特許第6598303号(P6598303)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社SUBARUの特許一覧
<>
  • 特許6598303-車両の走行制御装置 図000002
  • 特許6598303-車両の走行制御装置 図000003
  • 特許6598303-車両の走行制御装置 図000004
  • 特許6598303-車両の走行制御装置 図000005
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6598303
(24)【登録日】2019年10月11日
(45)【発行日】2019年10月30日
(54)【発明の名称】車両の走行制御装置
(51)【国際特許分類】
   B60W 30/12 20060101AFI20191021BHJP
   B60W 30/02 20120101ALI20191021BHJP
   B60W 30/165 20120101ALI20191021BHJP
   B62D 6/00 20060101ALI20191021BHJP
   B60T 8/17 20060101ALI20191021BHJP
【FI】
   B60W30/12
   B60W30/02
   B60W30/165
   B62D6/00
   B60T8/17 D
【請求項の数】3
【全頁数】10
(21)【出願番号】特願2016-53479(P2016-53479)
(22)【出願日】2016年3月17日
(65)【公開番号】特開2017-165310(P2017-165310A)
(43)【公開日】2017年9月21日
【審査請求日】2018年12月21日
(73)【特許権者】
【識別番号】000005348
【氏名又は名称】株式会社SUBARU
(74)【代理人】
【識別番号】100076233
【弁理士】
【氏名又は名称】伊藤 進
(74)【代理人】
【識別番号】100101661
【弁理士】
【氏名又は名称】長谷川 靖
(74)【代理人】
【識別番号】100135932
【弁理士】
【氏名又は名称】篠浦 治
(72)【発明者】
【氏名】小山 哉
【審査官】 田中 将一
(56)【参考文献】
【文献】 特開2015−210720(JP,A)
【文献】 特開2009−202708(JP,A)
【文献】 国際公開第2017/009898(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B60W 10/00 − 10/30
B60W 30/00 − 50/16
B62D 6/00 − 6/10
B62D 101/00 − 137/00
B60T 7/12 − 8/1769
B60T 8/32 − 8/96
(57)【特許請求の範囲】
【請求項1】
自車両の走行車線及び自車両前方の先行車両を認識して、前記走行車線に追従して走行する走行制御と前記先行車両に追従して走行する走行制御とを切り換える車両の走行制御装置であって、
前記走行車線を認識している状態で、前記走行車線の中央位置に対する前記先行車両の横位置と自車両の横位置とを算出する車両横位置算出部と、
前記走行車線を認識していない場合、前記先行車両の中心位置を前記先行車両に追従する走行制御の制御目標点として設定し、前記走行車線を認識していない状態から前記走行車線を認識する状態に移行した場合、前記自車両の横位置と前記先行車両の横位置とが前記走行車線の中央位置に対して同じ側であるときには、前記走行車線の中央位置から前記自車両及び前記先行車両と同じ側に設定量だけシフトした位置を、前記走行車線に追従する走行制御の制御目標点として設定する一方、前記自車両の横位置と前記先行車両の横位置とが前記走行車線の中央位置に対して互いに反対側であるときには、前記走行車線の中央位置を、前記走行車線に追従する走行制御の制御目標点として設定する制御目標点設定部と
を備えることを特徴とする車両の走行制御装置。
【請求項2】
前記制御目標点設定部は、前記自車両の横位置と前記先行車両の横位置とが前記走行車線の中央位置に対して同じ側であるときに、前記制御目標点を前記走行車線の中央位置から前記自車両及び前記先行車両と同じ側にシフトさせるシフト量を、前記先行車両の横位置に基づいて設定することを特徴とする請求項1に記載の車両の走行制御装置。
【請求項3】
