【実施例】
【0079】
以下の実施例は、例示のみを目的とするものであり、決して本発明の範囲を限定するものと解釈されるべきではない。
【0080】
[実施例1]
例示的なアッセイワークフロー
この実施例は、試料中のMTBを検出するためのリアルタイムPCRを行うための特定の効果的な手法を記載している。いくつかの実施形態において、リアルタイムPCR法は以下のステップを含み、または以下からなる:
1.不活性化試薬(IR)を使用した試料(例えば、喀痰、気管支肺胞洗浄液[BAL]ならびに喀痰およびBALのN−アセチル−L−システイン[NALC]沈殿物)におけるMTBの不活性化。いくつかの実施形態において、不活性化試薬は、イソプロパノール、水酸化ナトリウム、TWEEN−20および水を含み、またはそれらからなる。
2.DNAが試薬を使用して不活性化した試料から抽出される、試料調製;試料調製は自動m2000sp機器(Abbott Molecular)を使用して実施され、または手動で実施される。
3.精製された試料およびアッセイPCR成分が96ウェル光学反応プレートまたは他のマルチチャンバ反応支持体に一緒に加えられる、PCRアセンブリ;これはm2000spを使用して実施され、または手動で実施される。
4.96ウェル光学反応プレートの手動密閉およびm2000rt機器へのプレートの移送。
5.自動m2000rt機器を使用したPCR産物の増幅および検出;患者の結果はm2000rtワークステーションに自動的に報告される。このワークフローの図式的概要は
図1に示されている。
【0081】
[実施例2]
標的選択およびプライマー/プローブ設計
いくつかの実施形態において、二重標的戦略がMTB複合体を検出するために利用される。2つの標的には挿入配列(IS)6110およびタンパク質抗原B(PAB)が含まれる。以下の表1を参照のこと:
【0082】
【表1】
【0083】
二重標的戦略の使用は標的配列の突然変異または欠失によって引き起こされる偽陰性結果を阻止する。
【0084】
IS6110およびPAB標的配列の検出に用途が見出されているプローブおよびプライマーには表2のものが含まれる。
【0085】
【表2】
【0086】
表3は、検出MTB標的配列に使用するための代替のプライマーおよびプローブを提供する。IS6110およびPABに加えて、さらなる標的には、rPOB(RNAポリメラーゼのβサブユニットをコードする単一コピー遺伝子、リファンピシン耐性突然変異の約95%の部位)、SenX3−RegXe(調節タンパク質をコードする単一コピー遺伝子)、hsp65(熱ショックタンパク質をコードする単一コピー遺伝子)およびMPB64(23KDAタンパク質をコードする単一コピー遺伝子)が含まれる。
【0087】
【表3】
【0088】
[実施例3]
試料不活性化
この実施例は試料不活性化ステップを行うための例示的な試薬および方法を記載している。
【0089】
不活性化試薬(IR)の調製
利用した材料:
・ポリプロピレンまたはガラス容器
・10M NaOH
・イソプロパノール
・TWEEN−20
・精製水
IRの調製:
500mLに必要な材料の体積
10M NaOH 20mL
精製水 179.1mL
イソプロパノール 300mL
TWEEN−20 0.9mL
1. 179.1mLの水を空のポリプロピレンまたはガラス容器(ポリスチレン容器の使用は避ける)に添加する。
2. 0.9mLのTWEEN−20を容器に添加する。
3. 20mLの10M NaOHを容器に添加する。
4. 300mLのイソプロパノールを容器に添加する。
5. 成分を20回反転させて混合する。
使用または最大1ヶ月間周囲温度にて保存。
【0090】
不活性化手段:
1. 凍結した場合、検体を15から30℃にて解凍する。
2. 不活性化する検体の体積を推定する。
3. 1:3の比(例えば、1mLの検体+3mLのIR)(好ましい検体体積は0.3から10mLである。)にてIRを添加する。
4. 容器を反転させてIRと検体との間の接触を確実にする。
5. 混合物を20から30秒間ボルテックスする。
6. 混合物を周囲温度にて少なくとも1時間、好ましくは24時間以下の間インキュベートする。混合物をインキュベーション期間内の20から30分にて20から30秒間、最後に1回ボルテックスする。
【0091】
[実施例4]
試料調製法:
実施例1のMTBアッセイは、喀痰、BALおよび喀痰またはBAL試料のNACL−NaOH沈殿物を処理するためにAbbott自動m2000sp機器を使用し、または手動による方法を使用し、増幅および検出のためにAbbott自動m2000rt機器を使用する。両方のプロセスは試料からのDNA抽出を必要とし、両方のDNA精製はAbbott mSample Preparation System
DNAからのDNA GPR(リスト6K12−24)試料調製試薬を使用して実施される。
【0092】
試料調製試薬および方法(溶解ステップ、洗浄ステップ、溶出ステップ、チップ再使用手配などを含む)は、阻害喀痰またはTB不活性化試薬(IR)のキャリーオーバーに起因するPCR反応に対する阻害効果を低減させるために最適化され、したがってIR処理された試料中のIRを除去するための遠心分離は必要ではない。この手段はまた、高陽性から近くの陰性試料までのキャリーオーバーを低減させるために最適化される。試料調製はまた、効果的なDNA回収およびPCRのためにTB細胞破砕を確実にするために最適化される。
【0093】
リアルタイムPCR:
96ウェル光学反応プレートにおけるPCR反応アセンブリ(手動またはm2000spによるいずれか)の後、96ウェルプレートを手動で密閉し、m2000rtに移して増幅およびリアルタイム蛍光検出反応を実施する。患者の結果はm2000rtワークステーションにおいて自動的に報告される。MTBアッセイは、試料の有効性対照、試料抽出および増幅効率の対照として内部対照核酸配列を検出する。表4は例示的なPCRサイクリング条件を提供する。
【0094】
【表4】
【0095】
以下の実施例に示されたデータに関して、42のアッセイカットオフを使用した。つまり、Ct値が42未満の試料はMTB検出とみなされ、一方、アッセイCt値が42超の試料はMTB非検出とみなされる。
【0096】
m2000rtでのアッセイ実行は製造業者の推奨プロトコルに従う。1つのそのような例は以下のステップを含む:
1.96個のIR処理した試料を1回の実行ごとに実施する。1つの陰性対照および1つの陽性対照が各実行に含まれ、したがって最大で94個のIR処理した試料を1回の実行ごとに処理することができる。
【0097】
2.使用前に、IR処理した試料を3から5秒間ボルテックスする。ピペットを使用して、IR処理した試料を反応容器に移す。このステップの間、IR処理した試料中の目に見える微粒子の移動を最小化する。
【0098】
3.アッセイ対照、ICおよび増幅試薬を2から8℃または15から30℃にて解凍する。解凍すると、ICは、使用前に最大14日間、2から8℃にて閉じた状態で保存することができる。解凍すると、対照は、使用前に最大24時間、2から8℃にて保存することができる。任意の増幅試薬の延長した使用特性を使用しない場合:2から8℃または15から30℃にて新たな増幅試薬を解凍する。解凍すると、増幅試薬は、使用前に最大24時間、2から8℃にて保存することができる。任意の増幅試薬の延長した使用特性を使用する場合:実行に使用する新たなおよび/または部分的な増幅試薬パックを選択する。Abbott m2000sp操作マニュアル(リスト番号9K20−06またはそれ以上)、増幅試薬パック在庫管理に関係する説明書についての操作説明書を参照のこと。増幅試薬パックは同じロット番号を有すべきである。
