(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記船舶では、第二容器に貯留された液化天然ガスをベーパライザを介してディーゼル機関などに供給している。しかしながら、液化天然ガスは、熱交換器で冷媒を冷却する際、冷媒から熱を受けて気化するが、この気化したガスの利用については記載されていない。このため、上記船舶にはエネルギ効率の向上の観点から未だ改善の余地がある。
【0005】
そこで、本発明は、エネルギ効率の向上を図った船舶を提供することを目的とする。
【課題を解決するための手段】
【0006】
前記課題を解決するために、本発明の第1態様に係る船舶は、ガスエンジンと、液化天然ガスを貯留するタンクと、前記タンク内に配置されたポンプから吐出される液化天然ガスを強制気化器へ導く送液ラインと、前記送液ラインに流れる液化天然ガスと加熱媒体との間で熱交換を行う熱交換器と、前記強制気化器にて生成された気化ガスを前記ガスエンジンへ導く供給ラインと、前記熱交換器よりも下流側で前記送液ラインに設けられた気液分離器と、上流端が前記気液分離器に接続され、下流端が前記供給ラインに接続され、前記気液分離器で分離された気化ガスが流れるバイパスラインと、を備える。
【0007】
この第1態様に係る船舶の構成によれば、液化天然ガスの一部あるいは全部は熱交換器で気化される。そして、気液分離器にて気化ガスと液化天然ガスとに分離され、気化ガスはバイパスラインおよび供給ラインを通じてガスエンジンに供給される。一方、気化されなかった液化天然ガスは、気液分離器を介して強制気化器に供給され、ここで強制的に気化された後、供給ラインを通じてガスエンジンに供給される。このように、本発明者などは、熱交換器で気化したガスをガスエンジンで有効に利用できることに着目した。これにより、熱交換器で気化したガス自体およびこの気化に用いたエネルギを無駄にすることなく、エネルギ効率の向上が図られる。また、熱交換器で気化したガスは強制気化器に供給されず、強制気化器にて使用する熱量を抑制できる。
【0008】
第2態様に係る船舶は、前記供給ラインから分岐して前記タンクへつながる返送ラインをさらに備え、前記熱交換器は、前記送液ラインに流れる液化天然ガスと前記返送ラインに流れる気化ガスとの間で熱交換を行ってもよい。
【0009】
この第2態様に係る船舶の構成によれば、熱交換器において送液ラインに流れる液化天然ガスを気化するための加熱媒体に、返送ラインに流れる気化ガスを用いている。これにより、返送ラインに流れる気化ガスの熱を、送液ラインに流れる液化天然ガスの加熱源として利用でき、蒸気などの加熱源を節約することができる。また、返送ラインに流れる気化ガスは、送液ラインに流れる液化天然ガスにより冷却される。これにより、返送ラインに流れる気化ガスを冷却するための熱交換器およびこの冷却媒体を別途、用意する必要がなく、船舶の低コスト化が図られる。
【0010】
第3態様に係る船舶は、前記ガスエンジンは発電用の副ガスエンジンであり、前記供給ラインは第1供給ラインであり、推進用の主ガスエンジンと、前記タンク内で発生するボイルオフガスを圧縮機へ導く送気ラインと、前記圧縮機から吐出されるボイルオフガスを前記主ガスエンジンへ導く第2供給ラインと、前記第2供給ラインから分岐して前記タンクへつながる、膨張装置が設けられた返送ラインと、をさらに備え、前記熱交換器は、前記送液ラインに流れる液化天然ガスと前記第2供給ラインから分岐した返送ラインに流れるボイルオフガスとの間で熱交換を行ってもよい。
【0011】
この第3態様に係る船舶の構成によれば、熱交換器において送液ラインに流れる液化天然ガスを気化するための加熱媒体に、第2供給ラインから分岐した返送ラインに流れるボイルオフガスを用いている。これにより、返送ラインに流れるボイルオフガスは、送液ラインに流れる液化天然ガスの加熱源として利用でき、蒸気などの加熱源を節約することができる。また、返送ラインに流れるボイルオフガスは、送液ラインに流れる液化天然ガスにより冷却される。これにより、返送ラインに流れるボイルオフガスを冷却するための熱交換器およびこの冷却媒体を別途、用意する必要がなく、船舶の低コスト化が図られる。
【0012】
第4態様に係る船舶は、前記気液分離器は、第1気液分離器であり、前記供給ラインには、冷却器が設けられていると共に、前記冷却器よりも下流側に、第2気液分離器が設けられていてもよい。この第4態様に係る船舶の構成によれば、冷却器および第2気液分離器の作用により気化ガスからエタンなどの重質分が除去される。このため、使用する気化ガスがメタン価の制限を受けないガスエンジンだけでなく、メタン価が高い気化ガスを要求するガスエンジンに対しても、気化ガスを供給することができ、幅広いガスエンジンに対応することができる。
【0013】
