(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0009】
以下、本発明を詳細に説明する。本発明において「X〜Y」は、XおよびY、すなわち両端の値を含む。本発明において「XまたはY」は、XかYの一方、あるいはXとYの双方を意味する。
【0010】
1.製造方法
(1)τ
本発明の製造方法は、(A)マグネシウム、チタン、ハロゲン、および特定の内部電子供与体化合物を含む固体触媒、(B)有機アルミニウム化合物、ならびに(C)外部電子供与体化合物であって、触媒を調製してからα−オレフィン類と接触させるまでの時間をτとするとき、当該τが180秒以下である。本発明の製造方法の概要を
図1に示す。
【0011】
具体的に、成分(B)と(C)の接触物を予め調製しておき、これと成分(A)を接触させて触媒を調製する。成分(B)および(C)を接触させる工程は、公知のとおりに実施できる。例えば、配管、金属容器、撹拌機付き金属容器等を使用して両者を接触させることができる。成分(B)と成分(C)の配合比は(B)1molに対し(C)が0.001〜2.0molが好ましく、0.005mol〜1.0molがより好ましい。通常、成分(B)と(C)を接触する温度の上限は50℃以下が好ましく、40℃以下がより好ましく、30℃以下がさらに好ましく、28℃以下がよりさらに好ましく、下限は3℃以上が好ましく、10℃以上がより好ましく、13℃以上がさらに好ましい。温度が高すぎると触媒が劣化しやすくなり、温度が低すぎると冷却のためのコストが嵩む。接触は不活性溶媒中で行うこともできる。不活性溶媒としては、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレンエチルベンゼンなどの炭化水素化合物が挙げられる。
【0012】
成分(B)および(C)の接触物と、成分(A)とを接触させる工程も同様に実施できる。成分(A)と接触させる成分(B)と成分(C)の量は、成分(A)中に含まれるTi原子1molに対し、成分(B)として30〜3000mol、成分(C)として0.15〜3000molであることが好ましいが、用いる成分(B)ならびに成分(C)の種類によっても変わり得る。これらを接触させる温度についても前述のとおりである。この接触により本発明で使用する触媒を速やかに調製できる。スケールが大きい場合などは、すべての原料が触媒に転化されない場合もあるが、一部でも触媒が生成した時点を触媒が調製された時点という。よって、触媒が調製された時点は、成分(B)および(C)の接触物と成分(A)とが接触を開始した時点でもある。この時点を便宜上τ0とする。
【0013】
次いで、この触媒をα−オレフィン類と接触させる。接触させる工程は公知のとおりに実施できる。例えば、反応器内に仕込まれたα−オレフィン類中に当該触媒を滴下することで両者を接触できる。このα−オレフィン類との接触開始時点を便宜上τ1とする。この時点からα−オレフィン類の重合が可能となる。
【0014】
前記τは触媒が調製されてから使用されるまでの時間であり、τ1−τ0で定義される。すなわちτは「触媒の未使用時間」である。触媒を容器内で調製する場合、τはその滞留時間で調整できる。触媒を配管内で調整する場合、τは管の長さや太さを変えることにより調整できる。
【0015】
本発明においては当該τを180秒以下とする。このようにτを短くすることで触媒の活性を高く維持することができる。この観点から、τの上限は100秒以下が好ましく、50秒以下がより好ましい。また、τの下限は0秒以上でもよい。τが0秒であるとは、触媒の調製と、触媒とα−オレフィン類との接触が同時に起こることである。例えば、反応器内にα−オレフィン類と、成分(B)および(C)の接触物を仕込んでおき、これに成分(A)を滴下すること等によりτ=0秒を達成できる。しかしながら、τの下限は3秒以上が好ましく、5秒以上がより好ましい。
【0016】
従来の技術においてはτという概念自体が存在しないが、発明者らの見積もりによれば、従来技術におけるτは600秒以上であると考えられる。本発明ではτを従来技術よりも短かい特定の時間とすることで触媒活性を向上させる。この機構は明らかではなく、限定されないが、τが長くなると成分(A)中のチタンが成分(B)有機アルミニウム化合物等によって過還元されやすくなり活性が低下するためではないかと推察される。
【0017】
(2)各成分
1)成分(A)
固体触媒成分は、マグネシウム、チタン、ハロゲンおよび電子供与体化合物を必須成分として含有する。この固体触媒成分については、多くの先行技術文献が、その製造方法を提示している。具体的には、この固体触媒成分は、マグネシウム化合物とチタン化合物ならびに電子供与体化合物を相互接触させることにより得られる。例えば、次の方法が知られている。
(1)マグネシウム化合物もしくはマグネシウム化合物と電子供与体化合物との錯化合物を電子供与体化合物または有機アルミニウム化合物やハロゲン含有ケイ素化合物のような反応助剤で予備処理するかまたは予備処理せずに得た固体と、反応条件下に液相をなすチタン化合物とを、反応させる方法(前記錯化合物は、電子供与体化合物、粉砕助剤等の存在下または不存在下で粉砕して用いてもよいし粉砕せずに用いてもよい)、
(2)マグネシウム化合物の液状物と、液状のチタン化合物を電子供与体化合物の存在下または不存在下で反応させて固体状のチタン複合体を析出させる方法、
(3)固体状のマグネシウム化合物と液状のチタン化合物および電子供与体化合物と反応させる方法、
(4)上記(2)や(3)で得られるものに、さらにチタン化合物を反応させる方法、
(5)上記(1)や(2)や(3)で得られるものにさらに電子供与体化合物およびチタン化合物を反応させる方法、
(6)マグネシウム化合物またはマグネシウム化合物と電子供与体化合物との錯化合物を、電子供与体化合物、およびチタン化合物の存在下に粉砕し、電子供与体化合物または有機アルミニウム化合物やハロゲン含有ケイ素化合物のような反応助剤で予備処理するかまたは予備処理せずに得た固体を、ハロゲンもしくはハロゲン化合物または芳香族炭化水素で処理する方法(前記粉砕は、粉砕助剤等の存在下で行ってもよい)、
(7)前記(1)〜(5)で得られる化合物を、ハロゲンもしくはハロゲン化合物、または芳香族炭化水素で処理する方法。
【0018】
成分(A)の調製に用いられるチタン化合物として、一般式:Ti(OR)