【0099】
4.各対照を使用前に毎回2から3秒間で3回ボルテックスする。気泡または泡状物が発生していないことを確実にする。見つけた場合、それらを各管について新たな滅菌ピペットチップを用いて除去する。バイアルの底に液体をもたらすようにベンチ上のバイアルを軽くたたくことによってボルテックスの後、各バイアルの内容物が底にあることを確実にする。
【0100】
5.Abbott mSample Preparation SystemDNAボトルを穏やかに反転させて均質な溶液を確実にする。開封時に試薬ボトルのいずれかにおいて結晶が観察された場合、結晶が消失するまで試薬を室温にて平衡させる。結晶が溶解するまで試薬を使用しない。気泡または泡状物が生成しないことを確実にし、存在する場合、各ボトルについて新たなチップを使用して滅菌ピペットチップにより除去する。注記:mMicroparticlesDNAを200mLの試薬容器に注ぐ前に、mMicroparticlesDNAが完全に再懸濁するまで、激しく混合し、またはボルテックスする。
【0101】
6.ICバイアルを使用前に毎回2から3秒間で3回ボルテックスする。気泡または泡状物が生成しないことを確実にし、存在する場合、滅菌ピペットチップにより除去する。
【0102】
7.内部対照の用途のみのために専用の目盛り付き精密ピペットを使用して、180μLのICをmLysisDNA緩衝液の1つのボトルに添加する。容器を5から10回穏やかに反転させることによって混合して泡立ちを最小化する。mLysisDNA緩衝液の各ボトルは最大で48個の試料調製を支援する。49個から96個の試料について180μLのICをmLysisDNA緩衝液の第2のボトルに添加する。任意の増幅試薬の延長した使用特性を使用する場合、ICの部分的バイアルに再びキャップをして、2回目の使用のために2から8℃にて保存することができる。
【0103】
8.25mLのUSPグレード190から200のプルーフエタノール(95から100%のエタノール)をmLysisDNA緩衝液+IC試薬ボトルに添加する。変性剤を含有するエタノールは使用しない。容器を穏やかに反転させて均質な溶液を確実にする。49個から96個の試料について、25mLのエタノールをmLysisDNA緩衝液+ICの第2のボトルに添加する。穏やかに反転させて均質な溶液を確実にする。
【0104】
9.70mLのUSPグレード190から200のプルーフエタノール(95から100%のエタノール)をmWash2DNAボトルに添加する。変性剤を含有するエタノールは使用しない。mWash2DNAの各ボトルは最大で48個の反応を支援する。穏やかに反転させて均質な溶液を確実にする。
【0105】
10.陰性および陽性対照ならびに患者の検体をAbbott m2000sp試料ラックに入れる。
【0106】
11.5mLの反応容器をAbbott m2000spの1mLのサブシステムキャリアに入れる。
【0107】
12.Abbott m2000sp操作マニュアル、操作説明書に記載されているように、Abbott mSample Preparation SystemDNA試薬を含有するキャリアラックおよびAbbott 96ディープウェルプレートをAbbott m2000spワークテーブルの上にロードする。
【0108】
13.Abbott m2000sp操作マニュアル、操作説明書に記載されているように、実行試料抽出(Run Sample Extraction)スクリーンから、試料抽出プロトコルを選択し、開始する。注記:増幅試薬を取り扱う前に手袋を交換する。
【0109】
14.試料調製が完了した後、増幅試薬パックおよびマスターミックスバイアル(必要に応じて)をAbbott m2000spワークテーブル上にロードする。各増幅試薬パックは最大24個の反応を支援する。1個から24個の試料について1セットの試薬、25個から48個の試料について2セット、49個から72個の試料について3セットおよび73個から96個の試料について4セットを解凍する。増幅試薬は使用前に完全に解凍していることを確実にする。ベンチ上で直立位置においてバイアルを軽くたたくことによって内容物がバイアルの底にあることを確実にする。増幅試薬のバイアルのキャップを取り外す。任意の増幅試薬の延長された使用特性を使用する場合、新たなおよび部分的な試薬パックの組合せを使用することができる。任意の増幅試薬の延長された使用特性を使用しない場合、新たな試薬パックのみを使用することができる。ベンチ上で直立位置においてバイアルを軽くたたくことによって、新たな増幅試薬パックの内容物が増幅試薬を開封する前にバイアルの底にあることを確実にする。2回目に使用する部分的な増幅試薬パックは軽くたたかない。軽くたたくことによって、キャップ内のマスターミックス体積の損失が生じる場合がある。キャップを取り外す。新たな増幅試薬パックを2回目の使用のために保存する場合、バイアルを保存のために再びキャップする。試薬バイアルに再びキャップをするために元のキャップを再使用することを計画している場合、元のキャップを取っておいて、使用する。試薬バイアルに再びキャップをするために未使用のキャップを使用することを計画している場合、元のキャップは捨てる。部分的な増幅パックはAbbott m2000spワークテーブル上の新たな増幅パックの左側にロードする。増幅試薬パックを機器にしっかりと固定することを確実にする。
【0110】
15.対応する試料調製抽出と一致するランマスターミックス添加スクリーンから適切なディープウェルプレートを選択する。Abbott m2000spマスターミックス添加プロトコルを開始する。Abbott m2000sp操作マニュアル、操作説明書のセクションに記載されている指示に従う。注記:増幅マスターミックスおよび試料溶出液のAbbott 96ウェル光学反応プレートへの組み込み(ステップ15)は、試料調製の完了後1時間以内に開始しなければならない。注記:Abbott m2000rtプロトコル(ステップ20)は、マスターミックス添加プロトコルの開始から90分以内に始めなければならない。注記:ステップ15の後に何らかの理由で実行が中止された場合、増幅試薬を捨て、Abbott m2000spマスターミックス添加プロトコル(ステップ15)を反復する場合、新たな96ウェルPCRプレートを使用しなければならない。
【0111】
16.増幅領域においてAbbott m2000rtのスイッチを入れ、初期化する。注記:Abbott m2000rtはウォームアップに15分を必要とする。注記:試料調製領域に戻る前に実験着および手袋を交換する。
【0112】
17.Abbott m2000sp機器が試料の添加およびマスターミックスを完了した後、Abbott 96ウェル光学反応プレートをAbbottスプラッシュフリーサポートベースに置く。
【0113】
18.Abbott m2000sp操作マニュアル、操作説明書のセクションに従ってAbbott 96ウェル光学反応プレートを密閉する。完了したPCRプレートの結果をCDに(またはネットワーク接続を介してマッピングされたAbbott m2000rtに直接)エクスポートする。
【0114】
いくつかの実施形態において、手動試料調製法が利用される。そのような方法の一例は以下の通りである:
1.増幅試薬を15から30℃または2から8℃にて解凍する。このステップは試料調製手段の完了前に開始することができる。
【0115】
2.磁性ラックのセットごとに12個の試料を処理する。陰性対照および陽性対照が各実行に含まれているので、最大で10個の検体を処理することができる。以下のこれらのステップによって処理するために検体を調製する:注記:試料抽出を開始する前に患者の検体を不活性化しなければならない。