第5態様に係る船舶では、前記バイパスラインの下流端が前記強制気化器と前記冷却器との間で前記供給ラインに接続されていてもよい。この第5態様に係る船舶の構成によれば、熱交換器で液化天然ガスの全てが気化される場合、気化ガスは重質分を含む。しかしながら、気化ガスをバイパスラインにより冷却器に供給することにより、ここで、気化ガスからエタンなどの重質分が冷却され液化する。よって、この重質分を第2気液分離器で分離することにより、使用する気化ガスがメタン価の制限を受けないガスエンジンだけでなく、メタン価が高い気化ガスを要求するガスエンジンに対しても、気化ガスを供給することができ、幅広いガスエンジンに対応することができる。
【0014】
第6態様に係る船舶では、前記バイパスラインの下流端が前記第2気液分離器よりも下流側で前記供給ラインに接続されていてもよい。この第6態様に係る船舶の構成によれば、熱交換器で重質分の含まれない気化ガスを生成した場合、気化ガスは、バイパスラインを通り、冷却器に供給されない。これにより、この気化ガスが冷却器で冷却されず、冷却器に供給されるLNGの流量を少なくでき、エネルギ効率の低下を抑制することができる。
【0015】
第7態様に係る船舶は、前記送液ラインは第1送液ラインであり、前記冷却器の出口における気化ガスの温度を検出する第1温度計と、前記熱交換器よりも上流側で前記第1送液ラインから分岐して前記冷却器へつながる第2送液ラインと、前記第2送液ラインに設けられ、開度変更が可能な調整弁と、前記調整弁を制御する制御装置と、をさらに備え、前記制御装置は、前記第1温度計により検出された気化ガスの温度が所定温度になるように、前記調整弁の開度を変化させてもよい。
【0016】
この第7態様に係る船舶の構成によれば、熱交換器において加熱媒体から液化天然ガスに与えられる熱量に応じて、第2送液ラインを通じて冷却器に供給される液化天然ガスの流量を調整弁により調整することにより、冷却器の出口にて気化ガスを所定の温度に維持し、第2気液分離器にて重質分を適切に除去した気化ガスを副ガスエンジンに供給することができる。
【0017】
第8態様に係る船舶は、前記第2送液ラインの分岐点と前記熱交換器との間で前記第1送液ラインに流れる液化天然ガスの流量を検出する第1流量計と、前記第1気液分離器よりも下流側で前記第1送液ラインに流れる液化天然ガスの流量を検出する第2流量計と、をさらに備え、前記制御装置は、前記第1流量計により検出された液化天然ガスの流量、および前記第2流量計により検出された液化天然ガスの流量、に応じて前記調整弁の開度を変化させる速度を調整してもよい。この第8態様に係る船舶の構成によれば、第1流量計および第2流量計による各検出値に基づき液化天然ガスの流量変化速度を調整することにより、冷却器の出口温度変化に対する追従性を向上することができる。
【0018】
第9態様に係る船舶は、前記第1気液分離器よりも下流側で前記第1送液ラインに流れる液化天然ガスの温度を検出する第2温度計と、をさらに備え、前記制御装置は、前記第1流量計により検出された液化天然ガスの流量、前記第2流量計により検出された液化天然ガスの流量、および前記第2温度計により検出された液化天然ガスの温度に応じて前記調整弁の開度を変化させる速度を調整してもよい。この第9態様に係る船舶の構成によれば、第1流量計、第2流量計および第2温度計による各検出値に基づき液化天然ガスの流量変化速度を調整することにより、冷却器の出口温度変化に対する追従性を向上することができる。
【発明の効果】
【0019】
本発明は、以上に説明した構成を有し、エネルギ効率の向上を図った船舶を提供することができるという効果を奏する。
【発明を実施するための形態】
【0021】
(第1実施形態)
図1に、本発明の第1実施形態に係る船舶1Aを示す。この船舶1Aは、液化天然ガス(以下、LNGという)を貯留するタンク10と、主ガスエンジン20と、副ガスエンジン30を含む。主ガスエンジン20は推進用のガスエンジンであり、副ガスエンジン30は発電用(すなわち、船内電源用)のガスエンジンである。
【0022】
図例では、タンク10が1つだけ設けられているが、タンク10は複数設けられていてもよい。本実施形態では、船舶1AがLNG運搬船であり、船舶1Aには複数のカーゴタンクが装備されている。つまり、
図1に示すタンク10は、複数のカーゴタンクのそれぞれである。また、図例では、主ガスエンジン20および副ガスエンジン30が1つずつ設けられているが、主ガスエンジン20が複数設けられていてもよいし、副ガスエンジン30が複数設けられていてもよい。
【0023】
本実施形態では、船舶1Aが機械推進式であり、主ガスエンジン20がスクリュープロペラ(図示せず)を直接的に回転駆動する。ただし、船舶1Aが電気推進式であり、主ガスエンジン20がスクリュープロペラを発電機およびモータを介して回転駆動してもよい。
【0024】
