特許第6594496号(P6594496)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本碍子株式会社の特許一覧

<>
  • 特許6594496-燃料電池システム 図000002
  • 特許6594496-燃料電池システム 図000003
  • 特許6594496-燃料電池システム 図000004
  • 特許6594496-燃料電池システム 図000005
  • 特許6594496-燃料電池システム 図000006
  • 特許6594496-燃料電池システム 図000007
  • 特許6594496-燃料電池システム 図000008
  • 特許6594496-燃料電池システム 図000009
  • 特許6594496-燃料電池システム 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】6594496
(24)【登録日】2019年10月4日
(45)【発行日】2019年10月23日
(54)【発明の名称】燃料電池システム
(51)【国際特許分類】
   H01M 8/026 20160101AFI20191010BHJP
   H01M 8/0258 20160101ALI20191010BHJP
   H01M 8/1226 20160101ALI20191010BHJP
   H01M 8/243 20160101ALI20191010BHJP
   H01M 8/2484 20160101ALI20191010BHJP
   H01M 8/249 20160101ALI20191010BHJP
   H01M 8/0662 20160101ALI20191010BHJP
   H01M 8/0606 20160101ALI20191010BHJP
   H01M 8/12 20160101ALN20191010BHJP
【FI】
   H01M8/026
   H01M8/0258
   H01M8/1226
   H01M8/243
   H01M8/2484
   H01M8/249
   H01M8/0662
   H01M8/0606
   !H01M8/12 101
   !H01M8/12 102C
【請求項の数】3
【全頁数】16
(21)【出願番号】特願2018-132679(P2018-132679)
(22)【出願日】2018年7月12日
【審査請求日】2019年2月26日
【早期審査対象出願】
(73)【特許権者】
【識別番号】000004064
【氏名又は名称】日本碍子株式会社
(74)【代理人】
【識別番号】110000202
【氏名又は名称】新樹グローバル・アイピー特許業務法人
(72)【発明者】
【氏名】小笠原 徳之
(72)【発明者】
【氏名】菅 博史
(72)【発明者】
【氏名】大森 誠
(72)【発明者】
【氏名】龍 崇
【審査官】 守安 太郎
(56)【参考文献】
【文献】 国際公開第2018/096922(WO,A1)
【文献】 特開平06−068900(JP,A)
【文献】 特開2007−128680(JP,A)
【文献】 特開2004−199979(JP,A)
【文献】 特開昭62−184771(JP,A)
【文献】 特開2015−053186(JP,A)
【文献】 特開平09−102323(JP,A)
【文献】 特開2007−211268(JP,A)
【文献】 特開2014−194065(JP,A)
【文献】 特開2008−066296(JP,A)
【文献】 特開2017−017023(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/02
H01M 8/04
H01M 8/06
H01M 8/12
H01M 8/24
(57)【特許請求の範囲】
【請求項1】
水蒸気改質によって原料ガスから水素含有ガスを生成する改質装置と、
前記改質装置から供給される水素含有ガスを用いて発電する第1セルスタック装置と、
前記第1セルスタック装置から排出された未反応の水素含有ガスから水蒸気を除去する水蒸気除去装置と、
前記水蒸気除去装置によって水蒸気が除去された水素含有ガスを用いて発電する第2セルスタック装置と、
を備え、
前記改質装置は、前記水蒸気除去装置によって除去された水蒸気を用いて前記原料ガスを改質し、
前記第1セルスタック装置及び前記第2セルスタック装置の少なくとも一方は、ガス供給室及びガス回収室を有するマニホールドと、前記マニホールドから延びる燃料電池セルと、を有し、
前記燃料電池セルは、前記マニホールドから延びる多孔質の支持基板と、前記支持基板に支持される発電素子部と、を有し、
前記支持基板は、前記ガス供給室と連通し且つ前記支持基板の基端部から先端部に延びる複数の第1ガス流路と、前記ガス回収室と連通し且つ前記支持基板の基端部から先端部に延びて前記燃料電池セルの先端部において前記第1ガス流路と連通する少なくとも1つの第2ガス流路と、を有し、