【0116】
3.MTB陰性対照の1つの管、MTB陽性対照の1つの管およびMTB内部対照の1つのバイアルを15から30℃または2から8℃にて解凍する。解凍してから、ICをすぐに処理しない場合、使用前に最大14日間、2から8℃にて保存する。解凍してから、対照をすぐに処理しない場合、使用前に最大24時間、2から8℃にて保存する。使用前に毎回、対照およびICを2から3秒間で3回ボルテックスする。バイアルの底に液体をもたらすようにベンチ上でバイアルを軽くたたくことによって、ボルテックスした後、各バイアルの内容物が底にあることを確実にする。気泡または泡状物が生成しないことを確実にし、存在する場合、各バイアルに対して新たなチップを使用して滅菌ピペットチップにより除去する。
【0117】
4.Abbott mSample Preparation SystemDNA試薬パックを開封する。開封時に試薬ボトルのいずれかにおいて結晶が観察された場合、結晶が消失するまで試薬を室温にて平衡させる。結晶が溶解するまで試薬を使用しない。
【0118】
5.70mLのUSPグレード190から200のプルーフエタノール(95から100%のエタノール)をmWash 2DNAボトルに添加することによってmWash 2DNAを調製する。変性剤を含有するエタノールは使用しない。穏やかに反転させて均質な溶液を確実にする。注記:延長された使用のためにエタノールが既に添加されていることを示すためにmWash 2DNAボトルをマークする。
【0119】
6.25mLのUSPグレード190から200のプルーフエタノール(95から100%のエタノール)をmLysisDNAボトルに添加することによってmLysisDNAを調製する。変性剤を含有するエタノールは使用しない。5から10回穏やかに反転させて混合し、泡立ちを最小化する。注記:延長された使用のためにエタノールが既に添加されていることを示すためにmLysisDNAボトルをマークする。
【0120】
7.手動による実行に必要なmLysisDNA溶液の体積を計算する:(1.85mLのmLysisDNA×試料の数)。必要な体積のmLysisDNA溶液を、全体積を保持するのに十分な大きさのポリプロピレン容器にピペットで移す。手動による実行に必要なICの体積を計算する:(3.51μLのIC×試料の数)。内部対照の用途のみに専用の精密ピペットを使用して、必要な体積のICを、手動による実行に必要なmLysisDNA溶液を含有するポリプロピレン溶液に添加する。10から15回穏やかに反転させることによってmLysisDNA溶液およびIC混合物を混合して泡立ちを最小化する。最初の使用後、部分的なICバイアルを最大14日間、2から8℃にて保存し、さらに1回使用することができる。
【0121】
8.使用前にmMicroparticlesDNAボトルおよびmWash 1DNAボトルを除いて全ての試薬ボトルを5から10回穏やかに反転させて均質な溶液を確実にする。mMicroparticlesDNAボトルはステップ11において混合する。
【0122】
9.温度が制御された乾燥加熱ブロックをオンにする。第1のブロックを58℃に設定する。第2のブロックを80℃に設定する。注記:加熱ブロックの温度を確認する。加熱ブロックが正確な温度になるまで処理しない。
【0123】
10.全ての必要な管を標識する:溶解インキュベーションおよびmWash 1DNAステップについて1つの試料につき1つの5mL反応容器。第1および第2のmWash 2DNAならびに溶出ステップについて1つの試料につき1つの1.5mLの微量遠心管。溶出について1つの試料または1つの96ウェルポリプロピレンプレートにつき1つの1.5mLの微量遠心管。
【0124】
11.各試料について標識された5mLの反応容器を加熱していないスタンドに置く。粒子が懸濁状態になり、沈殿した粒子がボトルの底にもはや見られなくなるまで、ボルテックスし、または激しく振盪することによってmMicroparticlesDNAを再懸濁する。粒子を再懸濁した後、精密ピペッタおよび滅菌200μLエアロゾルバリアピペットチップを使用して、50μLのmMicroparticlesDNAを各反応容器に添加する。
【0125】
12.各試料について未使用の滅菌1000μLエアロゾルバリアピペットチップを使用して、1.75mL(2×875μL)のmLysisDNAを反応容器に添加する。
【0126】
13.各試料について精密ピペッタおよび未使用の滅菌1000μLエアロゾルバリアピペットチップを使用して、0.8mLの対照および検体を適切な反応容器に添加する。均一な懸濁液が得られるまで、800μLの体積を5から10回、吸引し、分注することによって各試料/mLysisDNA混合物を混合する。注記:泡立ちを回避するために液体をゆっくり吸引し、分注する。
【0127】
14.5mLの反応容器を58℃の加熱ブロックに移す。
【0128】
15.タイマーを開始し、15分間インキュベートする。
【0129】
16.各試料について未使用の滅菌1000μLエアロゾルバリアピペットチップを使用したインキュベーション後、800μLを吸引し、分注することによって混合物を5回混合する。
【0130】
17.タイマーを開始し、58℃の加熱ブロックにおいてさらに10分間インキュベートする。
【0131】
18.各試料について未使用の滅菌1000μLエアロゾルバリアピペットチップを使用したインキュベーション後、800μLを吸引し、分注することによって混合物を5回混合する。
【0132】
19.タイマーを開始し、58℃の加熱ブロックにおいてさらに10分間インキュベートする。
【0133】
20.インキュベーションが完了した後、反応容器を磁性捕捉スタンドに2分間置き、粒子を反応容器の側面に捕捉させる。
【0134】
21.反応容器が磁性捕捉スタンドにある状態で、各試料について未使用の滅菌1000μLエアロゾルバリアピペットチップまたは使い捨てトランスファーピペットを使用して、各反応容器からmLysisDNAを注意深く取り除き、流体を液体廃棄容器に捨てる。できるだけ完全に流体を取り除く。捕捉した磁性粒子は、かき乱さず、または吸引しない。
【0135】
22.磁性ラックから反応容器を取り除き、非磁性ラックに移す。mWash 1DNA(洗浄)。
【0136】
23.各試料について精密ピペッタおよび未使用の滅菌1000μLエアロゾルバリアピペットチップを使用して、800μLのmWash 1DNAを試料に添加し、ピペットチップにより吸引し、分注することによって穏やかに10回混合することによって洗浄液中で磁性粒子を再懸濁する。必要な場合、粒子を反応容器の側面から洗浄する。注記:mWash 1DNA洗浄液を添加する場合、はね返りを回避するために液体をゆっくり分注する。
【0137】
24.洗浄液および粒子を標識した1.5mLの微量遠心管に移す。
【0138】
25.管を磁性捕捉スタンドに1分間置いて管の側面に粒子を捕捉させる。
【0139】
26.管が磁性捕捉スタンドにある状態で、各試料について未使用の滅菌1000μLエアロゾルバリアピペットチップを使用して、各管からmWash 1DNAを注意深く取り除き、流体を液体廃棄容器に捨てる。できるだけ完全に流体を取り除く。捕捉した磁性粒子は、かき乱さず、または吸引しない。
【0140】
27.磁性ラックから管を取り除き、非磁性ラックに移す。mWash 2DNA(1回目の洗浄)。
【0141】
28.各試料について精密ピペッタおよび未使用の滅菌1000μLエアロゾルバリアピペットチップを使用して、800μLのmWash 2DNAを試料に添加し、ピペットチップにより吸引し、分注することによって穏やかに5から10回混合することによって洗浄液中で磁性粒子を再懸濁する。必要な場合、管の側面から粒子を洗浄する。注記:mWash 2DNA洗浄液を添加する場合、はね返りを回避するために液体をゆっくり分注する。
