【実施例1】
【0022】
この発明に係る広帯域円偏波平面アンテナは、パッチ導体と接地導体板のそれぞれから放射される電界の振幅の大きさが同じであり(条件1)、パッチ導体から放射される電界と接地導体板側から放射される電界の位相が略90°となる(条件2)ように構成することで、広帯域な円偏波特性を実現したものである。この例では、パッチ導体から放射される電界と接地導体板側から放射される電界の位相を90°として説明した。
【0023】
条件1について説明する。パッチ導体からはその長軸方向に沿った方向の向きを持つ電界が発生し、接地導体板からは、その対角線に沿った方向の向きを持つ電界が発生するので、マイクロストリップ線路を含めたパッチ導体の長さと接地導体板の対角線の長さがほぼ一致するように、両者の長さを選定すると、パッチ導体から放射される電界の振幅と、接地導体板から放射される電界の振幅がほぼ一致する。
【0024】
条件2について説明する。パッチ導体の長軸方向と接地導体板の対角線方向とをほぼ直交させることによって、両者から放射される電波はωt=90°だけずれる。そのため直交する2つの電界の位相は90°となって、円偏波を発生させることができる。パッチ導体の長軸方向と接地導体板の対角線方向とをほぼ直交させるために、パッチ導体は誘電体基板に対してθだけ傾斜させる。
【0025】
図1は円偏波用プリント基板型モノポールアンテナで構成された広帯域円偏波平面アンテナ10の一例を示す。
【0026】
この平面アンテナ10は矩形状の誘電体基板20を有し、その表面20aに被着形成されたパッチ導体30(アンテナ素子)と、このパッチ導体30に接続されるマイクロストリップ線路40および誘電体基板20の裏面20bに被着形成された接地導体板50とで構成される。
【0027】
誘電体基板20は縦の長さがW1で、横の長さがW2、厚みがhの矩形基板が使用される。その比誘電率をεrとする。この例では、誘電体基板20としてプリント基板が使用されている。
パッチ導体30は滑らかな輪郭線を持つ長手方向を有する形状で、この例では楕円形となされ、長軸t1と短軸t2の長さによって楕円の形状が決まる。パッチ導体30には所定の幅sとなされたマイクロストリップ線路40が接続され、このマイクロストリップ線路40を介して送受信信号が給電される。マイクロストリップ線路40の所定点には給電点60が設けられる。
【0028】
パッチ導体30は誘電体基板20のほぼ中央部に位置し、誘電体基板20の直交軸に対してθだけ傾けて形成される(パッチ導体の
中心(x0,y0)を基準にしてθだけ傾斜している)。この例では、θ=50°の場合を示す。
【0029】
パッチ導体30の長軸は誘電体基板20の中心点Pを通り、中心点Pよりも僅かに前方にパッチ導体30の
中心(x0,y0)が位置するように設定されている。そして、長軸t1よりも僅かに右側にシフトしたパッチ導体30の周端縁にマイクロストリップ線路40の端縁が位置するように両者の接続位置関係が選定されている。つまり、パッチ導体30に接続されるマイクロストリップ線路40の位置が、アンテナ中心P(誘電体基板20の中心点)に対しSpだけずらされている。
【0030】
マイクロストリップ線路40は誘電体基板20の縦側端縁と平行で、横側端縁まで到達するように被着形成され、横側端縁よりSdだけ離れた位置(誘電体基板20の中心点PよりSpだけ離れた位置)に給電点60が設けられている。
【0031】
誘電体基板20の裏面20b側には、接地導体板50が被着形成されるが、この接地導体板50は表面20aに被着形成されたパッチ導体30とは重ならない位置であって、誘電体基板よりも小さな面積を覆うように被着形成される。
【0032】
具体的には、接地導体板50は、誘電体基板20の1/2以下の面を覆うような面積(d×(L1+L2))となされ、そして、パッチ導体30の下側周縁部に対応した接地導体板50は、この例ではパッチ導体30の下側周縁部とは重ならないように、下側周縁部に沿った形状(ほぼU字状)の溝が形成される。その結果、パッチ導体30側から見たとき下側周縁部と所定のギャップg1,g2が空くような曲面形状となされる。ギャップg1とg2とは僅かに異なるように選ばれている(g1>g2)。
【0033】
