位の発生が少なくまた不純物の拡散も抑制される。
【0099】
(実施例2)
本実施例のシリコンインゴットは、種結晶において、第3転位抑制境界を配置していること、及び、坩堝の4つのすべての側壁に、第3転位抑制境界、転位発生境界及び第1転位抑制境界を配置している点が、実施例1と相違する。以下、本実施例のシリコンインゴットの製造方法について説明する。
【0100】
まず、配置工程において、複数のシリコン単結晶ブロックを配列した種結晶を形成した。複数のシリコン単結晶ブロックは、CZ法で製造されたものであり、結晶方位に関して3種類のブロックE,F,Gを用いた。
図11に示すように、ブロックEの結晶方位は、X方向に(310)面、Y方向に(1−30)面、Z方向に(001)面をもつ。ブロックFの結晶方位は、X方向に(210)面、Y方向に(1−20)面、Z方向に(001)面をもつ。ブロックGの結晶方位は、X方向に(−211)面、Y方向に(01−1)面、Z方向に(111)面をもつ。ブロックE,F,Gの転位密度はいずれも0/cm
2であった。
【0101】
ブロックE,Fについて、平面形状の異なるブロックE1、E2、E3、F1、F2、F3を準備した。ブロックE1、F1の平面形状は、32mm×64mmの長方形であり、ブロックE2、F2の平面形状は、5mm×64mmの長方形であり、ブロックE3、F3の平面形状は、32mm×5mmの長方形であった。すべてのブロックの高さは94mmとした。
【0102】
図11に示すように、各種ブロックを配置させて、種結晶を得た。坩堝の底壁は、X方向及びY方向にそれぞれ94mmの長さの正方形をなしている。坩堝の側壁から順に、X方向において、ブロックF2、E2、E2、F1、E1、F2、F2、E2の順で配列させた。Y方向において、ブロックF1の両側に、ブロックE3、E3、F3の順で配列させ、ブロックE1の両側に、ブロックF3、F3、E3の順で配列させた。種結晶の4コーナーには、ブロックGを配置した。
【0103】
坩堝の側壁内面に離型材を塗布した。坩堝底に、上記の種結晶を配置した。種結晶のZ方向を坩堝底面に対して垂直な方向に向け、X方向を坩堝平面の一方向に向け、Y方向を坩堝平面の他方向に向けた。
【0104】
参考例と同様に、成長工程を行って、シリコンインゴットを成長させた。
【0105】
図12は、
図11のA−A矢視線方向に切断したシリコンインゴットの切断面の断面写真である。
図13は、種結晶部分をZ方向と直交する方向に切断したシリコンインゴットの切断面の断面写真である。
図14は、
図11のA−A矢視線方向に切断したシリコンインゴットの切断面の説明図である。
図15は、種結晶部分をZ方向と直交する方向に切断したシリコンインゴットの切断面 の説明図である。
【0106】
得られたシリコンインゴットでは、種結晶6からZ方向に結晶粒が成長していた。坩堝9の四方の側壁91近傍の結晶粒には、多数の転位が発生していた。しかし、
図12に示すように、ブロックF2とE1の間の境界、ブロックE2とF1の間の2つの境界をそれぞれ引き継いだ粒界を挟んで中央側では、側壁側に比べて格段に転位の発生が抑えられていた。また、
図13に示すように、ブロックF2およびF3とE1の間の境界をそれぞれ引き継いだ粒界を挟んで中央側では、端部側に比べて格段に転位の発生が抑えられていた。同様に、ブロックE2およびE3とF1の境界をそれぞれ引き継いだ粒界を挟んだ中央側では、端部側に比べて格段に転位の発生が抑えられていた。このことから、ブロックF2とE1の間の境界、ブロックE2とF1の間の境界、ブロックF3とE1の間の境界、及びブロックE3とF1の間の境界は、転位の発生を抑制できる第1転位抑制粒界51を形成させる第1転位抑制境界1であった。
【0107】