【0142】
29.管を磁性捕捉スタンドに1分間置いて粒子を管の側面に捕捉させる。
【0143】
30.管が磁性捕捉スタンドにある状態で、各試料について未使用の滅菌1000μLエアロゾルバリアピペットチップを使用して、各管からmWash 2DNAを注意深く取り除き、流体を液体廃棄容器に捨てる。できるだけ完全に流体を取り除く。捕捉した磁性粒子は、かき乱さず、または吸引しない。
【0144】
31.管を磁性ラックから取り除き、非磁性ラックに移す。mWash 2DNA(2回目の洗浄)。
【0145】
32.各試料について精密ピペッタおよび未使用の滅菌1000μLエアロゾルバリアピペットチップを使用して、800μLのmWash 2DNAを試料に添加し、ピペットチップにより吸引し、分注することによって穏やかに5から10回混合することによって洗浄液中で磁性粒子を再懸濁する。必要な場合、管の側面から粒子を洗浄する。注記:mWash 2DNA洗浄液を添加する場合、はね返りを回避するために液体をゆっくり分注する。
【0146】
33.管を磁性捕捉スタンドに1分間置いて粒子を管の側面に捕捉させる。
【0147】
34.管が磁性捕捉スタンドにある状態で、各試料について未使用の滅菌1000μLエアロゾルバリアピペットチップを使用して、各管からmWash 2DNAを注意深く取り除き、流体を液体廃棄容器に捨てる。できるだけ完全に流体を取り除く。捕捉した磁性粒子は、かき乱さず、または吸引しない。
【0148】
35.磁性ラックから管を取り除き、80℃の加熱ブロックに移し、エタノールの蒸発を可能にするためにキャップを開いた状態で15分間インキュベートする。
【0149】
36.各試料について精密ピペッタおよび未使用の滅菌1000μLエアロゾルバリアピペットチップを使用して、250μLのmElution BufferDNAを試料に添加し、ピペットチップにより吸引し、分注することによって流体中で磁性粒子を再懸濁する。必要な場合、管の側面から粒子を洗浄する。
【0150】
37.管を80℃の加熱ブロックに入れ、タイマーを開始し、4分間インキュベートする。
【0151】
38.80℃の加熱ブロックから管を取り出す。各試料について未使用の滅菌1000μLエアロゾルバリアピペットチップを使用して、200μLを吸引し、分注することによって試料およびmElution BufferDNA混合物を4回混合する。
【0152】
39.管を80℃の加熱ブロックに戻す。タイマーを開始し、4分間インキュベートする。
【0153】
40.80℃の加熱ブロックから管を取り除き、磁性捕捉スタンドに1分間置いて粒子を管の側面に捕捉させる。
【0154】
41.管が磁性捕捉スタンドにある状態で、各試料について未使用の滅菌1000μLエアロゾルバリアピペットチップを使用して、溶出した試料を管から注意深く取り除く。捕捉した微粒子は、かき乱さず、または吸引しない。溶出した試料は、未使用の標識した1.5mLの微量遠心管または96ウェルポリプロピレンプレートに入れることができる。注記:Abbott 96ウェル光学反応プレート内への増幅マスターミックスおよび試料溶出液のアセンブリ(ステップ48)は、試料調製の完了後、1時間以内に開始しなければならない。
【0155】
42.Abbott m2000rt機器をオンにし、初期化する。注記:Abbott m2000rtはウォームアップするのに15分を必要とする。
【0156】
43.Abbott m2000rt試験オーダーを作成する。Abbott m2000rt操作マニュアルの操作説明書の段落を参照のこと。プロトコルスクリーンから、AbbottリアルタイムMTBアッセイ増幅プロトコルを選択する。注記:試薬調製領域に戻る前に手袋を取り外す。
【0157】
44.増幅マスターミックスを調製する。注記:全ての試薬調製は専用の試薬調製領域において行われるべきである。増幅試薬を扱う前に手袋を交換する。増幅試薬パックをボルテックスせず、または反転させない。各増幅試薬パックは最大24個の反応を支援する。使用前に増幅試薬が完全に解凍していることを確実にする。増幅試薬を開封する前に、バイアルの底に液体がもたらされるように増幅試薬パックをベンチ上で直立位置において軽くたたくことによって増幅試薬パックの内容物が底にあることを確実にする。以下のように増幅試薬を識別する:活性化試薬(試薬1):;MTB増幅試薬(試薬2);DNAポリメラーゼ(試薬3);キャップを取り除き、捨てる。試薬の使用のみに専用の目盛り付き精密ピペットを使用して、298μLの活性化試薬(試薬1)および418μLのMTB増幅試薬(試薬2)をDNAポリメラーゼボトル(試薬3)に添加してマスターミックスを作製する。穏やかに上下に5回ピペット操作することによって混合する。泡状物の発生を回避する。
【0158】
45.マスターミックスの内容物をDNAポリメラーゼボトルから1.5mLの微量遠心管(リスト番号4J71−50または等価物)内にピペットにより入れる。穏やかに上下に5回ピペット操作することによって混合する。泡状物の発生を回避する。
【0159】
46.Abbott 96ウェル光学反応プレートをAbottスプラッシュフリーサポートベースに置いて汚染を防ぐ。Abbott 96ウェル光学反応プレートの底の蛍光物質による汚染は、MTBアッセイを妨げる可能性があり得る。Abbott 96ウェル光学反応プレートは、汚染を最小化するためにAbbottスプラッシュフリーサポートベースにより保持し、移送すべきである。
【0160】
47.試薬の使用のみに専用の精密ピペットを使用して、増幅マスターミックスの25μLアリコートを、試料および対照を実行するために使用されるAbbott 96ウェル光学反応プレートの各ウェルに分注する。目盛り付きリピートピペッタを使用することができる。カラム1(上部から底部)から開始して、左から右へ各々の連続するカラムに移動する順序でマスターミックスを添加する。25μLが各ウェルに分注されていることを目視で確認する。AbbottスプラッシュフリーサポートベースにおけるAbbott 96−ウェル光学反応プレートを試料調製領域に移す。
【0161】
48.各試料について目盛り付きピペッタおよび未使用の滅菌した200μLのエアロゾルバリアピペットチップを使用して、25μLの各溶出試料をAbbott 96ウェル光学反応プレートに移す。各試料を移送している間、上下に3から5回ピペット操作することによって最終反応物を混合する。合計50μLが各ウェルに分注されていることを目視で確認する。
【0162】
49.Abbott m2000rt操作マニュアル、操作説明書のセクションにおける指示に従ってAbbott 96ウェル光学反応プレートを密閉する。
【0163】
50.AbbottスプラッシュフリーサポートベースにおけるAbbott 96ウェル光学反応プレートを5000gにて5分間遠心分離する。
【0164】
51.AbbottスプラッシュフリーサポートベースにおけるAbbott 96ウェル光学反応プレートを増幅領域に移送する。注記:Abbott m2000rtプロトコル(ステップ52)は、マスターミックス添加およびPCRプレート調製(ステップ44)の開始後、90分以内に開始しなければならない。
【0165】
52.Abbott 96ウェル光学反応プレートをAbbott m2000rt機器に置き、作成した試験オーダーを選択し(ステップ43)、Abbott m2000rt操作マニュアル、操作説明書のセクションに記載されているようにAbbottリアルタイムMTBアッセイ適用プロトコルを開始する。実行の完了時に、アッセイ結果がAbbott m2000rtにおいて報告される。