前記シフト量を、前記先行車両の横位置に相当する前記走行車線の中央位置からの横方向距離とすることを特徴とする請求項2に記載の車両の走行制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、自車両の走行車線及び自車両前方の先行車両を認識して走行制御を行う車両の走行制御装置に関する。
【背景技術】
【0002】
従来、自動車等の車両においては、自車両の走行車線及び自車両前方の先行車両をカメラやレーダ等により検知し、先行車両との車間距離を適正距離に制御すると共に、走行車線内での自車両の横方向の位置を制御して車線中央位置や先行車両の中心位置に追従させる追従走行制御が知られている。
【0003】
例えば、特許文献1には、道路白線が検出できるときには、左右白線の中央位置に追従する走行制御を行い、白線が先行車両によって隠れて検出できないときには、先行車両の中心位置に追従する走行制御を行う技術が開示されている。この先行技術では、先行車両への追従走行時に、先行車両が右左折する可能性を地図情報から判断した場合には制御ゲインを弱め、また、先行車両の横変位変化から蛇行を推定して追従制御を弱めることで、自車両の不適正な挙動変化を低減するようにしている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2000−20896号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1に開示の技術では、車線への追従走行と先行車両への追従走行とを切り換える際の制御性については考慮されておらず、先行車両が車線中央位置から偏って走行しているような状況では、先行車両追従走行制御から車線追従走行制御に切り換えられたとき、自車両の挙動変化が大きくなる虞がある。
【0006】
例えば、図4に示すように、3車線の道路では中央車線は両側の白線L1.L2が破線状であるため、自車両Cが中央車線を走行しているときには、両側の白線L1.L2が同時にカメラの視野Rから外れて認識できなくなるシーンが周期的に出現する。両側の白線L1,L2を認識できない状態では、先行車両C1への追従走行となり、両側の白線L1,L2を認識できるようになると、白線L1.L2の中央位置Lcへの追従走行に切り換わる。
【0007】
この場合、先行車両の中心位置が車線中央位置からオフセットしていると、操舵制御の目標点が先行車両の中心位置から車線中央位置へと急激に移動されることになり、車線中央に向かって過大な戻し操舵が発生する場合がある。このため、自車両のふらつきが発生し挙動が安定性となり、ドライバに不安感を与える虞がある。
【0008】
本発明は上記事情に鑑みてなされたもので、先行車両に追従して走行する走行制御から走行車線に追従して走行する走行制御へ自車両の挙動変化を抑制しながら円滑に移行させることができ、安定性を確保することのできる車両の走行制御装置を提供することを目的としている。
【課題を解決するための手段】
【0009】
本発明の一態様による車両の走行制御装置は、自車両の走行車線及び自車両前方の先行車両を認識して、前記走行車線に追従して走行する走行制御と前記先行車両に追従して走行する走行制御とを切り換える車両の走行制御装置であって、前記走行車線を認識している状態で、前記走行車線の中央位置に対する前記先行車両の横位置と自車両の横位置とを算出する車両横位置算出部と、前記走行車線を認識していない場合、前記先行車両の中心位置を前記先行車両に追従する走行制御の制御目標点として設定し、前記走行車線を認識していない状態から前記走行車線を認識する状態に移行した場合、前記自車両の横位置と前記先行車両の横位置とが前記走行車線の中央位置に対して同じ側であるときには、前記走行車線の中央位置から前記自車両及び前記先行車両と同じ側に設定量だけシフトした位置を、前記走行車線に追従する走行制御の制御目標点として設定する一方、前記自車両の横位置と前記先行車両の横位置とが前記走行車線の中央位置に対して互いに反対側であるときには、前記走行車線の中央位置を、前記走行車線に追従する走行制御の制御目標点として設定する制御目標点設定部とを備える。
【発明の効果】
【0010】
本発明によれば、先行車両に追従して走行する走行制御から走行車線に追従して走行する走行制御へ自車両の挙動変化を抑制しながら円滑に移行させることができ、安定性を確保することができる。
【図面の簡単な説明】
【0011】
図1】走行制御システムの構成図