gX
4−gで表される4価のチタン化合物が好適である。式中、Rは炭化水素基、Xはハロゲン、0≦g≦4である。チタン化合物として、より具体的にはTiCl
4、TiBr
4、TiI
4などのテトラハロゲン化チタン;Ti(OCH
3)Cl
3、Ti(OC
2H
5)Cl
3、Ti(O
n−C
4H
9)Cl
3、Ti(OC
2H
5)Br
3、Ti(OisoC
4H
9)Br
3などのトリハロゲン化アルコキシチタン;Ti(OCH
3)
2Cl
2、Ti(OC
2H
5)
2Cl
2、Ti(O
n−C
4H
9)
2Cl
2、Ti(OC
2H
5)
2Br
2などのジハロゲン化アルコキシチタン;Ti(OCH
3)
3Cl、Ti(OC
2H
5)
3Cl、Ti(O
n−C
4H
9)
3Cl、Ti(OC
2H
5)
3Brなどのモノハロゲン化トリアルコキシチタン;Ti(OCH
3)
4、Ti(OC
2H
5)
4、Ti(O
n−C
4H
9)
4などのテトラアルコキシチタンなどが挙げられる。これらの中で好ましいものはハロゲン含有チタン化合物、特にテトラハロゲン化チタンであり、より特に好ましいものは、四塩化チタンである。
【0019】
成分(A)の調製に用いられるマグネシウム化合物としては、マグネシウム−炭素結合やマグネシウム−水素結合を有するマグネシウム化合物、例えばジメチルマグネシウム、ジエチルマグネシウム、ジプロピルマグネシウム、ジブチルマグネシウム、ジアミルマグネシウム、ジヘキシルマグネシウム、ジデシルマグネシウム、エチル塩化マグネシウム、プロピル塩化マグネシウム、ブチル塩化マグネシウム、ヘキシル塩化マグネシウム、アミル塩化マグネシウム、ブチルエトキシマグネシウム、エチルブチルマグネシウム、ブチルマグネシウムハイドライドなどが挙げられる。これらのマグネシウム化合物は、例えば有機アルミニウム等との錯化合物の形で用いることもでき、また、液状であっても固体状であってもよい。さらに好適なマグネシウム化合物として、塩化マグネシウム、臭化マグネシウム、沃化マグネシウム、弗化マグネシウムのようなハロゲン化マグネシウム;メトキシ塩化マグネシウム、エトキシ塩化マグネシウム、イソプロポキシ塩化マグネシウム、ブトキシ塩化マグネシウム、オクトキシ塩化マグネシウムのようなアルコキシマグネシウムハライド;フェノキシ塩化マグネシウム、メチルフェノキシ塩化マグネシウムのようなアリロキシマグネシウムハライド;エトキシマグネシウム、イソプロポキシマグネシウム、ブトキシマグネシウム、n−オクトキシマグネシウム、2−エチルヘキソキシマグネシウムのようなアルコキシマグネシウム;フェノキシマグネシウム、ジメチルフェノキシマグネシウムのようなアリロキシマグネシウム;ラウリン酸マグネシウム、ステアリン酸マグネシウムのようなマグネシウムのカルボン酸塩などを挙げることができる。
【0020】
成分(A)の調製に用いられる電子供与体化合物は、一般には「内部電子供与体」と称される。本発明においては内部電子供与体化合物としてカルボン酸エステルを含む。カルボン酸とはカルボキシル基を含む化合物の総称であり、例えば、コハク酸および2−メチルコハク酸等のコハク酸の誘導体も含む。本発明で用いる内部電子供与体化合物の具体例としては以下が挙げられる。
【0021】
ギ酸メチル、酢酸エチル、酢酸ビニル、酢酸プロピル、酢酸オクチル、酢酸シクロヘキシル、プロピオン酸エチル、酪酸メチル、吉草酸エチル、ステアリン酸エチル、クロル酢酸メチル、ジクロル酢酸エチル、メタクリル酸メチル、クロトン酸エチル、マレイン酸ジブチル、ブチルマロン酸ジエチル、ジブチルマロン酸ジエチル、シクロヘキサンカルボン酸エチル、1,2−シクロヘキサンジカルボン酸ジエチル、1,2−シクロヘキサンジカルボン酸ジ2−エチルヘキシル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、安息香酸オクチル、安息香酸シクロヘキシル、安息香酸フェニル、安息香酸ベンジル、トルイル酸メチル、トルイル酸エチル、トルイル酸アミル、エチル安息香酸エチル、アニス酸メチル、アニス酸エチル、エトキシ安息香酸エチル、ジメチルフタレート、ジエチルフタレート、ジブチルフタレート、ジイソブチルフタレート、ジオクチルフタレート、γ−ブチロラクトン、δ−バレロラクトン、クマリン、フタリド、炭酸エチレンなどの有機酸エステル類。
【0022】
ジエチルスクシネート、ジブチルスクシネート、ジエチルメチルスクシネート、ジエチルジイソプロピルスクシネート、ジアリルエチルスクシネート、α−メチルグルタル酸ジイソブチル、マロン酸ジブチルメチル、マロン酸ジエチル、エチルマロン酸ジエチル、イソプロピルマロン酸ジエチル、ブチルマロン酸ジエチル、フェニルマロン酸ジエチル、ジエチルマロン酸ジエチル、アリルマロン酸ジエチル、ジイソブチルマロン酸ジエチル、ジノルマルブチルマロン酸ジエチル、マレイン酸ジメチル、マレイン酸モノオクチル、マレイン酸ジオクチル、マレイン酸ジブチル、ブチルマレイン酸ジブチル、ブチルマレイン酸ジエチル、β−メチルグルタル酸ジイソプロピル、フマル酸ジ−2−エチルヘキシル、イタコン酸ジエチル、イタコン酸ジブチル、シトラコン酸ジオクチル、シトラコン酸ジメチルなどの脂肪族ポリカルボン酸エステル。
【0023】
1,2−シクロヘキサンカルボン酸ジエチル、1,2−シクロヘキサンカルボン酸ジイソブチル、テトラヒドロフタル酸ジエチル、ナジツク酸ジエチルのような脂環族ポリカルボン酸エステル。
【0024】
モノエチルフタレート、ジメチルフタレート、メチルエチルフタレート、モノイソブチルフタレート、モノノルマルブチルフタレート、ジエチルフタレート、エチルイソブチルフタレート、エチルノルマルブチルフタレート、ジn−プロピルフタレート、ジイソプロピルフタレート、ジn−ブチルフタレート、ジイソブチルフタレート、ジn−ヘプチルフタレート、ジ−2−エチルヘキシルフタレート、ジn−オクチルフタレート、ジネオペンチルフタレート、ジデシルフタレート、ベンジルブチルフタレート、ジフェニルフタレート、ナフタリンジカルボン酸ジエチル、ナフタリンジカルボン酸ジブチル、トリメリツト酸トリエチル、トリメリツト酸ジブチルなどの芳香族ポリカルボン酸エステル。
3,4−フランジカルボン酸などの異節環ポリカルボン酸エステル等。
【0025】