【0166】
[実施例5]
実験データ−不活性化
IR TB死滅効果を評価した。この実験において、MTB含有試料(不活性化前に既知のMTB濃度に希釈した培養MTBおよびMTB含有NALC−NaOH沈殿物)を実施例3の不活性化手段に供した。不活性化後、過剰の不活性化試薬を遠心分離/洗浄によって除去し、生存細胞を最大42日または6週間MGIT培養物に入れた。この期間はMTB培養に推奨される最も長い時間であり、ほとんどのMTB陽性検体は、培養の開始から20日以内に検出可能な培養物の増殖を生じる)。以下の表5は不活性化後、培養試料を試験したときに得られた結果を示す。不活性化していないMTBからなる陽性対照(PC)は、予想される20日のタイムフレーム内に増殖を実証したが、陰性対照(NC)は増殖を示さなかった。
【0167】
【表5】
【0168】
これらのデータにより、MTBを不活性化するための不活性化手段の効果が実証される。
【0169】
[実施例6]
分析的包括性
MTB複合体の8種の亜種および20個の試料(M.ツベルクロシス、M.アフリカヌム(M.africanum)、M.ボビス(M.bovis)、M.ボビスBCG(M.bovis BCG)、M.カネッティ(M.canettii)、M.ミクロティ(M.microti)、M.カプラエ(M.caprae)、M.ピンニペディ(M.pinnipedii.))をATCCから得(M.カネッティはPublic Health Research Instituteから受け取った。)、10から100個のゲノムDNAコピー/反応を試験した(表6を参照のこと)。8種全ての亜種を両方のレベルにおいて検出した。
【0170】
【表6】
【0171】
Public Health Research Instituteから得た46個の系統発生的および地理的に多様なMTB分離DNA(50%超がMDRを有する)について25から100個のゲノムDNAコピー/反応を試験した(
図2)。試験した全ての亜種を検出した。
【0172】
[実施例7]
分析的特異性
1e5から1e7個のゲノム/mLの標的濃度における異なるマイコバクテリア、ウイルスおよび他の微生物(n=80)ならびに1×10
6cfu/mLにおける培養微生物から精製した核酸をMTB陰性対照に添加して、MTB陰性検体についてのMTBアッセイの結果に対する潜在的交差反応物の効果を評価した。1×10
6から1×10
7個のゲノム/ミリリットルの標的濃度における異なるマイコバクテリア、ウイルスおよび他の微生物ならびに1e6cfu/mLにおける培養微生物から精製した核酸をMTB陽性試料に添加して、MTB陽性検体についてのMTBアッセイ結果に対する潜在的交差反応物の効果を評価した。陰性対照における熱不活性化したMTB細胞ストックを1000個のコピー/mL(ゲノムDNA曲線を使用して定量した)の標的濃度に希釈することによってMTB陽性試料を調製した。潜在的交差反応により試験したMTB陰性試料はどれも検出されなかった。潜在的交差反応により試験した80個全てのMTB陽性試料は検出された。
【0173】
【表7】
【0174】
[実施例8]
分析的感度
40cfu/mLにおけるMTBパネル、株H37Rvを、プールしたMTB陰性喀痰において連続希釈して感度パネルを生成した。各希釈液について16個の複製を試験した。160倍以下の全ての希釈において100%の検出率を観察した。結果を表8に示す。
【0175】
【表8】
【0176】
[実施例9]
臨床的特異性
培養陰性NACL試料(n=155)、喀痰(n=23)およびBAL(n=28)試料(NACL試料はMTBの疑いのある集団に由来した。喀痰およびBAL試料はTB症状を有さない患者に由来した。)を試験して臨床的特異性を決定した(以下の表10にまとめたデータを参照のこと)。喀痰およびBAL試料に対する特異性は100%であった。NALC試料に対する特異性は98.7%であり、全体の特異性は99%であった。
【0177】
【表9】
【0178】
【表10】
【0179】
リアルタイムMTBにより、比較物のアッセイと比較して下限の試料において良好な感度が示された。
【0180】
[実施例10]
MTBアッセイの分析的および臨床的性能
この実施例はリアルタイムMTB検出アッセイの分析性能を記載している。
【0181】
材料および方法
リアルタイムMTBアッセイについてのワークフローは
図1に記載している。
【0182】
試料不活性化
以下の成分:20mLの10M NaOH、300mLのイソプロパノール、0.9mLのTween−20および179.1mLの精製水を組み合わせることによって500mLの不活性化試薬(IR)を調製した。調製すると、IRは室温にて最大1ヶ月間安定であった。凍結した場合、検体(未処理の検体または処理したNALC沈殿物)を15°から30℃にて解凍した。およそ3体積のIRを各体積の試料に添加した(最小の許容可能な検体体積は0.3mLである。)。試料の種類(未処理またはNALC沈殿物)に関係なく同じ体積比の試料:IRを維持した。最初の時間の室温のインキュベーションの間、混合物を各々20から30秒間で2回ボルテックスした。有効なインキュベーション時間は1から24時間であった。不活性化プロセスはバイオフード下で行った。完了すると、不活性化した試料をバイオフード下から取り除き、次いでバイオフードの外側で試料調製に供した。不活性化プロセスは、喀痰のNALC沈殿物に添加した培養MTB、MTB陽性臨床NALC沈殿物およびMTB塗抹/培養陽性喀痰試料を使用して3つの異なる実験室にてMTB生存率を効果的に減少させることが実証された(Qi C.ら、Effectiveness of the sample inactivation procedure employed by the new Abbott RealTime assay for the detection of Mycobacterium tuberculosis、24th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) 2014年)。
【0183】
試料調製
IR処理した検体およびアッセイ対照をm2000sp機器上にロードし、そこで、グアニジニウムチオシアネート−磁性微粒子技術を使用してDNAを分離して核酸を捕捉し、続いて洗浄して未結合の成分を除去した。試料調製の開始時に内部対照(IC)を添加した。結合した核酸を溶出し、96ディープウェルプレートに移送した。試料調製の完了時に、m2000spを使用して、AmpliTaq Gold Polymerase、塩化マグネシウム活性化試薬ならびにプライマー、プローブおよびdNTPを含有するオリゴヌクレオチド試薬からなる増幅マスターミックスを作製した。m2000spを使用して、マスターミックスの25μlアリコート、続いて抽出した溶出液の25μlアリコートを96ウェル光学反応プレートに分注した。プレートを手動で密閉し、リアルタイムPCRのためにm2000rtに移送した。m2000spの代替として、試料調製、マスターミックス調製およびPCRプレートセットアップを手動で行うことができる。
【0184】
増幅および検出