図2】先行車両のオフセットと車線との関係を示す説明図
図3】先行車両追従走行制御から車線追従走行制御への移行処理を示すフローチャート
図4】従来の先行車両追従走行から車線追従走行への切り換えを示す説明図
【発明を実施するための形態】
【0012】
以下、図面を参照して本発明の実施の形態を説明する。図1において、符号10は、自動車等の車両の走行制御システムであり、車両の自律的な自動運転を含む走行制御を実行する。この走行制御システム10は、走行制御装置100を中心として、外部環境認識装置20、地図情報処理装置30、エンジン制御装置40、変速機制御装置50、ブレーキ制御装置60、操舵制御装置70等が車内ネットワークを形成する通信バス150を介して互いに接続されて構成されている。
【0013】
外部環境認識装置20は、車載のカメラ、ミリ波レーダ、レーザレーダ等の各種デバイスにより、自車両周囲の外部環境を認識する。本実施の形態においては、外部環境認識装置20として、車載のカメラ1及び画像認識装置2による外部環境の認識を主として説明する。
【0014】
カメラ1は、本実施の形態においては、同一対象物を異なる視点から撮像する2台のカメラ1a,1bで構成されるステレオカメラであり、CCDやCMOS等の撮像素子を有するシャッタ同期のカメラである。これらのカメラ1a,1bは、例えば、車室内上部のフロントウィンドウ内側のルームミラー近傍に所定の基線長で配置されている。
【0015】
カメラ1で撮像した左右一対の画像は、画像認識装置2で処理される。画像認識装置2は、ステレオマッチング処理により、左右画像の対応位置の画素ずれ量(視差)を求め、画素ずれ量を輝度データ等に変換して距離画像を生成する。距離画像上の点は、三角測量の原理から、自車両の車幅方向すなわち左右方向をX軸、車高方向をY軸、車長方向すなわち距離方向をZ軸とする実空間上の点に座標変換され、自車両が走行する道路の白線(車線)、障害物、自車両の前方を走行する先行車両等が3次元的に認識される。
【0016】
車線としての白線は、画像から白線の候補となる点群を抽出し、その候補点を結ぶ直線や曲線を算出することにより、認識することができる。例えば、画像上に設定された白線検出領域内において、水平方向(車幅方向)に設定した複数の探索ライン上で輝度が所定以上変化するエッジの検出を行って探索ライン毎に1組の白線開始点及び白線終了点を検出し、白線開始点と白線終了点との間の中間の領域を白線候補点として抽出する。
【0017】
そして、単位時間当たりの車両移動量に基づく白線候補点の空間座標位置の時系列データを処理して左右の白線を近似するモデルを算出し、このモデルにより、白線を認識する。白線の近似モデルとしては、ハフ変換によって求めた直線成分を連結した近似モデルや、2次式等の曲線で近似したモデルを用いることができる。
【0018】
地図情報処理装置30は、地図データベースを備え、GPS衛星等からの信号に基づいて自車両位置を測位し、地図データとの照合を行う。地図データベースには、車両走行の経路案内や車両の現在位置を表示するための地図データと、自動運転を含む運転支援制御を行うための高精細の地図データとが含まれている。
【0019】
地図情報処理装置30は、自車両位置の測位結果と地図データとの照合に基づく走行経路案内や交通情報を、図示しない表示装置を介してドライバに提示し、また、自車両及び先行車両が走行する道路の曲率、車線幅、路肩幅等の道路形状データや、道路方位角、道路白線種別、レーン数等の走行制御用の地図情報を出力する。
【0020】
エンジン制御装置40は、エンジン運転状態を検出する各種センサ類からの信号及び通信バス150を介して送信される各種制御情報に基づいて、エンジン(図示せず)の運転状態を制御する。エンジン制御装置40は、例えば、吸入空気量、スロットル開度、エンジン水温、吸気温度、空燃比、クランク角、アクセル開度、その他の車両情報に基づき、燃料噴射制御、点火時期制御、電子制御スロットル弁の開度制御等を主要とするエンジン制御を実行する。
【0021】
変速機制御装置50は、変速位置や車速等を検出するセンサ類からの信号や通信バス150を介して送信される各種制御情報に基いて、自動変速機(図示せず)に供給する油圧を制御し、予め設定された変速特性に従って自動変速機を制御する。
【0022】