主ガスエンジン20は、燃料ガス噴射圧が例えば20〜35MPa程度と高圧なディーゼルサイクル方式の2ストロークエンジンである。ただし、主ガスエンジン20は、燃料ガス噴射圧が例えば1〜2MPa程度と中圧なオットーサイクル方式の2ストロークエンジンであってもよい。あるいは、電気推進の場合は、主ガスエンジン20が、燃料ガス噴射圧が例えば0.5〜1MPa程度と低圧なオットーサイクル方式の4ストロークエンジンであってもよい。また、主ガスエンジン20は、燃料ガスのみを燃焼させるガス専焼エンジンであってもよいし、燃料ガスと燃料油の一方又は双方を燃焼させる二元燃料エンジンであってもよい(二元燃料エンジンの場合、燃料ガスを燃焼させるときがオットーサイクル、燃料油を燃焼させるときがディーゼルサイクルであってもよい)。
【0025】
副ガスエンジン30は、燃料ガス噴射圧が例えば0.5〜1MPa程度と低圧なオットーサイクル方式の4ストロークエンジンであり、発電機(図示せず)と連結されている。副ガスエンジン30は、燃料ガスのみを燃焼させるガス専焼エンジンであってもよいし、燃料ガスと燃料油の一方又は双方を燃焼させる二元燃料エンジンであってもよい。
【0026】
主ガスエンジン20の燃料ガスは、主に、自然入熱によりタンク10内でLNGが気化したボイルオフガス(以下、BOGという)である。副ガスエンジン30の燃料ガスは、主に、LNGが強制的に気化された気化ガス(以下、VGという)である。
【0027】
具体的に、タンク10内には、ポンプ11が配置されており、ポンプ11は、第1送液ライン31により強制気化器32と接続されており、強制気化器32は、第1供給ライン33により副ガスエンジン30と接続されている。また、タンク10は、送気ライン21により圧縮機22と接続されており、圧縮機22は、第2供給ライン23により主ガスエンジン20と接続されている。
【0028】
第1送液ライン31は、ポンプ11から吐出されるLNGを強制気化器32へ導く。強制気化器32は、例えばボイラにて生成される蒸気を加熱源としてLNGを強制的に気化し、VGを生成する。第1供給ライン33は、強制気化器32にて生成されたVGを副ガスエンジン30へ導く。
【0029】
第1送液ライン31には、熱交換器34Aが設けられていると共に、熱交換器34Aよりも下流側に第1気液分離器35が設けられている。第1送液ライン31には、第2送液ライン36およびバイパスライン37Aが接続されている。また、第1供給ライン33には、上流側から順に、冷却器41、第2気液分離器42および加熱器43が設けられている。第1供給ライン33には、第1返送ライン45が接続されている。
【0030】
熱交換器34Aは、第1送液ライン31に流れるLNGと加熱媒体との間で熱交換を行ってLNGを気化する。この実施形態では、熱交換器34Aは、第1送液ライン31に流れるLNGと、後述する第2返送ライン24に流れるBOGとの間で熱交換を行う。なお、加熱媒体からLNGに与えられる熱量がLNGを気化する熱量より少ない場合、LNGは熱交換器34Aで気化されない。
【0031】
さらに、熱交換器34Aは、第1送液ライン31および第2返送ライン24に加えて、送気ライン21にも設けられている。このため、熱交換器34Aは、送気ライン21に流れるBOGと、膨張装置25よりも上流側で第2返送ライン24に流れるBOGとの間でも熱交換を行う。このように、熱交換器34Aにおいて、第2返送ライン24に流れる高圧かつ高温のBOGは、第1送液ライン31に流れる低温のLNGおよび送気ライン21に流れる低圧かつ低温のBOGにより冷却される。そして、余剰のBOGは、膨張装置25にて膨張されて液化され、タンク10へ返送される。なお、この実施形態では、第1送液ライン31に流れるLNGと第2返送ライン24に流れるBOGとが熱交換する熱交換器と、送気ライン21に流れるBOGと第2返送ライン24に流れるBOGとが熱交換する熱交換器が一体的に設けられている。ただし、これらの熱交換器は別々に設けられていてもよい。
【0032】
第1気液分離器35は、熱交換器34Aから流れるLNGを液成分のLNGと、LNGが気化したガス成分のVGとに分離する。第1気液分離器35には、バイパスライン37Aの上流端が接続されている。バイパスライン37Aが強制気化器32をバイパスするように、バイパスライン37Aの下流端は第1供給ライン33に接続されている。この実施形態では、バイパスライン37Aの下流端は、強制気化器32と冷却器41の間で第1供給ライン33に接続されている。換言すれば、冷却器41は、第1供給ライン33において、バイパスライン37Aの下流端の接続点よりも下流側に位置している。バイパスライン37Aには、第1気液分離器35で分離されたVGが流れる。
【0033】