隣り合う前記第1ガス流路と前記第2ガス流路との間のピッチは、隣り合う前記第1ガス流路間のピッチよりも大きい、
燃料電池システム。
【請求項2】
前記支持基板は、前記支持基板の先端部において前記第1ガス流路と前記第2ガス流路を連通する連通流路をさらに有する、
請求項1に記載の燃料電池システム。
【請求項3】
前記燃料電池セルは、前記支持基板の先端部に取り付けられる連通部材をさらに有し、
前記連通部材は、前記第1ガス流路と前記第2ガス流路とを連通する連通流路を有する、
請求項1に記載の燃料電池システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池システムに関するものである。
【背景技術】
【0002】
燃料電池セルと、燃料電池セルにガスを供給するマニホールドと、を備えたセルスタック装置が知られている。燃料電池セルは、ガス流路が形成された支持基板と、支持基板に支持される発電素子部とを備えている。支持基板の基端部からガス流路に供給ガスが供給される一方で、支持基板の先端部から未反応のガスが外部へと排出される。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2016−171064号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上述したようなセルスタック装置において、ガスの使用効率を向上させることが要望されている。そこで本発明の課題は、ガスの使用効率を向上させることのできる燃料電池システムを提供することにある。
【課題を解決するための手段】
【0005】
本発明のある側面に係る燃料電池システムは、改質装置、第1セルスタック装置、水蒸気除去装置、及び第2セルスタック装置を備えている。改質装置は、水蒸気改質によって原料ガスから水素含有ガスを生成する。第1セルスタック装置は、改質装置から供給される水素含有ガスを用いて発電する。水蒸気除去装置は、第1セルスタック装置から排出された未反応の水素含有ガスから水蒸気を除去する。第2セルスタック装置は、水蒸気除去装置によって水蒸気が除去された水素含有ガスを用いて発電する。改質装置は、水蒸気除去装置によって除去された水蒸気を用いて原料ガスを改質する。第1セルスタック装置及び第2セルスタック装置の少なくとも一方は、ガス供給室及びガス回収室を有するマニホールドと、マニホールドから延びる燃料電池セルと、を有する。燃料電池セルは、マニホールドから延びる支持基板と、支持基板に支持される発電素子部と、を有する。支持基板は、少なくとも1つの第1ガス流路と、少なくとも1つの第2ガス流路とを有する。第1ガス流路は、ガス供給室と連通し、支持基板の基端部から先端部に延びる。第2ガス流路は、ガス回収室と連通する。そして、第2ガス流路は、支持基板の基端部から先端部に延び、燃料電池セルの先端部において第1ガス流路と連通する。
【0006】
この構成によれば、第1及び第2セルスタック装置の少なくとも一方において、第1ガス流路を流れたガスのうち未反応のガスは第2ガス流路を流れ、第2ガス流路を流れたガスのうちさらに未反応のガスは、ガスマニホールドのガス回収室にて回収される。このため、ガスの使用効率を向上させることができる。また、水蒸気除去装置によって除去された水蒸気を、改質装置による水蒸気改質に用いられる水蒸気として利用することができる。
【0007】
好ましくは、支持基板は、支持基板の先端部において第1ガス流路と第2ガス流路を連通する連通流路をさらに有する。
【0008】
好ましくは、燃料電池セルは、支持基板の先端部に取り付けられる連通部材をさらに有する。連通部材は、第1ガス流路と第2ガス流路とを連通する連通流路を有する。
【発明の効果】
【0009】
本発明によれば、ガスの使用効率を向上させることができる。
【図面の簡単な説明】
【0010】
図1】燃料電池システムのブロック図。
図2】セルスタック装置の斜視図。
図3】マニホールドの平面図。
図4】燃料電池セルの斜視図。
図5】セルスタック装置の断面図。
図6】燃料電池セルの断面図。
図7】変形例に係るセルスタック装置の断面図。
図8】変形例に係るセルスタック装置の断面図。
図9】変形例に係るセルスタック装置の断面図。
【発明を実施するための形態】
【0011】
以下、本発明に係る燃料電池システムの実施形態について図面を参照しつつ説明する。なお、本実施形態では、燃料電池セルの一例として固体酸化物形燃料電池セル(SOFC)を用いて説明する。
【0012】
[燃料電池システム]
燃料電池システム100は、改質装置101,第1セルスタック装置102、水蒸気除去装置103、及び第2セルスタック装置104を備えている。
【0013】
[改質装置101]