また、多価ヒドロキシ化合物エステルを用いることもでき、その好ましい具体例として、1,2−ジアセトキシベンゼン、1−メチル−2,3−ジアセトキシベンゼン、2,3−ジアセトキシナフタリン、エチレングリコールジピバレート、ブタンジオールピバレートなどを挙げることができる。同様に電子供与体化合物としてヒドロキシ置換カルボン酸のエステルを用いることもでき、その好ましい具体例として、ベンゾイルエチルサリチレート、アセチルイソブチルサリチレート、アセチルメチルサリチレートなどを挙げることができる。
【0026】
固体触媒成分中に担持させることのできる多価カルボン酸ジエステルの他の例としては、アジピン酸ジエチル、アジピン酸ジイソブチル、セバシン酸ジイソプロピル、セバシン酸ジn−ブチル、セバシン酸ジn−オクチル、セバシン酸ジ−2−エチルヘキシルなどの長鎖ジカルボン酸のエステル類を挙げることができる。
【0027】
これらの多官能性エステルの中でコハク酸、フタル酸、マレイン酸、置換マロン酸のジエステルがより好ましく、フタル酸のジエステルおよびコハク酸のジエステルが特に好ましい。エステルの原料となるアルコールは炭素数2以上のアルコールが好ましい。本発明ではフタル酸のジエステルまたはフタル酸誘導体のジエステルを「フタレート系化合物」と、コハク酸のジエステルまたはコハク酸誘導体のジエステルを「スクシネート系化合物」という。フタレート系化合物の具体例はすでに述べたとおりである。
以下、スクシネート系化合物について詳しく説明する。本発明で好ましく使用されるスクシネート系化合物は、以下の式(I)で表される。
【0029】
式中、基R
1及びR
2は、互いに同一か又は異なり、場合によってはヘテロ原子を含む、C1〜C20の線状又は分岐のアルキル、アルケニル、シクロアルキル、アリール、アリールアルキル、又はアルキルアリール基であり;基R
3〜R
6は、互いに同一か又は異なり、水素、或いは場合によってはヘテロ原子を含む、C1〜C20の線状又は分岐のアルキル、アルケニル、シクロアルキル、アリール、アリールアルキル、又はアルキルアリール基であり、同じ炭素原子または異なる炭素原子に結合している基R
3〜R
6は一緒に結合して環を形成してもよい。
R
1及びR
2は、好ましくは、C1〜C8のアルキル、シクロアルキル、アリール、アリールアルキル、及びアルキルアリール基である。R
1及びR
2が第1級アルキル、特に分岐第1級アルキルから選択される化合物が特に好ましい。好適なR
1及びR
2基の例は、C2〜C8のアルキル基であり、例えば、メチル、エチル、n−プロピル、n−ブチル、イソブチル、ネオペンチル、2−エチルヘキシルである。エチル、イソブチル、及びネオペンチルが特に好ましい。
【0030】
式(I)によって示される化合物の好ましい群の1つは、R
3〜R
5が水素であり、R
6が、3〜10個の炭素原子を有する、分岐アルキル、シクロアルキル、アリール、アリールアルキル、及びアルキルアリール基であるものである。このような単置換スクシネート化合物の好ましい具体例は、ジエチル−sec−ブチルスクシネート、ジエチルテキシルスクシネート、ジエチルシクロプロピルスクシネート、ジエチルノルボニルスクシネート、ジエチルペリヒドロスクシネート、ジエチルトリメチルシリルスクシネート、ジエチルメトキシスクシネート、ジエチル−p−メトキシフェニルスクシネート、ジエチル−p−クロロフェニルスクシネート、ジエチルフェニルスクシネート、ジエチルシクロヘキシルスクシネート、ジエチルベンジルスクシネート、ジエチルシクロヘキシルメチルスクシネート、ジエチル−t−ブチルスクシネート、ジエチルイソブチルスクシネート、ジエチルイソプロピルスクシネート、ジエチルネオペンチルスクシネート、ジエチルイソペンチルスクシネート、ジエチル(1−トリフルオロメチルエチル)スクシネート、ジエチルフルオレニルスクシネート、1−(エトキシカルボジイソブチルフェニルスクシネート、ジイソブチル−sec−ブチルスクシネート、ジイソブチルテキシルスクシネート、ジイソブチルシクロプロピルスクシネート、ジイソブチルノルボニルスクシネート、ジイソブチルペリヒドロスクシネート、ジイソブチルトリメチルシリルスクシネート、ジイソブチルメトキシスクシネート、ジイソブチル−p−メトキシフェニルスクシネート、ジイソブチル−p−クロロフェニルスクシネート、ジイソブチルシクロヘキシルスクシネート、ジイソブチルベンジルスクシネート、ジイソブチルシクロヘキシルメチルスクシネート、ジイソブチル−t−ブチルスクシネート、ジイソブチルイソブチルスクシネート、ジイソブチルイソプロピルスクシネート、ジイソブチルネオペンチルスクシネート、ジイソブチルイソペンチルスクシネート、ジイソブチル(1−トリフルオロメチルエチル)スクシネート、ジイソブチルフルオレニルスクシネート、ジネオペンチル−sec−ブチルスクシネート、ジネオペンチルテキシルスクシネート、ジネオペンチルシクロプロピルスクシネート、ジネオペンチルノルボニルスクシネート、ジネオペンチルペリヒドロスクシネート、ジネオペンチルトリメチルシリルスクシネート、ジネオペンチルメトキシスクシネート、ジネオペンチル−p−メトキシフェニルスクシネート、ジネオペンチル−p−クロロフェニルスクシネート、ジネオペンチルフェニルスクシネート、ジネオペンチルシクロヘキシルスクシネート、ジネオペンチルベンジルスクシネート、ジネオペンチルシクロヘキシルメチルスクシネート、ジネオペンチル−t−ブチルスクシネート、ジネオペンチルイソブチルスクシネート、ジネオペンチルイソプロピルスクシネート、ジネオペンチルネオペンチルスクシネート、ジネオペンチルイソペンチルスクシネート、ジネオペンチル(1−トリフルオロメチルエチル)スクシネート、ジネオペンチルフルオレニルスクシネートである。
【0031】
式(I)の範囲内の化合物の他の好ましい群は、R
3〜R
6からの少なくとも2つの基が、水素とは異なり、場合によってはヘテロ原子を含む、C1〜C20の線状又は分岐のアルキル、アルケニル、シクロアルキル、アリール、アリールアルキル、又はアルキルアリール基から選択されるものである。水素とは異なる2つの基が同じ炭素原子に結合している化合物が特に好ましい。具体的には、R
3及びR
4が水素とは異なる基であり、R
5及びR