強制気化器32は、第1気液分離器35で分離された液成分、すなわち熱交換器34Aで気化されなかったLNGを強制的に気化し、VGを生成する。強制気化器32にて生成されたVGは、バイパスライン37Aから流れるVGと合流した後に、冷却器41に流入する。
【0034】
第2送液ライン36は、熱交換器34Aよりも上流側で第1送液ライン31から分岐して冷却器41へつながる。熱交換器34AでBOGにより加熱される前の低温のLNGが、第1送液ライン31から第2送液ライン36に流入し、第2送液ライン36に流れて冷却器41に供給される。
【0035】
冷却器41は、強制気化器32で気化されたVGおよび/又は熱交換器34Aで気化されたVGを冷却する。冷却器41は、例えば、噴霧ノズルを備えた噴霧式冷却器である。冷却器41では、第2送液ライン36を通じて供給された低温のLNGが噴霧ノズルから噴霧されることにより、強制気化器32およびバイパスライン37Aから流れるVGが冷却される。このとき、例えば、VGは、−140〜−100℃に冷却され、メタン以外の成分を主成分とする液成分を生成する。これにより、VGからエタンなどの重質分が除去され、VGのメタン価が高まる。なお、冷却器41は噴霧式冷却器に限定されない。
【0036】
第2気液分離器42は、冷却器41で生成された液成分を収集する。収集された液成分は、ドレンライン46を通じてタンク10へ返送される。一方、VGは、第2気液分離器42を通過し、加熱器43で加熱される。これにより、副ガスエンジン30へ適切な温度のVGを供給することができる。
【0037】
第1返送ライン45は、第1供給ライン33から分岐して、タンク10へつながっている。この実施形態では、この分岐点は、第2気液分離器42と加熱器43との間に位置する。第1返送ライン45の先端は、タンク10の気相に位置していてもよいし、液相に位置していてもよい。副ガスエンジン30の負荷によっては、副ガスエンジン30で使用されるVGの量が、熱交換器34Aおよび強制気化器32で気化したVGの量よりも少なくなることがある。第1返送ライン45は、そのような余剰のVG(VG発生量とVG使用量との差分)をタンク10へ返送するためのラインである。
【0038】
送気ライン21は、タンク10内で発生するBOGを圧縮機22へ導く。本実施形態では、圧縮機22が多段式の高圧圧縮機である。圧縮機22は、BOGを高圧に圧縮する。第2供給ライン23は、圧縮機22から吐出される高圧のBOGを主ガスエンジン20へ導く。ただし、圧縮機22は、例えば主ガスエンジン20の燃料ガス噴射圧が低圧の場合は、低圧圧縮機であってもよい。
【0039】
第2供給ライン23からは、圧縮機22よりも下流側で第2返送ライン24が分岐している。第2返送ライン24はタンク10へつながっている。第2返送ライン24の先端は、タンク10の気相に位置していてもよいし、液相に位置していてもよい。第2返送ライン24には、膨張装置25(例えば、ジュールトムソン弁、膨張タービン、エゼクターなど)が設けられている。
【0040】
主ガスエンジン20の負荷によっては、主ガスエンジン20で使用されるBOGの量がタンク10内で発生するBOGの量よりも少なくなることがある。第2返送ライン24は、そのような余剰のBOGをタンク10へ返送するためのラインである。
【0041】
第1送液ライン31、第2送液ライン36、第1返送ライン45および第2返送ライン24には、開度変更が可能な第1調整弁31a、第2調整弁36a、第3調整弁45aおよび第4調整弁24aがそれぞれ設けられている。また、第2返送ライン24には開閉弁24bが設けられており、開閉弁24bは第2返送ライン24を開放および遮断する。これらの調整弁31a、36a、45a、24aおよび開閉弁24bは、制御装置2により制御される。なお、
図1では、図面の簡略化のために一部の信号線のみを描いている。また、この実施形態では、開閉弁24bは第2返送ライン24に設けられている。ただし、第2返送ライン24以外のラインに開閉弁が設けられていてもよいし、第2返送ライン24に開閉弁24bが設けられていなくてもよい。
【0042】
以上説明したように、本実施形態の船舶1Aでは、熱交換器34AでLNGを気化し、気化したVGを第1気液分離器35で分離している。これにより、強制気化器32での強制気化に使用する熱量を抑制することができる。
【0043】
さらに、バイパスライン37Aを第1気液分離器35および第1供給ライン33に接続している。これにより、熱交換器34Aで気化したVGは、第1気液分離器35を介してバイパスライン37Aおよび第1供給ライン33を通じ、副ガスエンジン30に供給される。このため、熱交換器34Aから流れるVGが副ガスエンジン30で有効に利用され、エネルギ効率の向上が図られる。
【0044】