マイクロストリップ線路40への給電は誘電体基板20の裏面20b側から行われる。そのため
図2に示すようにマイクロストリップ線路40が形成されている誘電体基板20には給電点用のスルホールが設けられ、裏面側から給電線70が取り付けられる。給電線70としては同軸ケーブルが使用され、その芯線(内部導体)70aがマイクロストリップ線路40に接続され、アース線(外部導体:網線)70bが接地導体板50に接続される。
【0034】
接地導体板50はほぼ矩形状をなし、頂点q1,q2を結ぶ対角線の長さは、長辺(L1+L2)と短辺dによって決まるので、この対角線の長さが、ほぼ上述したマイクロストリップ線路40の長さとパッチ導体30の長軸の長さを合わせた長さとなるように選定される。
【0035】
このようにパッチ導体30をθだけ傾け、マイクロストリップ線路の位置を、アンテナ中心PからSpだけ離すと共に、パッチ導体30の
中心(x0,y0)をアンテナ中心Pから上方にずらし、パッチ導体30の長軸t1が接地導体板50の対角線とほぼ直交するように接地導体板50の大きさを選定し、さらにはマイクロストリップ線路40を含めたパッチ導体30の長さをほぼ上述した対角線の長さとする。
【0036】
なお、
図1では長軸t1と接地導体板50の対角線とのなす角は、図示の関係上直交していない。
【0037】
このように平面アンテナ10の各寸法等を設定することにより、パッチ導体30と接地導体板50のそれぞれから放射される電界の振幅の大きさが同じとなる(条件1)を満足し、またパッチ導体30から放射される電界と接地導体板50側から放射される電界の位相が90°となる(条件2)を満足することになる。
【0038】
続いて、このように構成された広帯域円偏波平面アンテナ10の諸元(パラメータ)の一例を以下に示す。
【0039】
<諸元例>
誘電体基板20の長さ(縦)W1・・・50mm
誘電体基板20の長さ(横)W2・・・60mm
誘電体基板20の厚みh・・・・・・1.6mm
誘電体基板20の比誘電率εr・・・2.6
パッチ導体30の長軸t1・・・20mm
パッチ導体30の短軸t2・・・10mm
パッチ導体30の傾きθ・・・50°
マイクロストリップ線路40の幅S・・・4mm
接地導体板50の長さL1・・・30mm
接地導体板50の長さL2・・・30mm
接地導体板50の長さd・・・・23mm
ギャップg1・・・0.6mm
ギャップg2・・・0.4mm
給電点60までの距離Sd・・・3mm
給電点60と中心点PとのずれSp・・・7.5mm
続いてこの発明に係る広帯域円偏波平面アンテナ10の諸特性について説明する。
【0040】
図3A〜
図3Dはこの発明に係る広帯域円偏波平面アンテナ10の動作時における電流分布状態を示すもので、使用した周波数は2.3GHzである。代表的な位相角ωtを用いて説明するが、説明する初期位相角ωtとしては、ωt=0°ではなく、この例ではωt=10°を基準にして、それぞれ90°ずつ離れた角度において考察した。
【0041】
図3Aは、ωt=10°におけるパッチ導体30と接地導体板50を流れる電流分布を示す。同図からも明らかなようにパッチ導体30上を流れる電流はパッチ導体30の左側周縁部側と右側周縁部側とでは逆向きになるので、マイクロストリップ線路40を境にして互いに電流が逆方向に流れている。そのため、パッチ導体30上を流れる電流は相殺され、これら電流は放射には寄与していないことが判る。
【0042】
これに対し、接地導体板50上では左上から右下方向にのみ電流が流れているので、ωt=10°の位相角においては接地導体板50上を流れる電流が放射に寄与していることが判る。
【0043】
図3Bは、ωt=100°におけるパッチ導体30と接地導体板50を流れる電流分布を示す。同図からも明らかなように、接地導体板50上ではマイクロストリップ線路40を境にして互いに反対向きに電流が流れているので、接地導体板50上を流れる電流は放射には寄与していない。
【0044】
これに対し、パッチ導体30上を流れる電流はパッチ導体30の左側周縁部側と右側周縁部側とではマイクロストリップ線路40を境にして左下から右上に向かう電流が流れている。したがってωt=100°では、パッチ導体30上を流れる電流が放射に寄与する。
【0045】