6が水素原子である化合物である。このような二置換スクシネートの好ましい具体例は、ジエチル−2,2−ジメチルスクシネート、ジエチル−2−エチル−2−メチルスクシネート、ジエチル−2−ベンジル−2−イソプロピルスクシネート、ジエチル−2−シクロヘキシルメチル−2−イソブチルスクシネート、ジエチル−2−シクロペンチル−2−n−ブチルスクシネート、ジエチル−2、2−ジイソブチルスクシネート、ジエチル−2−シクロヘキシル−2−エチルスクシネート、ジエチル−2−イソプロピル−2−メチルスクシネート、ジエチル−2−テトラデシル−2−エチルスクシネート、ジエチル−2−イソブチル−2−エチルスクシネート、ジエチル−2−(1−トリフルオロメチルエチル)−2−メチルスクシネート、ジエチル−2−イソペンチル−2−イソブチルスクシネート、ジエチル−2−フェニル−2−n−ブチルスクシネート、ジイソブチル−2,2−ジメチルスクシネート、ジイソブチル−2−エチル−2−メチルスクシネート、ジイソブチル−2−ベンジル−2−イソプロピルスクシネート、ジイソブチル−2−シクロヘキシルメチル−2−イソブチルスクシネート、ジイソブチル−2−シクロペンチル−2−n−ブチルスクシネート、ジイソブチル−2,2−ジイソブチルスクシネート、ジイソブチル−2−シクロヘキシル−2−エチルスクシネート、ジイソブチル−2−イソプロピル−2−メチルスクシネート、ジイソブチル−2−テトラデシル−2−エチルスクシネート、ジイソブチル−2−イソブチル−2−エチルスクシネート、ジイソブチル−2−(1−トリフルオロメチルエチル)−2−メチルスクシネート、ジイソブチル−2−イソペンチル−2−イソブチルスクシネート、ジイソブチル−2−フェニル−2−n−ブチルスクシネート、ジネオペンチル−2,2−ジメチルスクシネート、ジネオペンチル−2−エチル−2−メチルスクシネート、ジネオペンチル−2−ベンジル−2−イソプロピルスクシネート、ジネオペンチル−2−シクロヘキシルメチル−2−イソブチルスクシネート、ジネオペンチル−2−シクロペンチル−2−n−ブチルスクシネート、ジネオペンチル−2,2−ジイソブチルスクシネート、ジネオペンチル−2−シクロヘキシル−2−エチルスクシネート、ジネオペンチル−2−イソプロピル−2−メチルスクシネート、ジネオペンチル−2−テトラデシル−2−エチルスクシネート、ジネオペンチル−2−イソブチル−2−エチルスクシネート、ジネオペンチル−2−(1−トリフルオロメチルエチル)−2−メチルスクシネート、ジネオペンチル−2−イソペンチル−2−イソブチルスクシネート、ジネオペンチル−2−フェニル−2−n−ブチルスクシネートである。
【0032】
更に、水素とは異なる少なくとも2つの基が異なる炭素原子に結合している化合物も特に好ましい。具体的にはR
3及びR
5が水素と異なる基である化合物である。この場合、R
4及びR
6は水素原子であってもよいし水素とは異なる基であってもよいが、いずれか一方が水素原子であること(3置換スクシネート)が好ましい。このような化合物の好ましい具体例は、ジエチル−2,3−ビス(トリメチルシリル)スクシネート、ジエチル−2,2−sec−ブチル−3−メチルスクシネート、ジエチル−2−(3,3,3−トリフルオロプロピル)−3−メチルスクシネート、ジエチル−2,3−ビス(2−エチルブチル)スクシネート、ジエチル−2,3−ジエチル−2−イソプロピルスクシネート、ジエチル−2,3−ジイソプロピル−2−メチルスクシネート、ジエチル−2,3−ジシクロヘキシル−2−メチルジエチル−2,3−ジベンジルスクシネート、ジエチル−2,3−ジイソプロピルスクシネート、ジエチル−2,3−ビス(シクロヘキシルメチル)スクシネート、ジエチル−2,3−ジ−t−ブチルスクシネート、ジエチル−2,3−ジイソブチルスクシネート、ジエチル−2,3−ジネオペンチルスクシネート、ジエチル−2,3−ジイソペンチルスクシネート、ジエチル−2,3−(1−トリフルオロメチルエチル)スクシネート、ジエチル−2,3−テトラデシルスクシネート、ジエチル−2,3−フルオレニルスクシネート、ジエチル−2−イソプロピル−3−イソブチルスクシネート、ジエチル−2−tert−ブチル−3−イソプロピルスクシネート、ジエチル−2−イソプロピル−3−シクロヘキシルスクシネート、ジエチル−2−イソペンチル−3−シクロヘキシルスクシネート、ジエチル−2−テトラデシル−3−シクロヘキシルメチルスクシネート、ジエチル−2−シクロヘキシル−3−シクロペンチルスクシネート、ジイソブチル−2,3−ジエチル−2−イソプロピルスクシネート、ジイソブチル−2,3−ジイソプロピル−2−メチルスクシネート、ジイソブチル−2,3−ジシクロヘキシル−2−メチルスクシネート、ジイソブチル−2,3−ジベンジルスクシネート、ジイソブチル−2,3−ジイソプロピルスクシネート、ジイソブチル−2,3−ビス(シクロヘキシルメチル)スクシネート、ジイソブチル−2,3−ジ−t−ブチルスクシネート、ジイソブチル−2,3−ジイソブチルスクシネート、ジイソブチル−2,3−ジネオペンチルスクシネート、ジイソブチル−2,3−ジイソペンチルスクシネート、ジイソブチル−2,3−(1−トリフルオロメチルエチル)スクシネート、ジイソブチル−2,3−テトラデシルスクシネート、ジイソブチル−2,3−フルオレニルスクシネート、ジイソブチル−2−イソプロピル−3−イソブチルスクシネート、ジイソブチル−2−tert−ブチル−3−イソプロピルスクシネート、ジイソブチル−2−イソプロピル−3−シクロヘキシルスクシネート、ジイソブチル−2−イソペンチル−3−シクロヘキシルスクシネート、ジイソブチル−2−テトラデシル−3−シクロヘキシルメチルスクシネート、ジイソブチル−2−シクロヘキシル−3−シクロペンチルスクシネート、ジネオペンチル−2,3−ビス(トリメチルシリル)スクシネート、ジネオペンチル−2,2−sec−ブチル−3−メチルスクシネート、ジネオペンチル−2−(3,3,3−トリフルオロプロピル)−3−メチルスクシネート、ジネオペンチル−2,3−ビス(2−エチルブチル)スクシネート、ジネオペンチル−2,3−ジエチル−2−イソプロピルスクシネート、ジネオペンチル−2,3−ジイソプロピル−2−メチルスクシネート、ジネオペンチル−2,3−ジシクロヘキシル−2−メチルスクシネート、ジネオペンチル−2,3−ジベンジルスクシネート、ジネオペンチル−2,3−ジイソプロピルスクシネート、ジネオペンチル−2,3−ビス(シクロヘキシルメチル)スクシネート、ジネオペンチル−2,3−ジ−t−ブチルスクシネート、ジネオペンチル−2,3−ジイソブチルスクシネート、ジネオペンチル−2,3−ジネオペンチルスクシネート、ジネオペンチル−2,3−ジイソペンチルスクシネート、ジネオペンチル−2,3−(1−トリフルオロメチルエチル)スクシネート、ジネオペンチル−2,3−テトラデシルスクシネート、ジネオペンチル−2,3−フルオレニルスクシネート、ジネオペンチル−2−イソプロピル−3−イソブチルスクシネート、ジネオペンチル−2−tert−ブチル−3−イソプロピルスクシネート、ジネオペンチル−2−イソプロピル−3−シクロヘキシルスクシネート、ジネオペンチル−2−イソペンチル−3−シクロヘキシルスクシネート、ジネオペンチル−2−テトラデシル−3−シクロヘキシルメチルスクシネート、ジネオペンチル−2−シクロヘキシル−3―シクロペンチルスクシネートである。