坩堝9の側壁91近傍に位置するブロックE2とE2の間の境界、ブロックE3とE3の間の境界、ブロックF2とF2の間の境界、及びブロックF3とF3の間の境界は、転位を発生させやすい転位発生粒界54を形成させる転位発生境界4であった。
【0108】
種結晶6の中央側のブロックE1とF1の間の境界は、結晶粒の転位の発生を抑制する第2転位抑制粒界52を形成させる第2転位抑制境界2であった。端部70近傍に位置するブロックE2とF2の間の境界、及びブロックE3とF3の間の境界は、転位の発生を抑制する第3転位抑制粒界53を形成させる第3転位抑制境界3であった。第3転位抑制粒界53を挟んで端部70と反対側の結晶粒については多結晶化が抑制されていた。
【0109】
第1転位抑制粒界51、第2転位抑制粒界52、及び第3転位抑制粒界53は、いずれもΣ値が29以上であり、ランダム粒界であった。転位発生粒界54は、Σ値が1であり、Σ値1から1°程度のズレ角度を有する粒界であり、小角粒界であった。転位発生境界4に対面する各ブロックの結晶方位に対する、転位発生粒界54に対面する結晶粒5の結晶方位のズレ角度は、いずれも、0°以上5°以下であった。
【0110】
シリコンインゴットは、結晶粒5の第1転位抑制粒界51よりも中央側の部分が切り出されて使用される。この中央側の部分は、結晶欠陥の少ない高品質の疑似単結晶シリコンである。
【0111】
本実施形態では、坩堝のすべての側壁について各側壁側から順に、第3転位抑制境界、転位発生境界及び第1転位抑制境界を配置している。シリコンインゴットの外側部分全周からの転位発生及び不純物混入を効果的に抑制できる。このため、X方向又はY方向のみに第3転位抑制境界、転位発生境界及び第1転位抑制境界を配置した場合に比べて、製品部分の歩留まりを更に高くすることができる。
【0112】
本実施例では、種結晶6のコーナー部に配置したブロックGの上にも結晶が成長した。しかし、ブロックG上の結晶は、使用時にシリコンインゴットの製品部分から排除される部分であるため、転位発生、不純物混入など、どのような結晶でも問わない。このため、種結晶6のコーナー部に配置するものは、シリコンブロックであれば、どのような方位をもつものでもよい。たとえば、コーナー部には、ブロックGを配置する代わりに、その両側のブロックE2、E3、F2、F3のいずれかを引き延ばして配置してもよい。また、コーナー部にはブロックを配置しなくてもよい。この場合には、成長工程の際に、シリコン融液がコーナー部に進入するが、製造されたシリコンインゴットの製品部分には影響がほとんどない。しいていえば、コーナー部の隙間から結晶の中央側にシリコン融液が浸み出す程度であり、その場合にも、結晶の成長に大きな影響はない。
【0113】
本実施例のシリコンインゴットは、種結晶において、坩堝のすべての側壁について各側壁側から順に、第3転位抑制境界、転位発生境界及び第1転位抑制境界を配置しているが、第3転位抑制境界は用いることなく転位発生境界及び第1転位抑制境界を坩堝のすべての側壁に配置してもよい。また、
図9、
図10に示すように、坩堝の側壁側から順に高転位結晶シリコンブロック及び第1転位抑制境界を配置する構成を、坩堝のすべての側壁に設けてもよい。
【0114】
本実施例では、ブロックE,Fの転位密度は同じとしたが、
図16に示すように、第1転位抑制境界に側壁91側で対面する部分に高転位密度の単結晶シリコンブロックからなるブロックED2、ED3、FD2、FD3を配置してもよい。即ち、坩堝底が四角形状であって、坩堝のすべての側壁に、第3転位抑制境界、高転位単結晶のブロック及び第1転位抑制境界を配置してもよい。この場合にも、シリコンインゴットの外側部分全周からの転位発生及び不純物混入を効果的に抑制できる。このため、X方向又はY方向のみに第3転位抑制境界、高転位単結晶のブロック及び第1転位抑制境界を配置した場合に比べて、製品部分の歩留まりを更に高くすることができる。