m2000rt機器を増幅およびリアルタイム蛍光検出のために使用した。MTB複合体メンバーの検出(Warren RMら、Int J Tuberc Lung Dis 2006年;10巻:818−822頁)を2セットのプライマー;挿入エレメントIS6110を標的とするもの(Thierry Dら、Nucleic Acids Res 1990年;18巻:188頁)およびPAB遺伝子を標的とするもの(Anderson AB、Hansen EB Infect Immun 1989年;57巻:2481−2488頁)の使用によって達成した。MTB複合体検出のための信号は、蛍光標識したプローブの使用により生成した。MTB二重標的プローブは各々、5’末端においてフルオロフォアFAMおよび3’末端においてブラックホールクエンチャー(BHQ1)により標識する。したがって、IS6110およびPABの両方からのMTB信号を同じFAMチャネルにおいて検出する。FAM蛍光信号を検出する増幅サイクルは、元の試料中に存在するMTB DNA濃度の対数に比例する。内部対照(IC)についてのプローブを、ICおよび標的信号を単一のPCRウェルにおいて区別することができるように5’においてQuasarおよび3’末端においてブラックホールクエンチャーBHQ2により標識する。
【0185】
アッセイ対照
最低でも陰性対照の1つの複製および陽性対照の1つの複製を使用して実行の妥当性を決定した。陰性対照はTE緩衝液および防腐剤からなった。陽性対照は、1.5g/mLのポリdA:dTおよび防腐剤を有するTE緩衝液中で希釈したIS6110およびPAB標的配列の両方を含有するプラスミドDNAからなった。ICは、1.5g/mLのポリdA:dTおよび防腐剤を有するTE緩衝液中で希釈したカボチャヒドロキシピルビン酸レダクターゼ(HPR)配列挿入物を含有するプラスミドDNAからなった。試料調製の開始時にICを添加し、これは、試料調製物回収、試料阻害および増幅効率についての対照として役立つ。ICは不活性化手段についての対照ではなかった。各試料と実行対照との間のIC閾値サイクル(Ct)値の差を使用して、各試料の結果の妥当性を評価した。
【0186】
パネルおよび臨床検体
MTB複合体亜種:19個のMTB複合体亜種DNA試料はアメリカンタイプカルチャーコレクション(ATCC、Manassas、VA)から得、1個(M.カネッティ)は親切にもIbis Biosciences(Carlsbad、CA)によって与えられた。M.アフリカヌム25420、M.アフリカヌム35711、M.ボビス35735、M.ボビス19274、M.ボビスBCG 35746、M.ボビスBCG 35747D、M.カネッティ、M.カプラエBAA−824D、M.ミクロティ11152、M.ミクロティ19422、M.ピンニペディBAA−688D、MTB 25177D−5(H37Ra)、MTB 25618D−5(H37Rv)、MTB BAA−2236D、MTB BAA−2237D、MTB 27294D、MTB BAA−2234D、MTB 35822D、MTB 35838D、MTB BAA−2235Dを含む合計20個のMTB複合体株を試験した。さらに、3つの主要な遺伝子群および9つの遺伝子クラスターを含むMTB亜種の46個の株は、University of Medicine and Dentistry New Jersey(Newark、NJ)のDr.Barry Kreiswirthから得た(Mathema Bら、Current Insights、Clinical Microbiology Reviews 2006年;19巻:658−685頁)。ATCCおよびIbisから得た20種のMTB複合体亜種のDNAを、PicoGreen(登録商標)NanoDrop法によって決定されているように、報告されたDNA濃度を使用して直接試験した。他の46のDNA濃度は、3個の試料(このような測定は少ない体積および不純物に起因して得ることができなかった。)を除いてAbbott MolecularにおいてPicoGreen(登録商標)NanoDrop測定を使用して決定した。これらの3個の試料は1:600の試料対水の比にて希釈し、直接試験した。
【0187】
検出限界[LOD]:1×10
5コロニー形成単位(cfu)/mLを標的とするMTB H37RvパネルをZeptometrix(Buffalo、NY)によって調製した。Zeptometrixパネルの3つの1mLアリコートを合わせ、3,000×gにて15分間遠心分離して、上清中の遊離MTB DNAを除去した。細胞ペレットを3mLのTE緩衝液中に再懸濁して、1×10
5cfu/mLの濃度を維持した。次いで細胞を喀痰のプールに添加し、これを、ビーズビーティングを使用して均質化して、以下のMTB含有希釈パネル:80cfu/mL、50cfu/mL、25cfu/mL、10cfu/mL、5cfu/mL、1cfu/mL、0.50cfu/mL、0.10cfu/mLおよび0.05cfu/mLを作製した。
【0188】
分析的特異性:分析的特異性パネルメンバーは以下のように収集した:サイトメガロウイルス、単純ヘルペスウイルス1およびバリセラ・ゾスターウイルスはAdvanced Biotechnology Inc.(Columbia、MD)から得、69個のマイコバクテリアおよび他の微生物種はATCCから得、8個の細菌分離株はAbbott Molecularにおいて培養した。
【0189】
潜在的な干渉物質:以下の材料をこの試験のために得た:血液、ヒト細胞由来のDNA、胃酸、高張食塩水、生理食塩水、培養培地、NALCペレット材料、5つの抗TB薬(イソニアジド、リファンピシン、ストレプトマイシン、ピラジナミド、エタンブトール)およびウシ粘液。
【0190】
キャリーオーバー:2つの試料を調製した:アッセイ標的配列を含有する1×10
7個のコピー/mLのプラスミドを含有する高陽性MTB試料および陰性試料。
【0191】
再現性:2つの試料を調製した:主張されているアッセイLODの約3倍のMTB濃度を含有する陽性試料および陰性試料。
【0192】
臨床検体:198個の喀痰検体は、ロシア、南アフリカ、ウガンダおよびベトナムにおけるTBの疑いのある患者からDiscovery Life Sciences(Los Osos、CA)によって収集した。ベトナムからの150個の喀痰検体は、Foundation for Innovative New Diagnostics(FIND)(Geneva、スイス)が運営している検体バンクから得た。234個のNALC検体は、Northwestern University Memorial Hospital(Chicago、IL)から得た。全ての患者の検体は倫理的ガイドラインの下で収集した。患者のHIV状態は決定されなかった。全ての検体について、塗抹(利用可能な場合)および培養試験を収集場所の近くで実施し、一方、AbbottリアルタイムMTBアッセイ試験をAbbott Molecularにおいて実施した。
【0193】
結果
MTB複合体亜種検出
この試験は、MTBアッセイに使用される特異的プライマーおよびプローブが、以下の8種のMTB複合体亜種:M.アフリカヌム、M.ボビス、M.ボビスBCG、M.カネッティ、M.カプラエ、M.ミクロッティ、M.ピンニペディおよびM.ツベルクロシスを検出するかどうかを決定するために行った。2セットの精製したMTB複合体DNAを試験した。第1のセットの20個の精製したDNAは代表的な前述のMTB亜種を含有した。各々の精製したDNAを2つの濃度(100および10個のゲノム/反応)にて試験し、1つの濃度につき4つの複製を試験した。1つの反応レベルにつき100個のMTBゲノムにおいて、20個のMTB株の各々の4個の全ての複製を検出した。1つの反応レベルにつき10個のMTBゲノムにおいて、17個の株の4個の全ての複製を検出した。3個の株(2個のM.ボビスおよび1個のM.ボビスBCG)について、4個の複製のうち2個を検出した(
図4)。MTB亜種由来の46個のMTB株の第2のセットを2つの濃度:100個のゲノム/反応および25個のゲノム/反応にて試験した。各DNAの4つの複製を各濃度にて試験した。試験した複製の全ては両方の濃度にて陽性であった(