【0033】
式(I)の化合物のうち、基R
3〜R
6のうちのいくつかが一緒に結合して環を形成している化合物も好ましく用いることができる。このような化合物として特許文献10に挙げられている化合物、例えば、1−(エトキシカルボニル)−1−(エトキシアセチル)−2,6−ジメチルシクロヘキサン、1−(エトキシカルボニル)−1−(エトキシアセチル)−2,5一ジメチルシクロペンタン、1−(エトキシカルボニル)−1−(エトキシアセチルメチル)−2一メチルシクロへキサン、1−(エトキシカルボニル)−1−(エトキシ(シクロヘキシル)アセチル)シクロヘキサンを挙げることができる。他には、例えば特許文献6に開示されているような環状スクシネート化合物も好適に用いることができる。
【0034】
他の環状スクシネート化合物の例としては、特許文献7に開示されている化合物も好ましい。
式(I)の化合物のうち、基R
3〜R
6がヘテロ原子を含む場合、ヘテロ原子は窒素およびリン原子を含む第15族原子あるいは酸素およびイオウ原子を含む第16族原子であることが好ましい。基R
3〜R
6が第15族原子を含む化合物としては、特許文献8に開示される化合物が挙げられる。一方、基R
3〜R
6が第16族原子を含む化合物としては、特許文献9に開示される化合物が挙げられる。
【0035】
固体触媒成分に担持させることのできる他の電子供与体化合物は、RCOOR’で示されるモノカルボン酸エステルである。R、R’は置換基を有していてよいヒドロカルビル基であって、少なくともいずれかが分岐鎖状(脂環状を含む)または環含有鎖状の基である。例えばR、R’として、以下の基を挙げることができる。
【0037】
RおよびR’は上記の基であってよい。また、RまたはR’のいずれか一方が上記のような基であれば、他方は他の基、例えば直鎖状、環状の基であってもよい。このような化合物として、ジメチル酢酸、トリメチル酢酸、α−メチル酪酸、β−メチル酪酸、メタクリル酸、ベンゾイル酢酸等の各種モノエステル、イソプロパノール、イソブチルアルコール、tert−ブチルアルコール、などのアルコールの各種モノカルボン酸エステルを挙げることができる。
【0038】
さらに電子供与体化合物として、炭酸エステルを用いることもできる。具体的には、ジエチルカーボネート、エチレンカーボネート、ジイソプロピルカーボネート、フェニルエチルカーボネート、ジフェニルカーボネートなどを挙げることができる。
【0039】
固体触媒成分を構成するハロゲン原子としては、フッ素、塩素、臭素、ヨウ素またはこれらの混合物を挙げることができ、中でも特に塩素が好ましい。
【0040】
2)成分(B)
成分(B)の有機アルミニウム化合物としては以下が挙げられる。
トリエチルアルミニウム、トリブチルアルミニウムなどのトリアルキルアルミニウム;
トリイソプレニルアルミニウムのようなトリアルケニルアルミニウム:
ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシドなどのジアルキルアルミニウムアルコキシド;
エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシドなどのアルキルアルミニウムセスキアルコキシド;
【0041】
R
12.5Al(OR
2)
0.5などで表わされる平均組成を有する部分的にアルコキシ化されたアルキルアルミニウム;
ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミドのようなジアルキルアルミニウムハロゲニド;
エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドのようなアルキルアルミニウムセスキハロゲニド;
【0042】
エチルアルミニウムジクロリド、プロピルアルミニウムジクロリド、ブチルアルミニウムジブロミドなどのようなアルキルアルミニウムジハロゲニドなどの部分的にハロゲン化されたアルキルアルミニウム;
ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリドなどのジアルキルアルミニウムヒドリド;
エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドなどの部分的に水素化されたアルキルアルミニウム;
エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウム。
【0043】
3)成分(C)
成分(C)成分の電子供与体化合物は、一般に「外部電子供与体」と称される。このような電子供与体化合物としては有機ケイ素化合物が好ましい。好ましい有機ケイ素化合物として以下が挙げられる。
【0044】
トリメチルメトキシシラン、トリメチルエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジイソプロピルジメトキシシラン、t−ブチルメチルジメトキシシラン、t−ブチルメチルジエトキシシラン、t−アミルメチルジエトキシシラン、ジフェニルジメトキシシラン、フェニルメチルジメトキシシラン、ジフェニルジエトキシシラン、ビスo−トリルジメトキシシラン、ビスm−トリルジメトキシシラン、ビスp−トリルジメトキシシラン、ビスp−トリルジエトキシシラン、ビスエチルフェニルジメトキシシラン、ジシクロペンチルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルメチルジエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、メチルトリメトキシシラン、n−プロピルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、フェニルトリメトキシシラン、γ−クロルプロピルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、ビニルトリエトキシシラン、t−ブチルトリエトキシシラン、テキシルトリメトキシシラン、n−ブチルトリエトキシシラン、iso−ブチルトリエトキシシラン、フェニルトリエトキシシラン、γ−アミノプロピルトリエトキシシラン、クロルトリエトキシシラン、エチルトリイソプロポキシシラン、ビニルトリブトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、2−ノルボルナントリメトキシシラン、2−ノルボルナントリエトキシシラン、2−ノルボルナンメチルジメトキシシラン、ケイ酸エチル、ケイ酸ブチル、トリメチルフエノキシシラン、メチルトリアリルオキシシラン、ビニルトリス(β−メトキシエトキシシラン)、ビニルトリアセトキシシラン、ジメチルテトラエトキシジシロキサン。
