(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0001】
ユーティリティグリッドの性能、すなわち、それらの信頼性、安全性、及び効率は、重要なパラメータを検知し、それらの結果を使用してグリッドの稼動及び保守を指示することを通じて、障害を特定し、適切な応答を指示し、かつ、電力品質を維持しながら再生可能な電力源を電気グリッド内に組み込むなどの能動的な管理を可能にすることによって、大幅に改善され得る。
【0002】
ユーティリティグリッドの監視には、多くの場合、センサネットワークが使用される。これらのセンサネットワークは、グリッドの端部に配置されたスマートメータ、グリッドノードのセンサ、及びユーティリティライン上又はその周辺のセンサを含んでもよく、これらのセンサは、水道グリッド内の流量、電気グリッド内の電力品質、又はユーティリティグリッド内の圧力などのグリッドパラメータを計測する。これらのセンサは、通常は、測定された特性を表すアナログ信号を出力する変換器である。これらの出力は、そのような特性の特定の値へとマップするために特徴付けされ、かつ/又は、調査を必要とする潜在的な漏れ、若しくは再生可能な資源を電気グリッド内に組み込むときの位相の違いの特定などの、グリッドの特定の状態を表し得るように分類される必要がある。センサの特徴付けは通常、ベンチテストを通じて行われるが、センサはその周囲の環境内に様々な干渉を有し得る。ユーティリティグリッド監視ネットワーク上のセンサを現場で特徴付けることが好ましいが、これは、ユーティリティグリッドを監視するために使用されるセンサが大量に存在する場合は困難である。
【0003】
センサデータの分析及び応答の指示に関するトレンドは「ビッグデータ」であり、これは、グリッドの大量の履歴データを使用して、分類及び応答の指示に使用されるモデルを構築する。しかしながら、これらのビッグデータモデルは、履歴データをマイニングしてモデルを構築するため、相関関係に限定され、その有効性は能動的に指示を行う処理か又は微調整を行うことに限定される。更に、これらのビッグデータモデルは、典型的には大量のデータを必要とするため、特定のグリッドノード若しくは位置でのグリッド条件の高粒度の理解が妨げられるか、又は長時間の稼動の後でのみそのような粒度が実現され得る。速度及び粒度を向上させるために、いくつかの例では機械学習技術が応用され、モデルが改善されたが、これらの手法も依然として、受動的に収集された履歴データに由来する相関関係に依存する。
【0004】
信号注入は、交流電力グリッドからの電力が不正に利用されているノードを発見することなど、グリッドの障害を明らかにするために使用されてきた。これらの技術は、「スマートメータ」などの既に特徴付けされた高品質センサに依存する、同時及び逐次的に実行されるように調整されていないグリッド全体の不定期な個々の動作である。信号注入はまた、HVDC配電レベルなどグリッドの高レベルでの大規模な変化に対するグリッド全体にわたる応答をテストするためにも使用されてきた。そのような信号注入は、大規模で単独、かつ人を介したものであり、自動化、より小規模な局所的テスト、又はテストの同時若しくは逐次的な実施が可能なものではなかった。ほぼ必ず人によって指揮される、グリッド全体の不定期な信号注入は、小さいサンプルサイズしか生成できず、かつ、センサ位置の個々の条件及び特異性に合わせて調整できるほど十分に幅広く変化することができないため、様々なコンテキストでグリッドに沿って配置された多様なセンサの大規模なネットワークを特徴付けることには適していない。
【0005】
センサ応答の因果関係に関するリアルタイムの理解は、スマートグリッドに関するビッグデータ手法の問題を解消し、リアルタイムで高粒度、かつ微調整されたグリッド監視及び管理が可能にする。その結果、これらの可変性が高いシステムで、そのような最適化をより局所的なレベルで行うことが可能となるため、グリッドパラメータ及び応答を最適化するためのスマートグリッドの潜在能力が、より十分に活用される。ユーティリティグリッドの管理は、これにより大きな利益を得るであろう。