ブレーキ制御装置60は、例えば、ブレーキスイッチ、4輪の車輪速、ハンドル角、ヨーレート、その他の車両情報に基づき、4輪のブレーキ装置(図示せず)をドライバのブレーキ操作とは独立して制御する。また、ブレーキ制御装置60は、各輪のブレーキ力に基づいて各輪のブレーキ液圧を算出して、アンチロック・ブレーキ・システムや横すべり防止制御等を行う。
【0023】
操舵制御装置70は、例えば、車速、ドライバの操舵トルク、ハンドル角、ヨーレート、その他の車両情報に基づき、車両の操舵系に設けた電動パワーステアリングモータ(図示せず)によるアシストトルクを制御する。また、操舵制御装置70は、走行制御装置100からの指示により、走行車線や先行車両に追従するための操舵量で電動パワーステアリングモータを駆動制御する。
【0024】
次に、走行制御システム10の中心となる走行制御装置100について説明する。走行制御装置100は、外部環境認識装置20による外部環境の認識結果に基づいて、自車両の走行車線に追従して走行する走行制御と、先行車両に追従して走行する走行制御とを、エンジン制御装置40、変速機制御装置50、ブレーキ制御装置60、及び操舵制御装置70を介して実行する。これらの走行制御は、走行制御装置100の主要部となる制御部101を中心として実行される。
【0025】
詳細には、制御部101は、道路の白線を自車両の走行車線として検出し、この走行車線に沿った目標コースを設定する。この目標コースへの走行制御は、車線に追従する走行制御(車線追従走行制御)であり、自車両前方に先行車両が検出されていない場合、目標コース上を設定車速で走行するよう制御し、自車両前方に先行車両が検出されている場合には、先行車両と所定の車間距離を維持しながら目標コース上を設定車速で走行するよう制御する。
【0026】
車線追従の目標コースは、左右の白線(自車両の走行車線)の横方向(幅方向)の中心位置の軌跡Pとして設定され、例えば、左右の白線を2次曲線で近似した場合、以下の(1)式で示すことができる。(1)式において、係数K1は目標コースの曲率成分、係数K2は目標コースのヨー角成分(自車両に対する目標コースの傾き成分)、係数K3は自車両に対する目標コースの横位置成分を示している。
P=K1・Z2+K2・Z+K3 …(1)
【0027】
この目標コースへの走行制御では、自車両の車幅方向の中心位置が目標コース上の制御目標点に一致するように、操舵制御装置70を介して自車両の操舵角を制御する。この制御目標点への操舵制御は、自車両の車線内での横位置と制御目標点との偏差に基づくフィードバック制御を主として実行される。
【0028】
例えば、以下の(2)式に示すように、自車両の横位置と制御目標点との偏差に基づくフィードバック分の操舵角αfに、自車両のヨー角を目標コースのヨー角成分に一致させるための偏差のフィードバック分の操舵角αyと、目標コースの曲率に基づくフィードフォーワード分の操舵角αffとを加えて目標操舵角αrefを算出する。そして、この目標操舵角αrefを実現する目標操舵トルクで電動パワーステアリングモータが駆動制御される。
αref=αf+αy+αff …(2)
【0029】
一方、渋滞時等の低速走行時に先行車両に接近してカメラ1の視野内に白線が入らない場合や、走路の白線が無い或いは白線が途切れて認識できない場合には、制御部101は、先行車両に追従して走行する走行制御を行う。この先行車両への追従走行制御では、制御部101は、先行車両の走行軌跡に一致するように操舵制御装置70を介した操舵制御を行うと共に、エンジン制御装置40、変速機制御装置50、ブレーキ制御装置60を介した走行駆動制御を実行する。
【0030】
先行車両の走行軌跡は、車線に基づく目標コースと同様に求めることができる。例えば、カメラ1の撮像画像の1フレーム当たりの自車両の移動量に基づいて先行車両の位置のフレーム毎の候補点を求め、この候補点の点群を近似する曲線を先行車両の走行軌跡として算出する。先行車両の位置は、カメラ1の撮像画像から先行車両の背面領域の横方向(車幅方向)の中心位置を求め、この中心位置を先行車両の位置を示す候補点とする。
【0031】
そして、これらの候補点の点群に対して、例えば最小二乗法を適用することにより、前述の(1)式と同様の曲線を求め、この曲線を先行車両の走行軌跡とする。この場合、(1)式における係数K1は走行軌跡の曲率成分、係数K2は走行軌跡のヨー角成分(自車両に対する走行軌跡の傾き成分)、係数K3は自車両に対する走行軌跡の横位置成分を示すことになる。
【0032】