また、熱交換器34AでLNGの全てが気化される場合、そのVGは重質分を含む。しかしながら、バイパスライン37Aを第1気液分離器35および第1供給ライン33に接続している。これにより、VGはバイパスライン37Aにより冷却器41に供給されるため、ここで、VG中の重質分が冷却され液化する。よって、この重質分を第2気液分離器42で分離する。このため、使用するVGがメタン価の制限を受けない副ガスエンジン30だけでなく、メタン価が高い気化ガスを要求する副ガスエンジン30に対しても、気化ガスを供給することができ、幅広い副ガスエンジン30に対応することができる。
【0045】
また、熱交換器34Aにおいて第1送液ライン31に流れるLNGを気化するための加熱媒体に、第2返送ライン24に流れるBOGを用いている。これにより、このBOGの熱をLNGの加熱源として利用でき、蒸気などの加熱源を節約することができる。一方、第2返送ライン24に流れるBOGは、第1送液ライン31に流れるLNGにより冷却される。これにより、BOGを冷却するための熱交換器およびこの冷却媒体を別途、用意する必要がなく、船舶1Aの低コスト化が図られる。
【0046】
(第1変形例)
第1実施形態の第1変形例に係る船舶1Aは、
図2に示すように、第1温度計47をさらに備えている。第1温度計47は、冷却器41の出口におけるVGの温度を検出する。この第1温度計47は、冷却器41の出口におけるVGの温度を検出できる位置であれば、冷却器41の出口またはそれよりも下流側で第1供給ライン33に設けられていてもよい。
【0047】
制御装置2は、第1温度計47により検出された温度が所定温度になるように第2調整弁36aの開度を変化させる。つまり、メタン価が高いVGを要求する副ガスエンジン30に対して、冷却器41で重質分を冷却して液化することにより除去しなければならない。このため、冷却器41の出口におけるVGの温度がVG中の重質分を十分に液化できる所定の温度になるように、冷却器41に供給されるLNGの流量を第2調整弁36aにより調整する必要がある。
【0048】
そこで、制御装置2は、第1温度計47に基づく検出値の信号から冷却器41の出口におけるVGの温度を求め、この温度と所定温度との差に応じて第2調整弁36aを調整する。これにより、開度に対応する流量のLNGが冷却器41に供給され、冷却器41の出口においてVGを所定温度に維持することができる。
【0049】
例えば、熱交換器34AでLNGからVGに気化される際にLNGに与えられる熱量が多いと、熱交換器34Aで気化されるLNGの流量が多くなる。このため、強制気化器32で気化されるLNGが少なくなり、強制気化器32にて生成するVGの温度は高くなる。これに伴い、冷却器41に流入するVGの温度、延いては、冷却器41の出口におけるVGの温度が高くなる。このように、第1温度計47により検出されるVGの温度と所定温度との差が生じた場合、第2調整弁36aの開度が大きくなり、冷却器41に供給されるLNGが増加する。よって、冷却器41においてVGを所定の温度まで十分に冷却し、第2気液分離器42にて重質分を除去したVGをメタン価が高い気化ガスを要求する副ガスエンジン30に供給することができる。
【0050】
(第2変形例)
第1実施形態の第2変形例に係る船舶1Aは、
図3に示すように、第1温度計47に加えて、第1流量計38、第2流量計39および第2温度計40をさらに備えている。
第1流量計38は、第2送液ライン36の分岐点と熱交換器34Aとの間で第1送液ライン31に流れるLNGの流量を検出する。この第1流量計38により、タンク10から第1送液ライン31を通じて熱交換器34Aに供給されるLNGの総流量が検出される。また、第2流量計39は、第1気液分離器35よりも下流側で第1送液ライン31に流れるLNGの流量を検出する。この第2流量計39により、第1気液分離器35でVGが分離されて残ったLNGであって、強制気化器32に供給されるLNGの流量が検出される。さらに、第2温度計40は、第1気液分離器35よりも下流側で第1送液ライン31に流れるLNGの温度を検出する。この第2温度計40により、第1気液分離器35でVGが分離されて残ったLNGであって、強制気化器32に供給されるLNGの温度が検出される。なお、第1流量計38、第2流量計39および第2温度計40は、図示している位置に限定されない。
【0051】
制御装置2は、第1温度計47により検出された冷却器41の出口におけるVGの温度が所定温度になるように第2調整弁36aの開度を変化させている。さらに、温度追従性の向上を図って、制御装置2は、第1流量計38により検出されたLNGの流量、第2流量計39により検出されたLNGの流量、第2温度計40により検出されたLNGの温度に応じて第2調整弁36aの開度を変化させる速度を調整している。
【0052】