図2)。
【0194】
検出限界(LOD)
9つのレベルの希釈系列を、ガラスビーズで均質化した喀痰プール中で希釈したMTB株H37Rv細胞から作製した。希釈系列におけるパネルメンバーを以下の濃度:80cfu/mL、50cfu/mL、25cfu/mL、10cfu/mL、5cfu/mL、1cfu/mL、0.50cfu/mL、0.10cfu/mLおよび0.05cfu/mLに標的化した。各パネルメンバーの20個の複製を、AbbottリアルタイムMTBアッセイを使用して4回の実行にわたって試験した。この試験はMTBアッセイの1つのロットおよび対照試薬を使用して行った。この試験についての有意水準は0.05であった。各標的濃度について検出率を計算した(表11)。プロビット回帰モデルを、独立変数として標的濃度(X)および応答変数として検出率P(Y=1)により、SASにおけるPROC PROBITを使用して標的濃度および検出率に基づいて適合した。データのプロビット分析により、95%の確率で検出したMTBの濃度は2.45cfu/mL(95%CI 1.44−6.10cfu/mL)であることを決定した。AbbottリアルタイムMTBアッセイの主張されている分析的感度は、MTB H37Rv株を使用してプールした均質化した喀痰において17cfu/mLである。
【0195】
分析的特異性
80個の潜在的交差反応物の各々をMTB陽性試料およびMTB陰性試料の両方において試験した。1×10
5から1×10
7個のコピーまたはゲノム/mLの標的化濃度にて各々の潜在的に交差反応しているマイコバクテリウム、ウイルスまたは他の微生物由来の核酸をMTB陽性試料(1,000個のMTBゲノム/mLを含有する)およびMTB陰性試料に添加した。1×10
6cfu/mLの標的濃度にて培養した微生物をMTB陽性試料およびMTB陰性試料に添加した。80個全ての陰性試料についてのアッセイ結果を、「MTB非検出」と報告した。80個全てのMTB含有試料についてのアッセイ結果を、「MTB検出」と報告した(表7)。
【0196】
潜在的干渉物質
試験結果における干渉についての可能性を、呼吸器系に存在し得る物質により評価した。MTB陰性およびMTB陽性(500個のコピー/mL)試料を、レベルを高めたウシ粘液、血液、ヒト細胞由来のDNA、胃酸、高張食塩水、生理食塩水、培養培地、NALCペレット材料および5種の抗TB薬(イソニアジド、リファンピシン、ストレプトマイシン、ピラジナミド、エタンブトール)を有する各々の潜在的干渉物質の非存在下または存在下で試験した(表12)。結果は、高レベルの血液、ヒト細胞由来のDNA、胃酸、高張食塩水、生理食塩水、培養培地、NALCペレット材料および5種の抗TB薬(イソニアジド、リファンピシン、ストレプトマイシン、ピラジナミド、エタンブトール)の存在下でMTBアッセイの性能の干渉を示さなかった。AbbottリアルタイムMTBアッセイの干渉は、ウシ粘液の存在下で8.3%(5個全ての複製は偽陰性であり、または阻害された。)および5.0%(5つの複製のうちの1つは偽陰性であった。)にて観察された。2.5%以下のウシ粘液濃度にて干渉は見られなかった。
【0197】
キャリーオーバー
AbbottリアルタイムMTBアッセイを使用する場合、高陽性MTB試料から陰性試料までのキャリーオーバーの可能性を評価するために、各々96個の試料(陽性対照、陰性対照、1×10
7個のコピー/mLにて46個の高陽性試料および46個の陰性試料)からなる5回のm2000システムを実行し、高陽性試料が陰性試料の中に散在していた。1×10
7個のコピー/mLの高陽性試料におけるMTB濃度は、MTBアッセイにより試験したMTB陽性集団の検体から得られた結果の95%以上より早いCt値をもたらした。このアッセイは、5回の実行において高陽性試料から230個の陰性試料までのキャリーオーバーを全く示さなかった。96回の試料実行は8時間未満で完了した。
【0198】
再現性
再現性試験を実施して、m2000システムにおいてAbbottリアルタイムMTBアッセイの再現性およびAbbott m2000sp機器と手動の試料調製法との間の適合性を評価した。この試験は、主張しているLODレベルの3倍の陽性パネルおよび陰性パネルにより実施した。この試験はMTB増幅試薬の2つのロットを使用して4人の操作者によって行った:実施した2人の操作者はAbbott m2000sp機器を使用して実行し、実施した2人の操作者は手動の試料調製を使用して実行した。各々の試料調製法について、2人の操作者の各々は、AbbottリアルタイムMTB増幅試薬の1つの特有のロットを使用し、1つのパネルメンバー当たり、5日間で1日1回、8個の複製、合計40個の複製について各々のパネルメンバーを試験した(1つの方法につき1つのパネルメンバー当たり合計80個の複製;m2000sp機器試料調製により合計160個を試験し、手動試料調製により合計160個を試験した。)。予想される結果との全体の一致は、Abbott m2000sp機器または手動試料調製により調製した試料について98.1%のより低い95%CIで100%であった(159/159、1つの試料は機器のエラーのために無効であった。)。MTBアッセイは、Abbott m2000sp機器およびAbbott手動試料調製法の両方と適合する。
【0199】
臨床的感度および特異性
582人のTBの疑いのある患者の各々からの1つの喀痰または1つのNALC沈殿物を試験した。試料は、ロシア、南アフリカ、ウガンダ、米国およびベトナムから収集した。1つのアリコートでMTBならびに2番目のアリコートで塗抹および培養物の試験を可能にするように各検体を分割した。試験試料を盲目にし、最終結果のデコーディングをAM統計群によって実施した。MTB試験について、2つの検体は無効なIC結果を生じ、さらなる4つの検体の結果はm2000エラーコードを与えた。阻害によって測定した無効な結果を有する臨床検体の頻度は0.3%(2/582)であり、一方、阻害および機器のエラーの両方を含む無効率は1.0%(6/582)であった。本明細書に記載されているMTBアッセイおよび市販のMTB NAATの両方によって陽性であった5個の培養陰性検体は分析から除外した。合計571個の有効な試料をデータ分析のために含んだ。培養物に対する全体のMTB感度は93%(198/212)であった。アッセイ感度は塗抹陽性、培養陽性検体において99%(147/149)であり、塗抹陰性、培養陽性試料において81%(51/63)であった。特異性は97%(348/359)であった(表13)。MTB陰性試料のうちの76個は非結核性マイコバクテリア(NTM)を含んでいた。これらのうち、38個はMAC(M.アビウム複合体)であり、7個はM.ゴルドネであり、5個はM.カンサシであり、5個はM.ケロネー/アブセサスであり、3個はM.キセノピであり、18個は他のマイコバクテリ種を含んでいた。本明細書に記載されているMTBアッセイにより、NTM試料結果の全ては、40のアッセイカットオフと比較して遅いCN(>38)値を有する「MTB検出」結果を生じた2つの試料を除いて「MTB非検出」であった。NTM集団の試験から得られた97%の特異性値は、非NTM集団を試験したときに観察された特異性と同様である。さらに米国集団内から採取した500人の非TBと思われる患者の喀痰試料は100%のTB陰性試験結果を示した。
【0200】
【表11】
【0201】
AbbottリアルタイムMTBデータのプロビット分析により、95%の確率で検出したMTBの濃度は、CNカットオフ40にて2.45cfu/mLであったことが実証された(1.44−6.10cfu/mLの95%信頼区間)。
【0202】
【表12】