先行車両の走行軌跡に追従する制御は、先行車両の背面領域の車幅方向の中心位置を制御目標点として設定し、自車両の車線内での横位置が制御目標点に一致するよう操舵角を修正することにより、自車両の進行方向を決定する制御となる。この場合、先行車両への追従走行における操舵制御は、基本的には車線への追従走行における操舵制御と同様であり、自車両の車線内での横位置と先行車両の中心位置との偏差に基づくフィードバック制御を主として実行される。但し、先行車両への追従走行制御では、比較的低速での走行が多いことから、前述の(2)式における曲率に基づくフィードフォワード分αffは省略することができる。
【0033】
前述したように、白線認識に基づく走行制御中に白線を認識できなくなった場合、先行車両に対する追従走行制御に切り換えられる。逆に、先行車両に対する追従走行制御中に白線を認識できるようになった場合には、先行車両への追従走行制御から車線への追従走行制御に切り換えられる。
【0034】
しかしながら、先行車両の中心位置が車線中央位置からオフセットしている場合、操舵制御の目標点が先行車両の中心位置から車線中央位置へと急激に移動されることになり、自車両の挙動が不安定になる虞がある。例えば、渋滞等で先行車両との車間距離が狭まったり広まったりするとき、両側の白線が見えたり見えなくなったりして先行車両への追従走行と車線への追従走行が頻繁に切り換わり、先行車両が車線中央位置からオフセットしていた場合には、車線中央に向かって過大な戻し操舵が発生する場合がある。
【0035】
これに対して、走行制御装置100は、カメラ1による自車両前方の撮像画像から車線を認識できない状態で先行車両への追従走行中、車線を認識できる状態になったとき、いきなり車線中央位置への追従走行に移行するのはなく、車線中央位置に対する先行車両の横位置と自車両の横位置とを算出し、先行車両までの距離と先行車両及び自車両の横位置との関係から制御目標点を設定することにより、急な操舵が発生しないようにする。
【0036】
このため、走行制御装置100は、図1に示すように、主機能部である制御部101に対して、車両横位置算出部102、制御目標点設定部103を備えている。制御部101は、白線への追従走行制御と先行車両への追従走行制御とを、制御目標点設定部103で設定された制御目標点への追従走行制御として実行する。
【0037】
車両横位置算出部102は、カメラ1の撮像画像から認識される車線(白線)に対して、この車線内の先行車両の横位置と自車両の横位置とを、車線中央位置からのオフセット方向を含めて算出する。例えば、図2に示すように、自車両Cが破線状の白線L1,L2によって形成される車線内を走行する場合、車両横位置算出部102は、白線L1,L2の実線部がカメラ1の撮像視野内に入って認識されているとき、自車両(カメラ1)を原点とするXYZ座標空間において、車線中央位置と自車両の中心位置とのX軸方向(車幅方向)の距離Xo、車線中央位置と先行車両の中心位置とのX軸方向(車幅方向)の距離Xfを、それぞれの横位置として算出する。
【0038】
この自車両及び先行車両の横位置は、車線中央位置に対して左右何れの方向にオフセットしているかを示すため、例えば正負の符号を付けて算出される。そして、自車両の横位置と先行車両の横位置とが同じ符号のときには、自車両と先行車両とが車線中央に対して同じ側にオフセットしていると判断し、自車両の横位置と先行車両の横位置とが異なる符号のときには、自車両と先行車両とは、車線中央に対してそれぞれ反対側にオフセットしていると判断する。
【0039】
制御目標点設定部103は、外部環境認識装置20(カメラ1及び画像認識装置2)による白線(車線)の認識状態に応じて、車線或いは先行車両に対する追従走行における操舵制御の制御目標点を設定し、制御部101に送信して車線或いは先行車両への追従走行制御を行う。車線が認識されない状態では、先行車両の中心位置を制御目標点として設定し、車線が認識されている状態では、車線の中央位置を制御目標点として設定する。
【0040】
この場合、車線が認識されない状態で先行車両への追従走行中、車線が認識される状態に移行したときには、自車両の横位置と先行車両の横位置とが、車線中央に対して同じ側にあるか、互いに反対側にあるかに応じて、制御目標点を設定する。すなわち、制御目標点をいきなり車線の中央位置に移動することなく、急激な操舵を避けることのできる適切な位置に制御目標点を設定する。
【0041】