この第2調整弁36aの開度の変化速度の調整では、具体的に、制御装置2は、第1流量計38の検出値から、熱交換器34Aに供給されるLNGの総流量Ftを求める。また、第2流量計39の検出値から、熱交換器34Aで気化されずに強制気化器32に供給されるLNGの流量Flを求める。さらに、第2温度計40の検出値から、強制気化器32に供給されるLNGの温度Tlを求める。
【0053】
このLNGの総流量Ftと流量Flとの差分ΔFに基づいて、熱交換器34Aで気化されたVGの流量Fg1が得られる。ここで、熱交換器34AでLNGの一部がVGに気化された場合、このVGの温度Tg1はLNGの飽和温度となる。このため、0<ΔF<Ftの場合、つまり、熱交換器34AでLNGの一部が気化された場合、LNGの飽和温度がVGの温度Tg1として得られる。
【0054】
続いて、LNGの流量Flおよび温度Tlから、強制気化器32で加熱されて気化されたVGの流量Fg2および温度Tg2が得られる。なお、LNGの流量Flおよび温度TlとVGの流量Fg2および温度Tg2との関係は、実験および計算などにより予め求められている。例えば、LNGの流量Flが多いほど、VGの流量Fg2が多く、VGの温度Tg2が低くなる。
【0055】
この熱交換器34Aで気化されたVGの流量Fg1および温度Tg1、ならびに、強制気化器32で気化されたVGの流量Fg2および温度Tg2に基づいて、冷却器41に供給されるVGの流量Fgおよび温度Tgが得られる。なお、この流量Fg1、Fg2および温度Tg1、Tg2と、VGの流量Fgおよび温度Tgとの関係は実験および計算などにより予め求められている。
【0056】
そして、制御装置2は、冷却器41に供給されるVGの流量Fgおよび温度Tgに応じて、第2調整弁36aの開度の変化速度を調整する。例えば、VGの流量Fgが多いほど、また、VGの温度Tgが高いほど、第2調整弁36aの開度の変化速度を大きくし、第2送液ライン36から冷却器41に供給されるLNGの流量の変化速度を大きくする。これにより、冷却器41に流入するVGの熱量が大きい場合には、VGをLNGにより迅速に冷却することができる。一方、VGの流量Fgが少ないほど、また、VGの温度Tgが低いほど、第2調整弁36aの開度の変化速度を小さくし、第2送液ライン36から冷却器41に供給されるLNGの流量の変化速度を小さくする。これにより、冷却器41に流入するVGの熱量が小さい場合には、LNGが過多に冷却器41に供給されることを防止し、オーバーシュートなどの問題を抑制することができる。
【0057】
なお、上記変形例2では、第1流量計38、第2流量計39および第2温度計40の各検出値に基づいて第2調整弁36aの開度を変化させる速度を調整した。これに対し、第1流量計38および第2流量計39の各検出値に基づいて第2調整弁36aの開度を変化させる速度を調整してもよい。この場合、制御装置2は、第1流量計38の検出値に基づくLNGの総流量Ft、および第2流量計39の検出値に基づくLNGの流量Flを求める。この差分ΔFに基づいたVGの流量Fg1、およびLNGの流量Flに基づいたVGの流量Fg2から得たVGの流量Fgに応じて、制御装置2は第2調整弁36aの開度の変化速度を調整する。例えば、VGの流量Fgが多いほど、第2調整弁36aの開度の変化速度を大きくする。これにより、冷却器41の出口における温度に対する温度追従性の向上が図られる。
【0058】
(第2実施形態)
次に、
図4を参照して、本発明の第2実施形態に係る船舶1Bを説明する。なお、本実施形態ならびに後述する全実施形態において、第1実施形態と同一構成要素には同一符号を付し、重複した説明は省略する。
【0059】
第1実施形態では、バイパスライン37Aの下流端が強制気化器32と冷却器41との間で第1供給ライン33に接続されていたのに対し、第2実施形態では、バイパスライン37Bの下流端が第2気液分離器42よりも下流側で第1供給ライン33に接続されている。また、第1実施形態では、冷却器41は強制気化器32で気化されたVGおよび熱交換器34Aで気化されたVGを冷却するのに対し、第2実施形態では、冷却器41は強制気化器32で気化されたVGのみを冷却する。さらに、第1実施形態では、制御装置2は、第1流量計38、第2流量計39および第2温度計40の各検出値に基づいて第2調整弁36aの開度の変化速度を調整したのに対し、第2実施形態では、制御装置2は、第2流量計39および第2温度計40の各検出値に基づいて第2調整弁36aの開度の変化速度を調整する。
【0060】
具体的には、バイパスライン37Bは強制気化器32、冷却器41および第2気液分離器42をバイパスする。バイパスライン37Bの下流端は、第2気液分離器42よりも下流側、この実施形態では、第2気液分離器42と加熱器43との間で第1供給ライン33に接続されている。バイパスライン37Bは、熱交換器34Aで気化してから第1気液分離器35で分離されたVGを加熱器43へ導く。例えば、熱交換器34Aにおける気化によって重質分を含まないVGがLNGから生成した場合、このVGには冷却および重質分の除去が必要ないため、VGは冷却器41に供給されない。なお、重質分を含まないVGとは、重質分を全く含まないVGだけでなく、副ガスエンジン30の許容量より多くの重質分を含まないVGを意味する。