改質装置101は、第1セルスタック装置102に供給する水素含有ガスを生成する。詳細には、改質装置101は、水蒸気改質によって、原料ガス(例えばメタンガスなど)から水素含有ガスを生成する。なお、改質装置101は、水蒸気除去装置103によって除去された水蒸気を用いて原料ガスを改質する。例えば、改質装置101は、貯水タンクなどに貯められた水を気化器などで気化されることで生成される水蒸気を用いて、原料ガスを改質する。そして、この貯水タンクに貯められた水は、例えば、水蒸気除去装置103によって除去された水蒸気を凝縮したものとすることができる。
【0014】
[第1セルスタック装置]
第1セルスタック装置102は、改質装置101の下流側に配置されている。第1セルスタック装置102は、改質装置101から供給される水素含有ガスを用いて発電する。なお、第1セルスタック装置102の詳細については後述する。
【0015】
[水蒸気除去装置]
水蒸気除去装置103は、第1セルスタック装置102の下流側に配置されている。水蒸気除去装置103は、第1セルスタック装置102から排出された未反応の水素含有ガスから水蒸気を除去するように構成されている。例えば、水蒸気除去装置103は、水蒸気分離膜を有している。水蒸気分離膜としては、例えば、Nafion、又はモルデナイト膜などを例示することができる。
【0016】
この水蒸気除去装置103によって除去された水蒸気は、上述したように改質装置101の水蒸気改質に使用される。詳細には、水蒸気除去装置103によって除去された水蒸気は凝縮されて、一旦、貯水タンクなどに貯められた後、気化器などによって気化されて、改質装置101へと供給される。
【0017】
[第2セルスタック装置]
第2セルスタック装置104は、水蒸気除去装置103の下流側に配置されている。第2セルスタック装置104は、水蒸気除去装置103によって水蒸気が除去された水素含有ガスを用いて発電するように構成されている。なお、第2セルスタック装置104の基本的な構成は第1セルスタック装置102と同じであるため、詳細な説明を省略する。
【0018】
[第1セルスタック装置の詳細な構成]
図2に示すように、第1セルスタック装置102は、マニホールド2と、複数の燃料電池セル10とを備えている。
【0019】
[マニホールド]
マニホールド2は、燃料電池セル10にガスを供給するように構成されている。また、マニホールド2は、燃料電池セル10から排出されたガスを回収するように構成されている。マニホールド2は、ガス供給室21とガス回収室22とを有している。ガス供給室21にはガス供給管201が接続されており、ガス回収室22にはガス回収管202が接続されている。ガス供給室21には、ガス供給管201を介して燃料ガスが供給される。また、ガス回収室22内の燃料ガスは、ガス回収管202を介してマニホールド2から回収される。
【0020】
マニホールド2は、マニホールド本体部23と、仕切板24とを有している。マニホールド本体部23は、内部に空間を有している。マニホールド本体部23は、直方体状である。
【0021】
図3に示すように、マニホールド本体部23の上板部231には、複数の貫通孔232が形成されている。各貫通孔232は、マニホールド本体部23の長さ方向(z軸方向)に間隔をあけて並んでいる。各貫通孔232は、マニホールド本体部23の幅方向(y軸方向)に延びている。各貫通孔232は、ガス供給室21及びガス回収室22と連通している。なお、各貫通孔232は、ガス供給室21と連通する部分とガス回収室22と連通する部分とに分かれていてもよい。
【0022】
仕切板24は、マニホールド本体部23の空間をガス供給室21とガス回収室22とに仕切っている。詳細には、仕切板24は、マニホールド本体部23の略中央部において、マニホールド本体部23の長さ方向に延びている。仕切板24は、マニホールド本体部23の空間を完全に仕切っている必要は無く、仕切板24とマニホールド本体部23との間に隙間が形成されていてもよい。
【0023】
[燃料電池セル]
図2に示すように、燃料電池セル10は、マニホールド2から上方に延びている。詳細には、燃料電池セル10は、基端部111がマニホールド2に取り付けられている。本実施形態では、燃料電池セル10の基端部111は下端部を意味し、燃料電池セル10の先端部112は上端部を意味する。
【0024】
各燃料電池セル10は、主面同士が対向するように並べられている。また、各燃料電池セル10は、マニホールド2の長さ方向(z軸方向)に沿って間隔をあけて並べられている。すなわち、燃料電池セル10の配列方向は、マニホールド2の長さ方向に沿っている。なお、各燃料電池セル10は、マニホールド2の長さ方向に沿って等間隔に配置されていなくてもよい。
【0025】