具体的には、先行車両への追従走行中で自車両と先行車両とが車線中央に対して同じ側にオフセットしている場合には、制御目標点を車線中央位置に対して自車両及び先行車両がオフセットしている側と同じ側に設定量だけシフトさせる。このときのシフト量(車線中央位置からの横方向距離)は、先行車両の横位置に基づいて設定され、例えば、車線中央位置と、先行車両の横位置に相当する距離だけシフトさせた位置との間で、自車両の車速、先行車両との車間距離、自車両と先行車両の横位置の差、道路形状(車線幅、曲率)等を考慮して適宜設定される。
【0042】
制御目標点を車線中央位置から先行車両の横位置に相当する距離だけシフトさせた位置に設定した場合、それまでの先行車両への追従走行と同様の操舵量となり、急激な操舵量の変化を避けることができる。但し、その後、先行車両の横位置が変化しても、先行車両に追従することはなく、この制御目標点は、例えば所定時間経過に通常の車線中央位置とされる。
【0043】
一方、先行車両への追従走行中で自車両と先行車両とが車線中央に対して互いに反対側にオフセットしている場合には、車線中央位置を制御目標点として通常の車線追従走行とする。すなわち、この場合には、制御目標点を通常の車線追従走行の車線中央位置とすることで、先行車両への追従操舵を弱めることになり、追従走行を円滑に切り換えることができる。
【0044】
次に、走行制御装置100における先行車両追従走行制御から車線追従走行制御への移行処理について、図3に示すフローチャートを用いて説明する。
【0045】
この追従走行制御の移行処理は、先行車両追従走行制御に切り換えられたときに実行される処理であり、最初のステップS1において、左右両側の白線が認識されたか否かを調べる。そして、左右白線が認識されていない場合には、ステップS2で先行車両への追従走行制御を継続し、両側の白線が認識されている場合、ステップS3へ進む。
【0046】
ステップS3では、左右白線の中央位置に対して、自車両の横位置Xoと先行車両の横位置Xfとを符号付きで算出する。そして、次のステップS4で、Xf>0且つXo>0の条件が成立して先行車両と自車両とが車線中央の同じ側に有るか否かを調べる。
【0047】
Xf>0且つXo>0の条件が成立する場合、ステップS4からステップS5へ進んで追従走行の制御目標点を車線中央位置からシフト量+Xf’だけシフトした位置に設定し、ステップS9で車線追従走行制御へと移行する。シフト量Xf’は、Xf≧Xf’≧0の範囲で適宜設定され、所定時間経過に制御目標点が通常の車線中央位置とされる。
【0048】
一方、ステップS4において、Xf>0且つXo>0の条件が成立しない場合には、ステップS4からステップS6へ進み、Xf<0且つXo<0の条件が成立するか否かを調べる。このステップS6の条件は、ステップS4に対して、車線中央から反対側の位置で、先行車両と自車両とが同じ側にあるか否かを調べるものである。
【0049】
Xf<0且つXo<0の条件が成立する場合、ステップS6からステップS7へ進んで制御目標点を車線中央位置から−Xf’だけシフトした位置に設定し、ステップS9で車線追従走行制御へと移行する。Xf<0且つXo<0の条件が成立しない場合、すなわち先行車両と自車両とが互いに反対側である場合には、ステップS6からステップS8へ進んで制御目標点を車線中央位置とし、ステップS9で通常の車線追従走行制御へと移行する。
【0050】
このように本実施の形態においては、先行車両への追従走行中に車線を認識する状態になって車線への追従走行制御に移行する際、車線中央位置に対する先行車両の横位置と自車両の横位置とから、先行車両と自車両とが車線中央に対して同じ側にオフセットしているか否かを判断する。そして、先行車両と自車両とが同じ側にオフセットしている場合、制御目標点を車線中央位置に対して自車両及び先行車両がオフセットしている側と同じ側にシフトさせ、先行車両と自車両とが互いに反対側にオフセットしている場合には、制御目標点を車線中央位置とする。これにより、先行車両追従走行制御から車線追従走行制御に移行する際に、自車両の挙動変化を抑制しながら円滑な移行を実現することができ、安定性を確保してドライバに不安感を与えることがない。
【符号の説明】
【0051】
1 カメラ
2 画像認識装置
10 走行制御システム
20 外部環境認識装置
70 操舵制御装置
100 走行制御装置
101 制御部
102 車両横位置算出部
103 制御目標点設定部
図1
図2
図3
図4