図3Cは、ωt=190°におけるパッチ導体30と接地導体板50を流れる電流分布を示す。同図からも明らかなようにパッチ導体30上を流れる電流はパッチ導体30の左側周縁部側と右側周縁部側とではマイクロストリップ線路40を境にして互いに逆方向に流れている(
図3Aと同じ)。そのため、パッチ導体30上を流れる電流は放射には寄与していない。
【0046】
一方、接地導体板50上では右下から左上方向にのみ電流が流れているので、ωt=190°の位相角では接地導体板50上を流れる電流が放射に寄与していることが判る。
【0047】
図3Dは、ωt=280°におけるパッチ導体30と接地導体板50を流れる電流分布を示す。同図からも明らかなように、接地導体板50上ではマイクロストリップ線路40を境にして互いに反対向きに電流が流れているので、接地導体板50上を流れる電流は放射には寄与しない。
【0048】
これに対し、パッチ導体30上を流れる電流はパッチ導体30の左側周縁部側と右側周縁部側とではマイクロストリップ線路40を境にして右上から左下に向かって電流が流れている。したがってωt=280°ではパッチ導体30上を流れる電流が放射に寄与していることが判る。
【0049】
図3A〜
図3Dの電流の流れる方向からも明らかなように、それぞれの位相角での電流の向きが時計方向に回転しているので、電流分布は、ωt=0°を基準にすると、90°→180°→270°に向かって回転(この例では右旋回)していることが判る。その結果、この発明に係る広帯域の平面アンテナは円偏波平面アンテナとして機能することが判る。
【0050】
図4はこの発明に係る平面アンテナ10のアンテナ特性のうち周波数帯域幅を示す。円偏波用アンテナでは軸比特性が3dB以下で、かつVSWR特性値2以下となる帯域が当該アンテナの動作周波数帯域幅となる。
【0051】
ここに、軸比とは楕円偏波において、その長軸t1と短軸t2の比で表され、軸比=3dB以下が円偏波特性を呈するものとされている。またVSWR(定在波比)はアンテナ給電点60での入力電圧の反射係数を意味する。VSWR=2は、Sパラメータ(特性パラメータ)S11で-10dBに相当する。
【0052】
図4において、実線曲線は軸比特性のシミュレーション値を示し、破線曲線はVSWR値のシミュレーション値を示す。軸比が3dB以下で、かつVSWR値が2以下の両者を満足する周波数の下限値f1は大凡2.12GHzであり、その上限値f2は5.48GHzであるから、この平面アンテナ10の周波数帯域幅は、88.4%となる。周波数帯域としてはUHF帯とSHF帯の一部の範囲がカバーされている。
【0053】
図5と
図6は上述したシミュレーション値と、実測値(測定値)の関係を示す。
図5において、破線図示の曲線はVSWRのシミュレーション値を示し、実線図示の曲線はその測定値を示す。両者は非常に近似していることが判る。
【0054】
同様に、
図6の破線図示の曲線は軸比のシミュレーション値を示し、実線図示の曲線はその測定値を示す。前者は上述したように88.4%であるのに対し、図示のように実測値ではf1=2.21GHz、f2=5.36GHzとなったため、動作周波数帯域幅は83.2%となる。したがってほぼシミュレーション通りの性能が得られていることが判る。
【0055】
このように
図4〜
図6のアンテナ特性から、この発明に係る平面アンテナ10は非常に広帯域の動作周波数帯域をカバーしていることが判る。
【0056】
図7は天頂方向におけるアンテナ特性(放射利得特性)のうち動作周波数帯域幅を示す。実線図示の特性曲線はこの発明に係る放射利得特性を示し、破線図示の特性曲線は非特許文献1に開示された矩形モノポールアンテナの動作周波数帯域幅を示す。
【0057】
同図より明らかなように非特許文献1の動作周波数帯域幅よりもこの発明における平面アンテナの天頂方向における動作周波数帯域幅は、数倍広帯域で、しかも一様な放射利得特性が得られる。
【0058】
図14は非特許文献1の電流分布状態の一例を示すものである。この例ではωt=0°で、パッチ導体130上を流れる電流はパッチ導体130の左側周縁部側と右側周縁部側とではマイクロストリップ線路140を境にして右下から左上に向かう電流が流れており、パッチ導体130上を流れる電流が放射に寄与している。左側周縁部および右側周縁部に着目すると、電流はパッチ導体130の輪郭線に拘束されて自由に流れることができていない。したがって、輪郭線付近の電流の波長は連続的に変化していない。なお、150は接地導体板である。