図4及び図5に示すように、燃料電池セル10は、支持基板4と、複数の発電素子部5と、連通部材3と、を有している。各発電素子部5は、支持基板4の第1主面45及び第2主面46に支持されている。なお、第1主面45に形成される発電素子部5の数と第2主面46に形成される発電素子部5の数とは、互いに同じであってもよいし異なっていてもよい。また、各発電素子部5の大きさは、互いに異なっていてもよい。
【0026】
[支持基板]
支持基板4は、マニホールド2から上下方向に延びている。詳細には、支持基板4は、マニホールド2から上方に延びている。支持基板4は、扁平状であり、基端部41と先端部42とを有している。基端部41及び先端部42は、支持基板4の長さ方向(x軸方向)における両端部である。本実施形態では、支持基板4の基端部41は下端部を意味し、支持基板4の先端部42は上端部を意味する。
【0027】
支持基板4の基端部41は、マニホールド2に取り付けられる。例えば、支持基板4の基端部41は、接合材などによってマニホールド2の上板部231に取り付けられる。詳細には、支持基板4の基端部41は、上板部231に形成された貫通孔232に挿入されている。なお、支持基板4の基端部41は、貫通孔232に挿入されていなくてもよい。このように支持基板4の基端部41がマニホールド2に取り付けられることによって、支持基板4の基端部41は、ガス供給室21及びガス回収室22と連結している。
【0028】
支持基板4は、複数の第1ガス流路43と、複数の第2ガス流路44とを有している。第1ガス流路43は、支持基板4内を上下方向に延びている。すなわち、第1ガス流路43は、支持基板4の長さ方向(x軸方向)に延びている。第1ガス流路43は、支持基板4を貫通している。各第1ガス流路43は、支持基板4の幅方向(y軸方向)において互いに間隔をあけて配置されている。なお、各第1ガス流路43は、等間隔に配置されていることが好ましい。支持基板4は、長さ方向(x軸方向)よりも幅方向(y軸方向)の寸法の方が長くてもよい。
【0029】
図5に示すように、隣り合う第1ガス流路43のピッチp1は、例えば、1〜5mm程度である。この隣り合う第1ガス流路43のピッチp1は、第1ガス流路43の中心間の距離である。例えば、第1ガス流路43のピッチp1は、基端部41、中央部、及び先端部42のそれぞれにおいて測定したピッチの平均値とすることができる。
【0030】
第1ガス流路43は、支持基板4の基端部41から先端部42に向かって延びている。燃料電池セル10をマニホールド2に取り付けた状態において、第1ガス流路43は、基端部41側において、ガス供給室21と連通している。
【0031】
第2ガス流路44は、支持基板4内を上下方向に延びている。すなわち、第2ガス流路44は、支持基板4の長さ方向(x軸方向)に延びている。第2ガス流路44は、第1ガス流路43と実質的に平行に延びている。
【0032】
第2ガス流路44は、支持基板4を貫通している。各第2ガス流路44は、支持基板4の幅方向(y軸方向)において互いに間隔をあけて配置されている。なお、各第2ガス流路44は、等間隔に配置されていることが好ましい。
【0033】
隣り合う第2ガス流路44のピッチp2は、例えば、1〜5mm程度である。この隣り合う第2ガス流路44のピッチp2は、第2ガス流路44の中心間の距離である。例えば、第2ガス流路44のピッチp2は、基端部41、中央部、及び先端部42のそれぞれにおいて測定したピッチの平均値とすることができる。なお、各第2ガス流路44間のピッチp2は、各第1ガス流路43間のピッチp1と実質的に等しいことが好ましい。
【0034】
第2ガス流路44は、支持基板4の先端部42から基端部41に向かって延びている。燃料電池セル10をマニホールド2に取り付けた状態において、第2ガス流路44は、基端部41側において、マニホールド2のガス回収室22と連通している。
【0035】
隣り合う第1ガス流路43と第2ガス流路44とのピッチp0は、例えば、1〜10mm程度である。この隣り合う第1ガス流路43と第2ガス流路44とのピッチp0は、第1ガス流路43の中心と第2ガス流路44の中心との距離である。例えば、ピッチp0は、支持基板4の第1端面411において測定することができる。
【0036】
隣り合う第1ガス流路43と第2ガス流路44とのピッチp0は、隣り合う第1ガス流路43のピッチp1よりも大きい。また、隣り合う第1ガス流路43と第2ガス流路44とのピッチp0は、隣り合う第2ガス流路44のピッチp2よりも大きい。
【0037】
第1ガス流路43と第2ガス流路44とは、燃料電池セル10の先端部112側において互いに連通している。詳細には、第1ガス流路43と、第2ガス流路44とが、連通部材3の連通流路30を介して連通している。
【0038】
第1ガス流路43及び第2ガス流路44は、第1ガス流路43内におけるガスの圧力損失が第2ガス流路44内におけるガスの圧力損失よりも小さくなるように構成されている。
【0039】