【0045】
中でも、エチルトリエトキシシラン、n−プロピルトリエトキシシラン、n−プロピルトリメトキシシラン、t−ブチルトリエトキシシラン、t−ブチルメチルジメトキシシラン、t−ブチルメチルジエトキシシラン、t−ブチルエチルジメトキシシラン、t−ブチルプロピルジメトキシシラン、t−ブチルt−ブトキシジメトキシシラン、t−ブチルトリメトキシシラン、i−ブチルトリメトキシシラン、イソブチルメチルジメトキシシラン、i−ブチルセク−ブチルジメトキシシラン、エチル(パーヒドロイソキノリン2−イル)ジメトキシシラン、ビス(デカヒドロイソキノリン−2−イル)ジメトキシシラン、トリ(イソプロペニロキシ)フェニルシラン、テキシルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリエトキシシラン、フェニルトリメトキシシラン、ビニルトリブトキシシラン、ジフェニルジメトキシシラン、ジイソプロピルジメトキシシラン、ジイソブチルジメトキシシラン、i−ブチルi−プロピルジメトキシシラン、シクロペンチルt−ブトキシジメトキシシラン、ジシクロペンチルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルi−ブチルジメトキシシラン、シクロペンチルi−ブチルジメトキシシラン、シクロペンチルイソプロピルジメトキシシラン、ジ−sec−ブチルジメトキシシラン、ジエチルアミノトリエトキシシラン、テトラエトキシシラン、テトラメトキシシラン、イソブチルトリエトキシシラン、フェニルメチルジメトキシシラン、フェニルトリエトキシラン、ビスp−トリルジメトキシシラン、p−トリルメチルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルエチルジメトキシシラン、2−ノルボルナントリエトキシシラン、2−ノルボルナンメチルジメトキシシラン、ジフェニルジエトキシシラン、メチル(3、3、3−トリフルオロプロピル)ジメトキシシラン、ケイ酸エチルなどが好ましい。
【0046】
4)α−オレフィン類
α−オレフィン類とは、α−オレフィンまたはその誘導体をいう。α−オレフィン類としては、プロピレンの他、例えば、エチレン、1−ブテン、3−メチル−1−ブテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、4,4−ジメチル−1−ペンテン、ビニルシクロペンタン、ビニルシクロヘキサン等のα−オレフィン;スチレン、α−メチルスチレン等のスチレン誘導体;ブタジエン、1,9−デカジエン等のジエン類;アリルトリアルキルシラン類を挙げることができる。これらは組み合せて使用してもよい。特に本発明はプロピレンの重合において有意な効果を発揮する。
【0047】
5)重合
上記のとおりに調製した触媒に前記のα−オレフィン類を接触させて重合する。この際、まず前記触媒を用いて予備重合を行うことが好ましい。予備重合とは、その後のα−オレフィン類の本重合の足がかりとなるα−オレフィン類の鎖を固体触媒成分に形成させる工程である。予備重合は回分式、連続式等の公知の方法で行うことができる。予備重合では、モノマーとして前記のα−オレフィン類を用いる。また、これらのモノマーは、1種類だけでなく2種類以上を段階的にあるいは混合して使用することもできる。予備重合時に分子量調節剤として水素を用いることもできる。予備重合は、不活性炭化水素溶媒中で行なうことができるが、液体モノマー中、気相モノマー中で行なうこともできる。
予備重合は、通常は40℃以下、好ましくは30℃以下、より好ましくは20℃以下で行われる。予備重合させるα−オレフィン類の量は、固体触媒1gに対して0.5〜800gが好ましく、5〜500gがより好ましく、10〜400gがさらに好ましい。
【0048】
次いで、予備重合した触媒をα−オレフィン類を仕込んだ重合反応系内に添加して、α−オレフィン類の本重合を行う。本重合は、スラリー重合法、気相重合法、バルク重合法およびこれらを組み合わせた公知の重合法で実施できる。本重合は回分式、半連続式、あるいは連続式のいずれでもよいが、工業的に使用する場合は連続式が好ましい。重合温度は常温〜150℃が好ましく、40℃〜100℃がより好ましい。圧力は常圧〜10MPaで行うのが一般的であり、0.5〜6MPaが好ましい。重合時間は、通常は10時間以下であり、10分〜5時間が好ましい。本重合時には、分子量調節剤として水素を使用することができる。
【0049】
(4)触媒活性
本発明の製造方法によれば、高い触媒活性で立体規則性に優れたα−オレフィン類の重合体を得ることができる。具体的にτが1200〜1800秒と長い場合の触媒活性を1とすると、本発明では1.2〜2倍程度の触媒活性を達成できる。この際に得られるα−オレフィン類の重合体の立体規則性は、ポリプロピレンを例にするとキシレン不溶成分量(XI)にして90重量%以上である。
【0050】
特に、内部電子供与体化合物がジカルボン酸ジエステルであり、かつ外部電子供与化合物がジシクロアルキルジアルコキシシランである場合、触媒活性は50,000〜59,000(g−PP/g−cat)程度となり、極めて高い触媒活性を達成できる。
【0051】
2.製造装置
本発明の製造方法は、発明の効果を損なわない限り任意の装置を用いて実施できる。しかしながら、重合反応器と、当該反応器に前記触媒を導入するための導入装置とを備え、前記導入装置が成分(B)と(C)の接触物と、成分(A)とを接触させて前記触媒を調製する接触部を備える装置を用いることが好ましい。