【発明を実施するための形態】
【0009】
特定の入力に対するセンサ応答の自動化されたテスト、及び結果として得られる因果的知識に基づくセンサの特徴付けは、特に、潜在的なサンプルサイズを増加させ、注入された信号に対するセンサ及びグリッド応答を迅速に学習することが望ましい大規模なネットワーク上で、センサデータを、同時及び逐次的に行われ、かつ空間的に互いに近接した特定の信号注入に関連付ける自動化された手段を必要とする。信号注入に対するこのような応答は、ユーティリティグリッドの管理、特定の条件に対するグリッド応答の自動化、効率の改善、グリッド障害の特定及び除去、又は必要な保守の最適なスケジューリング及び動作の最適な再調整に役立つグリッドイベントを表してもよい。この関連付けは、信号注入に応答して収集されたセンサデータを適切に使用して、生のセンサ出力を物理的可変要素のレベル又はセンサでのあり得る状態の分類へと変換するために使用されるセンサ応答モデルを改善し、それによってユーティリティグリッドセンサの感受性及び識別性を改善し、かつ、時間的及び空間的に高粒度なセンサ応答モデル及びグリッド挙動に基づく、現場でのセンサ出力の分類又は特徴付けを提供するために、必要とされる。
【0010】
図1は、本発明の方法の実施例を示すフローチャートである。ステップ100では、1つ以上の信号注入がグリッドへと提供される。信号注入はそれぞれ、ステップ102で計算された空間的到達範囲、及びステップ104で計算された時間的到達範囲を有する。ステップ106では、グリッド特性の測定が行われる。ステップ106の測定など、これらのステップのうちのいくつかは、互いとは独立して実行されてもよく、又は連続的に実行されてもよい。ステップ108では、ステップ102及び104で計算された空間的及び時間的到達範囲を使用して、ステップ106からのセンサデータが特定の信号注入に関連付けられる。ステップ108で信号注入に関連付けられたデータは、センサ応答を特徴付けるために使用されてもよく、又はグリッド内への信号注入を実施するために使用される制御の効果を特徴付けるために使用されてもよい。センサ応答を特徴付ける実施形態では、ステップ108からの関連付けられたデータが、その後ステップ110で、1つ以上のセンサ応答モデルを更新するために使用される。更新されたセンサ応答モデルは、センサでのイベントを、それらの生の読み取り値に基づき検出及び分類するために使用されてもよく、これによって、センサをより正確に検知及び校正して、グリッド作業者にとって関心のあるイベントを、現場でのそれらの通常の読み取り値のベースラインに対して検出することが可能になる。これらの方法は、センサ応答モデルを改良し、定期的に更新するために反復的に実行されてもよく、これによって、現場での定期的なグリッドセンサの校正が可能になり、かつベースライン条件又はセンサ応答特性の変更の詳細が明らかとなる。
【0011】
信号注入100は、配水グリッド、電気グリッド、又は配ガスグリッドなどのユーティリティグリッド内に特定の条件を導入するために、グリッド構成要素に対して行われる変更である。これは、既存のグリッド制御を操作し、そのグリッド制御に対する許容可能な状態の範囲内で1つの特定の状態を選択及び実施すること、例えば、変圧器での負荷タップ切換器の特定の位置、又は配電ネットワーク内でのコンデンサバンクのスイッチ状態を選択することによって行われてもよい。この信号注入100は、1つの位置にある1つの可変要素を操作する単純なものであってもよく、又は、複合的で複数の可変要素を含み、かつ/若しくは複数の位置で実施されるものであってもよい。水道グリッド内での単純な信号注入100の例は、1つの位置の弁を通る水流を増加させることであってもよい。ガスグリッド内でのステップ100の複合的な信号注入の例は、1つの箇所の圧力を増加させながら、その箇所の直後の弁を閉めることによって、圧力増加の大部分を1つの特定の経路で発生させることであってもよい。電気グリッド内でのステップ100の複合的な信号注入の例は、分散した光発電源のためのインバータを接続し、付近の変電所にある負荷タップ切換器を数分後に調整するなど、複数の再生可能な電力源を特定の順序及び特定のタイミングでオンラインにすることであってもよい。