例えば、各第1ガス流路43の流路断面積は、各第2ガス流路44の流路断面積よりも大きくすることができる。なお、第1ガス流路43の数と第2ガス流路44との数とが異なる場合は、各第1ガス流路43の流路断面積の合計値が、各第2ガス流路44の流路断面積の合計値よりも大きくすることができる。
【0040】
特に限定されるものではないが、各第2ガス流路44の流路断面積の合計値は、各第1ガス流路43の流路断面積の合計値の20〜95%程度とすることができる。なお、第1ガス流路43の流路断面積は、例えば、0.5〜20mm程度とすることができる。また、第2ガス流路44の流路断面積は、例えば、0.1〜15mm程度とすることができる。
【0041】
なお、第1ガス流路43の流路断面積は、第1ガス流路43が延びる方向(x軸方向)と直交する面(yz平面)で切断した切断面における第1ガス流路43の流路断面積を言う。また、第1ガス流路43の流路断面積は、基端部41側の任意の箇所における流路断面積と、中央部の任意の箇所における流路断面積と、先端部42側の任意の箇所における流路断面積との平均値とすることができる。
【0042】
また、第2ガス流路44の流路断面積は、第2ガス流路44が延びる方向(x軸方向)と直交する面(yz平面)で切断した切断面における第2ガス流路44の流路断面積を言う。また、第2ガス流路44の流路断面積は、基端部41側の任意の箇所における流路断面積と、中央部の任意の箇所における流路断面積と、先端部42側の任意の箇所における流路断面積との平均値とすることができる。
【0043】
図4に示すように、支持基板4は、第1主面45と、第2主面46とを有している。第1主面45と第2主面46とは、互いに反対を向いている。第1主面45及び第2主面46は、各発電素子部5を支持している。第1主面45及び第2主面46は、支持基板4の厚さ方向(z軸方向)を向いている。また、支持基板4の各側面47は、支持基板4の幅方向(y軸方向)を向いている。各側面47は、湾曲していてもよい。図2に示すように、各支持基板4は、第1主面45と第2主面46とが対向するように配置されている。
【0044】
図4に示すように、支持基板4は、発電素子部5を支持している。支持基板4は、電子伝導性を有さない多孔質の材料によって構成される。支持基板4は、例えば、CSZ(カルシア安定化ジルコニア)から構成される。または、支持基板4は、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成されてもよいし、NiO(酸化ニッケル)とY(イットリア)とから構成されてもよいし、MgO(酸化マグネシウム)とMgAl(マグネシアアルミナスピネル)とから構成されてもよい。支持基板4の気孔率は、例えば、20〜60%程度である。この気孔率は、例えば、アルキメデス法、又は微構造観察により測定される。
【0045】
支持基板4は、緻密層48によって覆われている。緻密層48は、第1ガス流路43及び第2ガス流路44から支持基板4内に拡散されたガスが外部に排出されることを抑制するように構成されている。本実施形態では、緻密層48は、支持基板4の第1主面45、第2主面46、及び各側面47を覆っている。なお、本実施形態では、緻密層48は、後述する電解質7と、インターコネクタ91とによって構成されている。緻密層48は、支持基板4よりも緻密である。例えば、緻密層48の気孔率は、0〜7%程度である。
【0046】
[発電素子部]
複数の発電素子部5が、支持基板4の第1主面45及び第2主面46に支持されている。各発電素子部5は、支持基板4の長さ方向(x軸方向)に配列されている。詳細には、各発電素子部5は、支持基板4上において、基端部41から先端部42に向かって互いに間隔をあけて配置されている。すなわち、各発電素子部5は、支持基板4の長さ方向(x軸方向)に沿って、間隔をあけて配置されている。なお、各発電素子部5は、後述する電気的接続部9によって、互いに直列に接続されている。
【0047】
発電素子部5は、支持基板4の幅方向(y軸方向)に延びている。発電素子部5は、支持基板4の幅方向において第1部分51と第2部分52とに区画される。なお、第1部分51と第2部分52との厳密な境界はない。例えば、燃料電池セル10をマニホールド2に取り付けた状態において、支持基板4の長さ方向視(x軸方向視)において、ガス供給室21とガス回収室22との境界と重複する部分を、第1部分51と第2部分52との境界部とすることができる。
【0048】
支持基板4の厚さ方向視(z軸方向視)において、第1ガス流路43は、発電素子部5の第1部分51と重複している。また、支持基板4の厚さ方向視(z軸方向視)において、第2ガス流路44は、発電素子部5の第2部分52と重複している。なお、複数の第1ガス流路43のうち、一部の第1ガス流路43が第1部分51と重複していなくてもよい。同様に、複数の第2ガス流路44のうち、一部の第2ガス流路44が第2部分52と重複していなくてもよい。