【0052】
重合反応器として公知のものを用いることができる。導入装置は、成分(B)および成分(C)を予め調製するための予備接触部を備えていてもよい。接触部および予備接触部は、配管、金属容器、または撹拌機付き金属容器等であってよい。特に、連続的に成分を配管に流して配管内で成分同士を接触させる場合は、配管の太さおよび長さを調節することで、接触時間を調整できる。
【実施例】
【0053】
以下に実施例を掲げ本発明についてさらに説明する。各分析は以下の方法で行った。
[MFR(メルトフローレート)]
JIS K 7210に準じ、温度230℃、荷重21.18Nの条件下で測定した。
【0054】
[XI(キシレン不溶成分量)]
300mLフラスコに重合体試料2.5gおよび250mLのオルトキシレンを入れ、撹拌しながら沸騰温度で30分間溶解した。続いて、溶液を100℃に放冷した後、フラスコを25℃の恒温水槽に入れ、25℃になってから1時間経過後、ろ過を行った。回収したろ液のオルトキシレンを蒸発させ、残った残渣の重量を仕込みの重合体試料の重量で除した値を100倍し、25℃におけるキシレンに可溶性のポリマーの重量%を計算した。XIすなわちキシレン不溶成分量(25℃におけるキシレンに不溶性のポリマーの重量%)は、(100−可溶性のポリマーの重量%)で求められ、ポリマーの立体規則性の指標として用いられる。
【0055】
[重合活性]
アジレント・テクノロジー株式会社製240AAを用い、原子吸光法により、生成したポリマーサンプル中のマグネシウム含有量を測定し、元の触媒に含まれるマグネシウム含有量から触媒1gあたりのポリマー重合量として、重合活性を求めた。
【0056】
[実施例1−1]
(1)固体触媒成分の調製
特開平9−25316の実施例に記載の調製法に従い成分(A)(固体触媒成分)を調製した。具体的には以下のようにして成分(A)を調製した。
無水塩化マグネシウム56.8gを、無水エタノール100g、出光興産(株)製のワセリンオイルCP15N 500mLおよび信越シリコーン(株)製のシリコーン油KF96 500mL中に、窒素雰囲気下、120℃で完全に溶解した。この混合物を、特殊機化工業(株)製のTKホモミキサーを用いて120℃、3000回転/分で3分間撹拌した。撹拌を保持しながら、2Lの無水ヘプタン中に0℃を越えないように移送した。得られた白色固体を無水ヘプタンで十分に洗浄し室温下で真空乾燥した。得られたMgCl
2・2.5C
2H
5OHの球状固体30gを無水ヘプタン200mL中に懸濁した。0℃で撹拌しながら、四塩化チタン500mLを1時間かけて滴下した。次に、加熱を始めて40℃になったところで、ジイソブチルフタレート4.96gを加えて、100℃まで約1時間で昇温した。100℃で2時間、反応を行った後、熱時ろ過にて固体部分を採取した。その後、この反応物に四塩化チタン500mLを加えて撹拌した後、120℃で1時間、反応を行った。反応終了後、再度、熱時ろ過にて固体部分を採取し、60℃の1Lのヘキサンを用いて7回、室温の1Lのヘキサンを用いて3回洗浄した。このようにして得たTiCl
4[C
6H
4(COOiC
4H
9)
2]で表される調製四塩化チタン19gを含むヘキサン1Lの溶液に、ジイソブチルフタレート(C
6H
4(COOiC
4H
9)
2)27.8gを、温度0℃を維持しながら約30分で滴下した。滴下終了後、内容物を40℃に昇温し30分間反応を行った。反応終了後、固体部分を採取し500mLのヘキサンで5回洗浄し、目的物である固体触媒成分を得た。該固体触媒成分を分析したところ、チタン含有量およびマグネシウム含有量は、それぞれ2.3wt%および17.7wt%であった。
【0057】
(2)触媒の調製および重合
撹拌機を備えた内容積3Lのオートクレーブを準備した。オートクレーブへ触媒を圧入することができる内容積20cm
3のステンレス製容器(追添器)をオートクレーブに取り付け窒素置換した。オートクレーブ内を窒素置換し、さらにオートクレーブに少量の窒素をフィードしながら、成分(B)であるトリエチルアルミニウム4.9mmolと、成分(C)である電子供与体化合物としてジシクロペンチルジメトキシシラン0.25mmolとを入れ混合した。オートクレーブ内をプロピレンガスで置換した後、25℃で水素0.24mol%とプロピレン16.0molとを加え撹拌し、30℃に昇温した。(1)で調製した成分(A)の固体触媒成分ヘキサンスラリー15mL(固体触媒として5mg)を追添器に入れた。
【0058】
追添器内を窒素で4MPaに加圧して、触媒をオートクレーブ内に圧入した。オートクレーブを80℃に昇温し、60分間プロピレンを重合した。追添器から成分(A)を加えることにより、オートクレーブ内に仕込まれた成分(B)と(C)の接触物と成分(A)を接触して重合触媒を生成するとともに、プロピレンとも接触した。すなわち、本例におけるτは0秒とした。重合終了後、未反応プロピレンをパージし、ポリプロピレンを得た。得られたポリプロピレンを60℃で16時間真空乾燥し、上記の方法に従い、MFR、XI、重合活性の分析を行った。
【0059】
[実施例1−2]
(1)固体触媒成分の調製
実施例1−1と同様にして成分(A)を調製した。
【0060】
(2)触媒の調整および重合
撹拌機を備えた内容積3Lのオートクレーブを準備した。オートクレーブ内を窒素置換し、さらにオートクレーブに少量の窒素をフィードしながら、追添器を取り付け窒素置換した。オートクレーブ内をプロピレンガスで置換した後、25℃で水素0.24mol%とプロピレン16.0molとを加え撹拌し、30℃に昇温した。少量の窒素をフィードした状態の追添器に、成分(B)であるトリエチルアルミニウム4.9mmolと、成分(C)である電子供与体化合物としてジシクロペンチルジメトキシシラン0.25mmolとを入れて混合した。(1)で調製した成分(A)の固体触媒成分として5mgを追添器に入れ、成分(B)と(C)の接触物と、成分(A)とを接触させた。すべての接触工程は室温で行った。
【0061】
成分(A)を追添器に入れてから10秒経過後、追添器内を窒素で4MPaに加圧して、触媒をオートクレーブ内に圧入した。すなわち本例におけるτは10秒とした。オートクレーブを80℃に昇温し、60分間プロピレンを重合した。重合終了後、未反応プロピレンをパージし、ポリプロピレンを得た。得られたポリプロピレンを60℃で16時間真空乾燥し、上記の方法に従い、MFR、XI、重合活性の分析を行った。