【0061】
冷却器41は、強制気化器32で気化されたVGを冷却する。例えば、冷却器41では、第2送液ライン36を通じて供給された低温のLNGが噴霧ノズルから噴霧されることにより、強制気化器32から流れるVGが冷却される。これにより、例えば、メタン以外の重質分が液化される。この液成分は第2気液分離器42で収集されて、VGから重質分が除去される。このVGは、第2気液分離器42を通過し、加熱器43に供給される。
【0062】
加熱器43では、熱交換器34Aで気化したVGおよび強制気化器32で気化したVGを加熱する。加熱器43で副ガスエンジン30の適温まで加熱されたVGは、副ガスエンジン30に供給される。
【0063】
制御装置2は、第1温度計47により検出された温度が所定温度になるように、第2調整弁36aの開度を変化させる。さらに、温度追従性の向上を図る場合には、制御装置2は、第2流量計39および第2温度計40の各検出値に基づいて第2調整弁36aの開度の変化速度を調整する。
【0064】
具体的には、制御装置2へは、第2流量計39および第2温度計40のそれぞれから検出値の信号が送信される。この第2流量計39の検出値からLNGの流量Flが得られ、第2温度計40の検出値からLNGの温度Tlが得られる。得られたLNGの流量Flおよび温度Tlに基づいて、強制気化器32で加熱されて気化されたVGの流量Fg2および温度Tg2が得られる。このVGの流量Fg2および温度Tg2が、冷却器41に供給されるVGの流量Fgおよび温度Tgになる。そして、制御装置2は、冷却器41に供給されるVGの流量Fgおよび温度Tgに基づいて、第2調整弁36aの開度の変化速度を調整する。
【0065】
以上説明したように、本実施形態の船舶1Bでは、バイパスライン37Bの下流端が第2気液分離器42よりも下流側で第1供給ライン33に接続されている。このため、例えば、熱交換器34Aで重質分を含まないVGが生成された場合、VGは、バイパスライン37Bを通り、冷却器41に供給されない。これにより、このVGは冷却器41で冷却されないため、冷却器41に供給されるLNGの流量を少なくでき、エネルギ効率の低下を抑制することができる。
【0066】
本実施形態でも、第1実施形態と同様の効果を得ることができる。
【0067】
(第3実施形態)
次に、
図5を参照して、本発明の第3実施形態に係る船舶1Cを説明する。第1実施形態では、第1送液ライン31に流れるLNGと第2返送ライン24に流れるBOGとの間で熱交換を行う熱交換器34Aが採用されていたのに対し、第3実施形態では、第1送液ライン31に流れるLNGと第1返送ライン45に流れるVGとの間で熱交換を行う熱交換器34Bが採用されている。このため、熱交換する加熱媒体は、第1返送ライン45に流れるVGである。
【0068】
具体的には、熱交換器34Bでは、第1送液ライン31に流れるLNGが第1返送ライン45に流れるVGにより加熱されて、LNGをVGに気化する。これにより、気化されたVGは、第1気液分離器35で分離されて、バイパスライン37Aを通じて冷却器41に供給される。また、気化されずに残ったLNGは、第1気液分離器35を介して強制気化器32で気化される。なお、第1返送ライン45に流れるVGからLNGに与えられる熱量がLNGを気化する熱量より少ない場合、LNGは熱交換器34Bで気化されない。
【0069】
一方、熱交換器34Bは、第1送液ライン31および第1返送ライン45において設けられている。熱交換器34Bでは、第1返送ライン45に流れるVGが第1送液ライン31に流れるLNGにより冷却されて、VGの一部をLNGに液化する。これにより、VGおよびLNGがタンク10に返送される。
【0070】
以上説明したように、熱交換器34Bにおいて第1送液ライン31に流れるLNGを気化するための加熱媒体に、第1返送ライン45に流れるVGを用いている。これにより、このVGの熱をLNGの加熱源として利用でき、蒸気などの加熱源を節約することができる。一方、第1返送ライン45に流れるVGは、第1送液ライン31に流れるLNGにより冷却される。これにより、このVGを冷却するための熱交換器およびこの冷却媒体を別途、用意する必要がなく、船舶1Cの低コスト化が図られる。また、本実施形態でも、第1実施形態と同様の効果を得ることができる。
【0071】
(第4実施形態)
次に、