【0049】
図6は、第1ガス流路43に沿って切断した燃料電池セル10の断面図である。なお、第2ガス流路44に沿って切断した燃料電池セル10の断面図は、第2ガス流路44の流路断面積が異なる以外は、図6と同じである。
【0050】
発電素子部5は、燃料極6、電解質7、及び空気極8を有している。また、発電素子部5は、反応防止膜11をさらに有している。燃料極6は、電子伝導性を有する多孔質の材料から構成される焼成体である。燃料極6は、燃料極集電部61と燃料極活性部62とを有する。
【0051】
燃料極集電部61は、凹部49内に配置されている。凹部49は、支持基板4に形成されている。詳細には、燃料極集電部61は、凹部49内に充填されており、凹部49と同様の外形を有する。各燃料極集電部61は、第1凹部611及び第2凹部612を有している。燃料極活性部62は、第1凹部611内に配置されている。詳細には、燃料極活性部62は、第1凹部611内に充填されている。
【0052】
燃料極集電部61は、例えば、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成され得る。或いは、燃料極集電部61は、NiO(酸化ニッケル)とY(イットリア)とから構成されてもよいし、NiO(酸化ニッケル)とCSZ(カルシア安定化ジルコニア)とから構成されてもよい。燃料極集電部61の厚さ、及び凹部49の深さは、50〜500μm程度である。
【0053】
燃料極活性部62は、例えば、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成され得る。或いは、燃料極活性部62は、NiO(酸化ニッケル)とGDC(ガドリニウムドープセリア)とから構成されてもよい。燃料極活性部62の厚さは、5〜30μmである。
【0054】
電解質7は、燃料極6上を覆うように配置されている。詳細には、電解質7は、一のインターコネクタ91から他のインターコネクタ91まで長さ方向に延びている。すなわち、支持基板4の長さ方向(x軸方向)において、電解質7とインターコネクタ91とが交互に配置されている。また、電解質7は、支持基板4の第1主面45、第2主面46、及び各側面47を覆っている。
【0055】
電解質7は、支持基板4よりも緻密である。例えば、電解質7の気孔率は、0〜7%程度である。電解質7は、イオン伝導性を有し且つ電子伝導性を有さない緻密な材料から構成される焼成体である。電解質7は、例えば、YSZ(8YSZ)(イットリア安定化ジルコニア)から構成され得る。或いは、LSGM(ランタンガレート)から構成されてもよい。電解質7の厚さは、例えば、3〜50μm程度である。
【0056】
反応防止膜11は、緻密な材料から構成される焼成体である。反応防止膜11は、平面視において、燃料極活性部62と略同一の形状である。反応防止膜11は、電解質7を介して、燃料極活性部62と対応する位置に配置されている。反応防止膜11は、電解質7内のYSZと空気極8内のSrとが反応して電解質7と空気極8との界面に電気抵抗が大きい反応層が形成される現象の発生を抑制するために設けられている。反応防止膜11は、例えば、GDC=(Ce,Gd)O(ガドリニウムドープセリア)から構成され得る。反応防止膜11の厚さは、例えば、3〜50μm程度である。
【0057】
空気極8は、反応防止膜11上に配置されている。空気極8は、電子伝導性を有する多孔質の材料から構成される焼成体である。空気極8は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)から構成され得る。或いは、LSF=(La,Sr)FeO(ランタンストロンチウムフェライト)、LNF=La(Ni,Fe)O(ランタンニッケルフェライト)、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)等から構成されてもよい。また、空気極8は、LSCFから構成される第1層(内側層)とLSCから構成される第2層(外側層)との2層によって構成されてもよい。空気極8の厚さは、例えば、10〜100μmである。
【0058】
[電気的接続部]
電気的接続部9は、隣り合う発電素子部5を電気的に接続するように構成されている。電気的接続部9は、インターコネクタ91及び空気極集電膜92を有する。インターコネクタ91は、第2凹部612内に配置されている。詳細には、インターコネクタ91は、第2凹部612内に埋設(充填)されている。インターコネクタ91は、電子伝導性を有する緻密な材料から構成される焼成体である。インターコネクタ91は、支持基板4よりも緻密である。例えば、インターコネクタ91の気孔率は、0〜7%程度である。インターコネクタ91は、例えば、LaCrO(ランタンクロマイト)から構成され得る。或いは、(Sr,La)TiO(ストロンチウムチタネート)から構成されてもよい。インターコネクタ91の厚さは、例えば、10〜100μmである。