【0062】
[実施例1−3および1−4]
それぞれτを90秒、180秒とした以外は、実施例1−2と同様にしてポリプロピレンを製造し評価した。
【0063】
[比較例1−1および1−2]
それぞれτを600秒、1800秒とした以外は、実施例1−2と同様にしてポリプロピレンを製造し評価した。
【0064】
これらの結果を表1に示す。τが0〜180秒であると非常に高い触媒活性を達成できることが明らかである。
【0065】
[実施例2−1]
(1)固体触媒成分の調製
実施例1−1の固体触媒成分の調製と同様にして成分(A)を調製した。
(2)触媒の調製および重合
撹拌機を備えた内容積6Lのオートクレーブを準備した。オートクレーブ内を窒素置換し、さらにオートクレーブに少量の窒素をフィードしながら、追添器を取り付け窒素置換した。オートクレーブ内をプロピレンガスで置換した後、25℃で水素0.24mol%とプロピレン35.7molとを加え撹拌し、30℃に昇温した。少量の窒素をフィードした状態の追添器に、成分(B)であるトリエチルアルミニウム8.2mmolと、成分(C)である電子供与体化合物としてジイソプロピルジメトキシシラン1.6mmolとを入れて混合した。(1)で調製した成分(A)の固体触媒成分として7mgを追添器に入れ、成分(B)と(C)の接触物と、成分(A)とを接触させた。
成分(A)を追添器に入れてから10秒経過後、追添器内を窒素で4MPaに加圧して、触媒をオートクレーブ内に圧入した。すなわち本例におけるτは10秒とした。オートクレーブを70℃に昇温し、120分間プロピレンを重合した。重合終了後、未反応プロピレンをパージし、ポリプロピレンを得た。得られたポリプロピレンを60℃で16時間真空乾燥し、上記の方法に従い、MFR、XI、重合活性の分析を行った。
【0066】
[実施例2−2]
τを180秒とし、実施例2−1と同様にしてポリプロピレンを製造し評価した。
【0067】
[比較例2−1および2−2]
それぞれτを600秒、1200秒とした以外は、実施例2−1と同様にしてポリプロピレンを製造し評価した。
【0068】
[比較例2−3]
成分(B)としてトリエチルアルミニウム8.2mmol、成分(C)としてジイソプロピルジメトキシシランを1.6mmol用い、オートクレーブ内に成分(B)を仕込み、追添器に成分(A)と(C)を入れ90秒後、追添器内を窒素で4MPaに加圧してオートクレーブ内に圧入し、70℃で120分間プロピレンを重合した以外は、実施例1−1と同様にしてポリプロピレンを製造し評価した。
【0069】
結果を表1に示す。実施例2−1と2−2に示すようにτが10〜180秒であると非常に高い触媒活性を達成できることが明らかである。一方、τが0秒ではあるが、予め成分(A)と(C)の接触物を調製しておきこれと成分(B)を接触させて触媒を調製した比較例2−3における触媒活性は実施例の触媒活性よりも低かった。
【0070】
[実施例3−1]
(1)固体触媒成分の調製
特開2011−500907号の実施例に記載に従い、成分(A)の固体触媒成分を調製した。具体的には以下のとおりに調製した。
窒素でパージした500mLの四つ口丸底フラスコに、TiCl
4 250mLを0℃において入れた。撹拌しながら、10.0gの微細球状MgCl
2・2.8C
2H
5OHおよび9.1mmolのジエチル−2,3−(ジイソプロピル)スクシネートを加えた。MgCl
2・2.8C
2H
5OHは、米国特許4、399、054号の実施例2に記載された方法にしたがって10000rpmに代えて3000rpmで操作して製造した。温度を100℃に上昇させ、120分間保持した。次に、撹拌を停止し、固体生成物を沈降させ、上澄み液を吸い出した。
次に、以下の操作を2回繰り返した。
固体生成物に250mLの新しいTiCl
4を加え、混合物を120℃において60分間反応させ、上澄み液を吸い出した。60℃において無水ヘキサンを用いて固体を6回洗浄した。1回の洗浄に用いた無水ヘキサンは100mLであった。
(2)触媒の調製および重合
前記固体触媒5mgを用い、実施例1−1と同様にポリプロピレンを製造し評価した。本例のτは0秒であった。
【0071】
[実施例3−2]
前記固体触媒5mgを用い、実施例1−2と同様にしてポリプロピレンを製造し評価した。本例のτは10秒であった。
【0072】
[実施例3−3および3−4]
τをそれぞれ30秒および60秒とした以外は実施例3−2と同様にしてポリプロピレンを製造し評価した。
【0073】
[比較例3−1〜3−3]
τをそれぞれ300秒、600秒、および1800秒とした以外は実施例3−2と同様にしてポリプロピレンを製造し評価した。
【0074】
[実施例4および比較例4]
水素濃度を0.18mol%とした以外は実施例1および比較例1と同様にしてポリプロピレンを製造し評価した。成分(A)〜(C)を接触させる温度を25℃とした。ただし、実施例4−1は実施例1−1と同様に、30℃のオートクレーブ内に仕込んだ成分(B)と(C)に、追添器から25℃の成分(A)を添加してτを0としたため、接触温度を測定することは不可能であった。しかしながら、接触温度が25〜30℃であることは明らかである。
【0075】
[実施例5および比較例5]
成分(A)〜(C)を接触させる温度を15℃とした以外は、実施例4および比較例4と同様にしてポリプロピレンを製造し評価した。
【0076】
[実施例6および比較例6]
水素濃度を0.11mol%とした以外は実施例3および比較例3と同様にしてポリプロピレンを製造し評価した。ただし、実施例4で使用したオートクレーブを用い、かつ成分(A)〜(C)を接触させる温度を25℃とした。実施例6−1は実施例4−1と同様に接触温度を測定することは不可能であったが、接触温度が25〜30℃であることは明らかである。
【0077】
[実施例7および比較例7]
成分(A)〜(C)を接触させる温度を15℃とした以外は、実施例6および比較例6と同様にしてポリプロピレンを製造し評価した。
【0078】
[実施例8および比較例8]
成分(A)〜(C)を接触させる温度を5℃とした以外は、実施例6および比較例6と同様にしてポリプロピレンを製造し評価した。
これらの結果を表1、表2、
図2〜7に示す。
【0079】
【表1】
【表2】
【0080】
本発明の製造方法は、高い触媒活性を達成できることが明らかである。