図6を参照して、本発明の第4実施形態に係る船舶1Dを説明する。第2実施形態では、第1送液ライン31に流れるLNGと第2返送ライン24に流れるBOGとの間で熱交換を行う熱交換器34Aが採用されていたのに対し、第4実施形態では、第1送液ライン31に流れるLNGと第1返送ライン45に流れるVGとの間で熱交換を行う熱交換器34Bが採用されている。
【0072】
具体的には、熱交換器34Bでは、第1送液ライン31に流れるLNGが第1返送ライン45に流れるVGにより加熱されて、LNGをVGに気化する。これにより、気化されたVGは、第1気液分離器35で分離されて、バイパスライン37Bを通じて加熱器43に供給される。また、気化されずに残ったLNGは、第1気液分離器35を介して強制気化器32で気化される。
【0073】
一方、熱交換器34Bは、第1送液ライン31および第1返送ライン45に設けられている。熱交換器34Bでは、第1返送ライン45に流れるVGが第1送液ライン31に流れるLNGにより冷却されて、VGの一部をLNGに液化する。これにより、VGおよびLNGがタンク10に返送される。
【0074】
以上説明したように、熱交換器34Bにおいて第1送液ライン31に流れるLNGを気化するための加熱媒体に、第1返送ライン45に流れるVGを用いている。これにより、このVGの熱をLNGの加熱源として利用でき、蒸気などの加熱源を節約することができる。一方、第1返送ライン45に流れるVGは、第1送液ライン31に流れるLNGにより冷却される。これにより、このVGを冷却するための熱交換器およびこの冷却媒体を別途、用意する必要がなく、船舶1Dの低コスト化が図られる。また、本実施形態でも、第2実施形態と同様の効果を得ることができる。
【0075】
(その他の実施形態)
本発明は上述した第1〜第4実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。例えば、
図7に示すように、船舶1Eは、第2送液ライン36、冷却器41、第2気液分離器42、加熱器43、主ガスエンジン20(または副ガスエンジン30)、圧縮機22、送気ライン21および第2返送ライン24が設けられていなくてもよい。つまり、船舶1Eは、タンク10、ポンプ11、ガスエンジン130、送液ライン31、熱交換器134、供給ライン133、強制気化器32、第1気液分離器35およびバイパスライン137を備えていればよい。このガスエンジン130は副ガスエンジン30または主ガスエンジン20である。送液ライン31は、タンク10内に配置されたポンプ11から吐出される液化天然ガスを強制気化器32へ導く。熱交換器134は、送液ライン31に流れる液化天然ガスと加熱媒体との間で熱交換を行う。供給ライン133は、強制気化器32にて生成された気化ガスをガスエンジン130へ導く。第1気液分離器35は、熱交換器134よりも下流側で送液ライン31に設けられている。バイパスライン137は、その上流端が第1気液分離器35に接続され、下流端が供給ライン133に接続され、第1気液分離器35で分離されたVGが流れる。
【0076】
さらに、各実施形態において、熱交換器34Bおよび熱交換器34Aが一体的に組み合された熱交換器が用いられてもよい。また、主ガスエンジン20および副ガスエンジン30の一方又は双方は、必ずしもレシプロエンジンである必要はなく、ガスタービンエンジンであってもよい。
また、送気ライン21および第2供給ライン23が省略され、第1供給ライン33を通じて副ガスエンジン30だけでなく主ガスエンジン20にもVGが供給されてもよい。
【0077】
また、第1実施形態および第3実施形態において、第1流量計38は、第2送液ライン36の分岐点と熱交換器34Aとの間で第2送液ライン36の分岐点よりも下流側において、第1送液ライン31に流れるLNGの流量を検出した。これに対し、第1流量計38は、第2送液ライン36の分岐点よりも上流側において、第1送液ライン31に流れるLNGの流量を検出してもよい。この場合、制御装置2は、第1流量計38により検出されたLNGの流量、および第2調整弁36aの開度などから求められる第2送液ライン36に流れるLNGの流量に基づいて、第2送液ライン36の分岐点よりも下流側において、第1送液ライン31に流れるLNGの流量を求めてもよい。
【0078】
また、第1および第2実施形態において、第1返送ライン45が設けられなくてもよい。さらに、第3および第4実施形態において、第2返送ライン24が設けられなくてもよい。
【0079】
また、第3および第4実施形態において、熱交換器34Bでは、第1送液ライン31に流れるLNGと熱交換を行う加熱媒体に第1返送ライン45に流れるVGが用いられたが、加熱媒体はこれに限定されない。例えば、加熱媒体にエンジンを冷却する冷却水が用いられてもよい。さらに、第3および第4実施形態の船舶1Cおよび1Dは、主ガスエンジン20およびこれに接続される送気ライン21などを備えているが、第3および第4実施形態の船舶1Cおよび1Dがこれらを備えていなくてもよい。