【0059】
空気極集電膜92は、隣り合う発電素子部5のインターコネクタ91と空気極8との間を延びるように配置される。例えば、図6の左側に配置された発電素子部5の空気極8と、図6の右側に配置された発電素子部5のインターコネクタ91とを電気的に接続するように、空気極集電膜92が配置されている。空気極集電膜92は、電子伝導性を有する多孔質の材料から構成される焼成体である。
【0060】
空気極集電膜92は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)から構成され得る。或いは、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)から構成されてもよい。或いは、Ag(銀)、Ag−Pd(銀パラジウム合金)から構成されてもよい。空気極集電膜92の厚さは、例えば、50〜500μm程度である。
【0061】
[連通部材]
図5に示すように、連通部材3は、支持基板4の先端部42に取り付けられている。そして、連通部材3は、第1ガス流路43と第2ガス流路44とを連通させる連通流路30を有している。詳細には、連通流路30は、各第1ガス流路43と各第2ガス流路44とを連通する。連通流路30は、各第1ガス流路43から各第2ガス流路44まで延びる空間によって構成されている。連通部材3は、支持基板4に接合されていることが好ましい。また、連通部材3は、支持基板4と一体的に形成されていることが好ましい。連通流路30の数は、第1ガス流路43の数よりも少ない。本実施形態では、一本の連通流路30のみによって、複数の第1ガス流路43と複数の第2ガス流路44とが連通されている。
【0062】
連通部材3は、例えば、多孔質である。また、連通部材3は、その外側面を構成する緻密層31を有している。緻密層31は、連通部材3の本体よりも緻密に形成されている。例えば、緻密層31の気孔率は、0〜7%程度である。この緻密層31は、連通部材3と同じ材料や、上述した電解質7に使用される材料、結晶化ガラス等によって形成することができる。
【0063】
[発電方法]
上述したように構成された第1セルスタック装置102では、マニホールド2のガス供給室21に水素ガスなどの燃料ガスを供給するとともに、燃料電池セル10を空気などの酸素を含むガスに曝す。すると、空気極8において下記(1)式に示す化学反応が起こり、燃料極6において下記(2)式に示す化学反応が起こり、電流が流れる。
(1/2)・O+2e→O2− …(1)
+O2−→HO+2e …(2)
【0064】
詳細には、ガス供給管201からガス供給室21に供給された燃料ガスは、各燃料電池セル10の第1ガス流路43内を流れ、各発電素子部5の燃料極6において、上記(2)式に示す化学反応が起こる。各燃料極6において未反応であった燃料ガスは、第1ガス流路43を出て連通部材3の連通流路30を介して第2ガス流路44へ供給される。そして、第2ガス流路44へ供給された燃料ガスは、再度、燃料極6において上記(2)式に示す化学反応が起こる。第2ガス流路44を流れる過程において燃料極6において未反応であった燃料ガスは、マニホールド2のガス回収室22へ回収される。そして、ガス回収管202は、ガス回収室22からガスを回収する。
【0065】
[変形例]
以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
【0066】
変形例1
上記実施形態では、第1ガス流路43と第2ガス流路44とは、連通部材3が有する連通流路30によって連通されていたが、この構成に限定されない。例えば、図7に示すように、支持基板4が、内部に連通流路30を有していてもよい。この場合、第1セルスタック装置102は、連通部材3を備えていなくてもよい。この支持基板4内に形成された連通流路30によって、第1ガス流路43と第2ガス流路44とが連通されている。
【0067】
変形例2
各第1ガス流路43の流路断面積は、互いに異なっていてもよい。また、各第2ガス流路44の流路断面積は、互いに異なっていてもよい。また、第1ガス流路43の流路断面積は、第2ガス流路44の流路断面積と実質的に同じであってもよいし、第2ガス流路44の流路断面積よりも小さくてもよい。
【0068】
変形例3
上記実施形態では、第2ガス流路44の数は、第1ガス流路43の数と同じであったが、第2ガス流路44の数はこれに限定されない。例えば、図8に示すように、第2ガス流路44の数は、第1ガス流路43の数よりも少なくてもよい。
【0069】
変形例4