【0059】
一方、本発明の電流分布状態の一例を示す
図3Bにおいては、パッチ導体30上を流れる電流はパッチ導体30の左側周縁部側と右側周縁部側とではマイクロストリップ線路40を境にして左下から右上に向かう電流が流れており、パッチ導体30上を流れる電流が放射に寄与している。左側周縁部および右側周縁部に着目すると、非特許文献1の
図12と異なり、この発明の平面アンテナ10では、
図3Bや
図3Dからも明らかなように電流がパッチ導体30の中心を通る場合から輪郭線に沿って流れる場合まで、連続的に変化する波長の電流が存在する。このように連続的かつ波長の範囲の広い電流が流れるため、周波数帯域幅の向上につながっている。したがってパッチ導体30の形状は、楕円形状に限らず、二次曲線、放物線などの滑らかな曲線の組み合わせで構成してもよい。
【0060】
図8から
図11までは放射指向特性を、2GHzから5GHzまで1GHzごとに測定した結果を示す。
図8は2GHz帯での(xz面)と(yz面)における放射指向特性(dBi)を示す。図示する(xz面)および(yz面)から、+z軸方向に対して右旋円偏波(RHCP)が一様に放射され、また、−z軸方向にも左旋円偏波(LHCP)が一様に放射されていることが確認できる。
【0061】
同様に、
図9は3GHz帯での(xz面)と(yz面)における放射指向特性を示す。この場合においても、+z軸方向に対して右旋円偏波(RHCP)が一様に放射され、−z軸方向にも左旋円偏波(LHCP)が一様に放射されていることが確認できる。
【0062】
図10は4GHz帯での(xz面)と(yz平面)における放射指向特性を示す。4GHz帯においても、+z軸方向に対して右旋円偏波(RHCP)が一様に放射され、−z軸方向にも左旋円偏波(LHCP)が一様に放射されていることが確認できる。
【0063】
また、
図11は5GHz帯での(xz面)と(yz面)における放射指向特性を示す。この5GHz帯においても、+z軸方向に対して右旋円偏波(RHCP)が放射され、−z軸方向にも左旋円偏波(LHCP)が放射されているが、他の周波数帯に比べて多少の歪みを持った放射指向特性となっているものの、全体として概ね良好な放射指向特性となっている。
【0064】
広帯域アンテナでは、一般に動作周波数帯域幅において一様な放射指向特性が求められているが、この発明の場合にはほぼ一様な放射指向特性を有することが確認できる。そして、
図1から
図11に示すように平面アンテナとして特にWiFi帯域で使用する場合には、誘電体基板20として50〜60mmの矩形体が使用され、そのときの傾きθも30°〜60°が好ましく、特にθ=50°程度の傾きθが好適である。
【0065】
図11までの実施例は、特にWiFi(〜5.0MHz帯)を使用するときのアンテナ特性を示したが、
図12以下は、より高域周波数帯での適用例を示す。具体的には、レーダなどで使用されているUWB帯である。UWBは、3.1〜10.6MHz帯を総称する周波数帯であるが、以下に示す実施例は、UWBでも特に7MHz以上の帯域(7.25〜10.25MHz)(UWB-High_Band帯)における適用例である。
【0066】
誘電体基板20の直交軸に対するパッチ導体30の傾きθを調整することによって、円偏波平面アンテナ10が有すべきアンテナ特性を決定することができる。ここに、アンテナ特性とは、上述したように7.0GHz以上での高域周波帯において、軸比ARが3以下で、定在波比VSWRが2以下(特性パラメータS
11≦−10dB)を満足するアンテナ特性である。
【0067】
図12は、6.0GHz以上の高帯域における軸比(AR)特性であって、傾きθを40°から80°まで変化させたときの値である。このときに使用した平面アンテナ10は、テフロン(登録商標)材からなる方形の誘電体基板20であって、19〜20mm角以下の基板が使用される。具体的には、この誘電体基板20は、
長さW1(=W2)・・・・19.34mm
厚みh ・・・・ 1.6mm
比誘電率 ・・・・ 2.6
誘電正接(tanδ) ・・・・ 0.001