【0203】
【表13】
【0204】
[実施例11]
不活性化試薬
この実施例は、MTB検出アッセイにおける使用のための不活性化試薬を記載している。このアッセイは、呼吸器検体(喀痰、気管支肺胞洗浄液(BAL)ならびに喀痰および気管支肺胞洗浄液(BAL)のN−アセチル−L−システイン(NALC)沈殿物中のMTB複合体DNAを検出するためのNAATである。バイオセーフティーキャビネットの外側で試料の安全な試験を可能にするために、粘性試料を液化し、MTB生存率を低下させるための試料不活性化試薬および手段を開発した。この試験は、試料不活性化手段の効果を評価し、不活性化試薬(IR)の安定性を決定することであった。
【0205】
粘性低下試験のために、150個の喀痰試料を1:2または1:3の比でIR(0.6%の水酸化ナトリウム[w/v]、60%のイソプロパノール[v/v]および1.8%のTween−20[v/v])と混合した。混合物を激しくボルテックスし、室温にてインキュベートした。混合物をインキュベーションの20から30分後に再びボルテックスした。粘度の低下を、インキュベーションの30分、60分および24時間後に目視検査によって評価した。
【0206】
不活性化試験について、2個のMTB臨床分離株およびMTB ATCC27294分離株を使用して、1×10
6、1×10
7または1×10
8cfu/mLの濃度の1mLのMTB細胞懸濁液を、4mLのプールしたMTB陰性NALC処理した呼吸器試料と混合することによって偽MTB陽性呼吸器試料を調製した。次いで各偽MTB NALC試料を1:2または1:3の比にてIRと混合した。1:2の試料対PBS比にて滅菌PBS緩衝液により処理した偽試料を陽性対照として使用した。1:2のPBS対NALCの比にて滅菌PBSをプールしたMTB陰性NALC試料に添加することによって陰性対照を調製した。全ての試料/対照を激しくボルテックスし、室温にて60分間インキュベートした。ボルテックスをインキュベーション内で30分繰り返した。インキュベーションの終わりに、IR処理した試料を新たな50mLの管内に移し、ボルテックスし、3000×gにて15分間遠心分離した。沈殿物を10mLの滅菌PBS中で再懸濁し、3000×gにてさらに15分間遠心分離した。ペレットを各々10mLの滅菌PBS中に再懸濁した。1mLの懸濁液を使用して、マイコバクテリア増殖指標管(MGIT)に接種した。最終MTBを1−2×10
4から1−2×10
6cfuの範囲の各々のMGIT培養物に添加した。さらに、合計51個の喀痰のMTB陽性臨床NALC沈殿物(20個はNorthwestern Memorial Hospitall由来および31個はLancet Laboratories由来)を、同じ手段により1:3の試料対IRの比にてIR処理後の増殖について試験した。Northwestern Memorial Hospital由来の20個の試料のうち10個を1:2の試料対IR比にて処理した。残りの41個の試料を1:3の試料対IR比により処理した。培養は、BACTEC MGIT 960システム(Becton Dickinson、Sparks、MD)により42日間実施した。陽性増殖は、Gen−Probe Accuprobe(登録商標)システム(Gen−Probe Inc、San Diego、CA)により識別した。直接呼吸器試料(MTB塗抹および培養陽性喀痰試料)の不活性化効率を実証するための初期試験もまた、以下の段落に記載されているIR安定性試験と組み合わせて実施した。
【0207】
IRについての最適な保存条件を決定するために、IRの3つのアリコートを、ガラスまたはポリプロピレンボトル中で15−30℃および33−37℃の保存条件にて39日間保存した。各保存条件におけるIRの各アリコートを外観および体積の変化について調べ、1:3の試料対IR比を使用して、SAGE Bio Networks(Dhaka、バングラディシュ)およびFoundation for Innovative New Diagnostics(FIND)MTB検体バンクから得た12個のMTB塗抹および培養陽性喀痰試料での39日の保存後、MTB不活性化効力について試験した。Zeptometrix Corporation(Buffalo、New York)から得たMTB株H37Rv細胞パネルを陽性対照として使用した。
【0208】
粘性低下試験により、60分のインキュベーションが試料の粘度を低下させるのに十分であることが示された。不活性化試験について、1×10
8、1×10
7および1×10
6cfu/mLにて3つのMTB分離株により調製した偽MTB試料のどれも、1:3の試料対IR比にてIRにより処理した後、MTB増殖を示さなかった。1×10
7cfu/mLのMTBにより調製し、1:2の試料対IR比にてIRにより処理した1つのIR処理済み試料は、インキュベーションの27日後に増殖を示したが、試験した同じ細菌濃度における2回の反復は増殖について陰性を示した。20個のMTB陽性NALC喀痰沈殿物のどれも、1:2または1:3の試料対IR比におけるIRによる処理後、MTB増殖を示さなかった。さらに、培養によってMTBについて以前に試験して陽性であった31個の臨床NALC喀痰沈殿物は、1:3の試料対IR比にてIR処理を受けた後、MTB増殖について試験して陰性であった。
【0209】
保存後の外観の変化は39日後に観察されなかった。0から6%の体積喪失が保存の39日後に観察された。最も高い6%の体積喪失は、IRが33−37℃にてポリプロピレン容器中で保存されたときに観察された。しかしながら、不活性化MTBに対するIR溶液の効果は保存後に影響を受けなかった。12個のMTB陽性喀痰試料は、上記の様々な濃度下で保存したIRにより処理した後、増殖を示さなかった。
【0210】
臨床試料中のいくつかのMTBは、推奨されるCepheid GeneXpert MTB/RIF試料不活性化プロセス(15分のインキュベーション時間および1:2の試料対試料試薬比)で残存したことは注目に値した(Banada、P.Pら、2010年.J.Clin.Microbiol.48巻:3551−3557頁)。著者らは、完全なMTB不活性化が長時間のインキュベーション時間を必要とし得ることを示唆した。本明細書に記載されている試験によって生成された実験データは、推奨されたボルテックスステップを使用して60分間実施した試料不活性化が完全なMTN不活性化に十分であったことを実証した。
【0211】
1:2の試料対IR比を使用した場合、1×10
7MTB cfu/mL培養物(MGIT培養物中に2×10
5cfu/mL)の1つの複製は、MGIT培養物のインキュベーションの27日後に増殖を示した。以前の試験により、10cfu/mLのMTBを含有するMGIT培養物が16日のインキュベーション後に陽性になったことが示され、その結果により、1:2の試料対IR比を使用した場合、非常に少ない数のMTBが不活性化プロセスを生き延びたことが示唆された(Tortoli、E.、P.ら、J.Clin.Microbiol.37(11)巻:3578−3582頁;Wallisら、1999年.Antimicrobial Agents and Chemotherapy、43巻:2600−2606頁)。最適な不活性化効率を達成するために、1:3の試料対IR比を不活性化実験の残りに使用した。
【0212】
結論として、この試験において評価したIRは、1:3の試料対IR比にて60分間、IRにより処理した場合、喀痰試料を液化することができ、臨床検体中のMTBの効果的な不活性化を達成できた。この不活性化手段により、これらの試料を、適切な不活性化手段後にバイオセーフティーキャビネットの外側で安全に扱うことができる。