第1ガス流路43は、その長さ方向(x軸方向)において、均一な流路断面積を有していなくてもよい。特に、第1ガス流路43の流路断面積は、燃料ガス濃度が低くなる先端部42に近付くほど小さくなっていてもよい。また、第2ガス流路44は、その長さ方向(x軸方向)において、均一な流路断面積を有していなくてもよい。特に、第2ガス流路44の流路断面積は、燃料ガス濃度が低くなる基端部41に近付くほど小さくなっていてもよい。この構成によれば拡散性が向上し界面近傍に存在するNiがNiOに変化することを抑制することができる。
【0070】
変形例5
上記実施形態では、第1及び第2ガス流路43,44は、円形状の断面を有しているが、第1及び第2ガス流路43,44の断面形状は、矩形状や楕円形状であってもよい。
【0071】
変形例6
上記実施形態では、支持基板4は、複数の第1ガス流路43を有しているが、1つの第1ガス流路43のみを有していてもよい。同様に、支持基板4は、複数の第2ガス流路44を有しているが、1つの第2ガス流路44のみを有していてもよい。
【0072】
変形例7
上記実施形態では、第1主面45に配置された各発電素子部5は、互いに直列に接続されているが、第1主面45に配置された各発電素子部5の全てが直列に接続されている必要は無い。なお、第2主面46に配置された各発電素子部5についても同様である。
【0073】
変形例8
燃料電池セル10において、第1主面45に形成された各発電素子部5と第2主面46に形成された各発電素子部5との間は、互いに電気的に接続されていなくてもよいし、複数の箇所で電気的に接続されていてもよい。
【0074】
変形例9
上記実施形態では、各発電素子部5は、第1主面45と第2主面46との両面に配置されているが、どちらか一方の面のみに配置されていてもよい。
【0075】
変形例10
各燃料電池セル10の幅は、互いに異なっていてもよい。また、各発電素子部5の幅は、互いに異なっていてもよい。例えば、ある支持基板4に形成された各発電素子部5の幅と、別の支持基板4に形成された各発電素子部5の幅とは、異なっていてもよい。
【0076】
変形例11
実施形態では、連通部材3は多孔質であるが、連通部材3は金属によって構成されていてもよい。具体的には、連通部材3は、Fe−Cr合金、Ni基合金、又はMgO系セラミックス材料(支持基板4と同じ材料でも良い)などによって構成することができる。
【0077】
変形例12
上記実施形態では、連通部材3の連通流路30は空間によって構成されていたが、連通部材3の連通流路30の構成はこれに限定されない。例えば、図9に示すように、連通部材3の連通流路30は、連通部材3内に形成された複数の気孔によって構成することができる。
【0078】
変形例13
上記実施形態のマニホールド2では、1つのマニホールド本体部23を仕切板24で仕切ることによって、ガス供給室21とガス回収室22とを画定しているが、マニホールド2の構成はこれに限定されない。例えば、2つのマニホールド本体部23によってマニホールド2を構成することもできる。この場合、1つのマニホールド本体部23がガス供給室21を有し、別のマニホールド本体部23がガス回収室22を有している。
【0079】
変形例14
上記実施形態の燃料電池セル10は、各発電素子部5が支持基板4の長さ方向(x軸方向)に配列されている、いわゆる横縞型の燃料電池セルであるが、燃料電池セル10の構成はこれに限定されない。例えば、燃料電池セル10は、支持基板4の第1主面45に1つの発電素子部5が支持された、いわゆる縦縞型の燃料電池セルであってもよい。この場合、支持基板4の第2主面46に一つの発電素子部5が支持されていてもよいし、支持されていなくてもよい。
【符号の説明】
【0080】
2 :マニホールド
21 :ガス供給室
22 :ガス回収室
3 :連通部材
30 :連通流路
4 :支持基板
41 :基端部
42 :先端部
43 :第1ガス流路
44 :第2ガス流路
5 :発電素子部
10 :燃料電池セル
100 :燃料電池システム
101 :改質装置
102 :第1セルスタック装置
103 :水蒸気除去装置
104 :第2セルスタック装置
【要約】
【課題】ガスの使用効率を向上させる。
【解決手段】改質装置101は水蒸気改質によって原料ガスから水素含有ガスを生成する。第1セルスタック装置102は改質装置101からの水素含有ガスで発電する。水蒸気除去装置103は第1セルスタック装置102から排出された水素含有ガスから水蒸気を除去する。第2セルスタック装置104は水蒸気除去装置103によって水蒸気が除去された水素含有ガスを用いて発電する。改質装置101は、水蒸気除去装置103によって除去された水蒸気を用いて原料ガスを改質する。第1及び第2セルスタック装置102、104の少なくとも一方は、マニホールド及び燃料電池セルを有する。支持基板の第1ガス流路はガス供給室と連通し、第2ガス流路はガス回収室と連通する。第2ガス流路は、燃料電池セルの先端部において第1ガス流路と連通する。
【選択図】図1
図1
図2
図3
図4
図5
図6
図7
図8
図9