である。その他の諸元は、傾きθに応じて適宜調整している。
図12において、長目の破線は、θ=40°の時のAR特性であり、以下、細い実線は、θ=50°のときのAR特性であり、一点鎖線は60°のときのAR特性である。また短めの破線は、θ=70°のときのAR特性であり、太めの実線は、θ=80°のときのAR特性である。
【0068】
全ての傾きθにおいて、AR値が「3」以下となる周波数帯域は、7.25〜10.25GHzとなる。このうち、AR値としては、傾きθが、50°か60°が好ましく、より好ましくはその中間値(50°から60°の間。ただし、図示はしていない)である。このように上述した傾きθ(40°〜80°)をそれぞれ採用することで、UWB高域領域での広帯域化を実現できる。
【0069】
図13は、
図12において使用したのと同じ円偏波平面アンテナ10を用いたときの6.0GHz以上の高帯域における定在波比(VSWR)特性を示す。
図12と同様に、傾きθを40°から80°まで変化させたときの値である。
図13において長目の破線は、θ=40°のときのVSWR特性であり、以下、細い実線は、θ=50°のときのVSWR特性であり、一点鎖線は60°のときのVSWR特性である。また短めの破線は、θ=70°のときのVSWR特性であり、太めの実線は、θ=80°のときのVSWR特性である。ただし、縦軸は、
図4の場合と異なり、特性パラメータS
11の値を示す。上述したように、S
11=−10dBは、VSWR=2に相当し、この値以下が好ましい。
【0070】
VSWRの場合も、パッチ導体30の傾きθとしては、50°か60°が好ましく、より好ましくはその中間値(50°から60°の間。ただし、図示はしていない)である。
【0071】
このように、全ての傾きθにおいてS
11=−10dB以下となる周波数帯域幅は、7.25〜10.25GHzとなる。このことから上述した傾きθ(40°〜80°)を採用することで、UWB高域領域(UWB−High_Band)での高周波数帯域幅は88.4%となり、広帯域化を実現できる。したがって、AR特性とVSWR特性の双方を満足するアンテナ特性としては、パッチ導体30として40°〜80°の傾きθに選定された平面アンテナが好ましく、こうすることによってUWBでの広帯域化が要望されている各種のレーダ用アンテナに適用することができる。
【0072】
このように楕円型の平面モノポールアンテナを使用したこの発明に係る広帯域円偏波平面アンテナ10によれば、誘電体基板20としてプリント基板を使用した楕円型モノポールアンテナであるので、平面アンテナの製作が容易であると共に、薄型化および軽量化を実現できるので、アンテナ設置が簡単となり、携帯性にも優れている。加えて、アンテナ特性として動作周波数帯域幅は88.4%を達成できるので広帯域アンテナを実現できると共に、天頂方向の放射指向特性も一様な利得特性が得られるため、アンテナの向きを考慮することなく使用できる。
【0073】
また誘電体基板20の形状、大きさ、パッチ導体30の傾きθを選定するなど、広帯域円偏波平面アンテナ10の諸元(パラメータ)を適宜選定することで、目的の周波数帯域および帯域幅を容易に設定することができる。そのため、この発明に係る広帯域円偏波平面アンテナ10は、レーダ用アンテナを始めとして自動車衝突防止のためのレーダ用アンテナ、生体観察用アンテナ、ETC用アンテナ、衛星用アンテナなどに適用できると共に、本発明に係るモノポールアンテナを使用したこれら広帯域円偏波平面アンテナと送信回路および受信回路もしくはその一方を搭載したアンテナ装置に適用できる。
【0074】
なお、
図1ではパッチ導体30を誘電体基板20の直交軸に対して右側にθだけ傾けた実施例を説明したが、これとは逆にパッチ導体30を誘電体基板20の直交軸に対して左側にθだけ傾けてもよい。この場合には、接地導体板50も逆向きとなり、
図1を裏返した形状となる。
【0075】
またこの発明に係る広帯域円偏波平面アンテナ10は、
図1の+z軸方向に対して右旋円偏波が放射され、−z軸方向に左旋円偏波が放射されるが、一方向のみに放射させたい場合には、他方の側に反射板を設けることによって反射波の旋回方向が反転するため、所定の方向に所定の旋回方向の円偏波を放射させることができる。