【0012】
ステップ100の信号注入は、自動的な手段又は人を介した手段を通じて実施されてもよい。信号注入は、グリッドパラメータの制御された変更、例えば、グリッド制御を作動させることによって発生する、電流、電圧、又は力率の増加若しくは低減などの、電気グリッド内への電気信号注入であってもよい。信号注入は、それらの空間的及び時間的到達範囲が分離されるように調整されてもよい。ガスグリッドでは、信号は例えば、パイプを通るガスの経路の変更を通じて特定の箇所での圧力を増加又は低減させることで注入されてもよい。これらの信号に対する応答は、グリッドパイプを取り囲むセンサネットワークによって検出される漏れの数及び/又は重大度の増加若しくは低減、又は高圧力若しくは低圧力へと駆動された領域に接続する下流側の圧力の変化であってもよい。これらの信号注入は、人を介した事例では、これらの調整を実行する保守作業者へと配布されるスケジュールの指示に従った、様々な弁及びスイッチの手動による調整を通じて実現されてもよい。これらのスケジュールは、保守キュー、追加作業などの様々な形態を取ってもよく、コンピュータ、タブレット、スマートフォン、又は他のポータブルコンピューティングデバイス上の電子メール、テキストメッセージ、カレンダーリマインダなどの様々な電気的手段を通じて配布されてもよい。このような人を介した事例では、保守作業者に、ネットワーク接続デバイスを使用してチェックインさせ、変更が実際に実施された時刻を記録させることによって、これらの調整の時刻を、これらの信号注入の結果として生成された後続データの処理で使用するために監査してもよい。完全に機械対機械で実施される、ガスグリッド上の信号注入の実施形態では、スイッチ及び弁は、有線又は無線通信ネットワークを通じてシステムに結合された作動装置によって操作される。これらの作動装置は、システムによって送信された信号に応答するか、又は、システムによってそれらの作動装置のための制御装置へと配布された命令若しくはスケジュールに従って動作する。機械対機械の実施によって、実施時刻の変動がより少なくなるため、より細かく調整されたテストが可能になる。また、タイミングに関する改善によって、より洗練された試験を実施することが可能になる。これらの実施では、空間的及び時間的に分散した影響間の関係に関するリアルタイムの理解を生み出すために、センサ条件及び作動装置の状態の監視が常に相互に関連付けられてもよい。これは、関係の変化及び局所センサの状態の変化を、例えば、検出された変化の要素分離を通じて検出及び特徴付けすることを可能にする。
【0013】
電気グリッドでは、人を介した方法は、手動によって電力の流れを切り替えること、グリッドに接続された電力源を稼働させるか又はその稼働を停止させること、負荷タップ切換器の位置を変更すること、コンデンサバンクのオン及びオフを切り替えること、グリッド上の重工業機器(アーク炉など)又は他の主要な手動で制御される電力負荷を稼働させるか若しくはその稼働を停止させることを含む。これらの実施例では、変更は保守作業者によって、それらの保守作業者に配布されたスケジュールの指示に従って実行されてもよい。これらのスケジュールは、保守キュー、追加作業などの様々な形態を取ってもよく、コンピュータ、タブレット、スマートフォン、又は他のポータブルコンピューティングデバイス上の電子メール、テキストメッセージ、カレンダーリマインダなどの様々な電気的手段を通じて配布されてもよい。このような人を介した事例では、保守作業者に、ネットワーク接続デバイスを使用してチェックインさせ、変更が実際に実施された時刻を記録させることによって、これらの調整の時刻を、これらの信号注入の結果として生成された後続データの処理で使用するために監査してもよい。このような人を介した方法は、電力品質、電力線の温度、電力線のたるみ、使用可能な電力レベル、及び他の要素などの測定可能な要素を変更してもよく、これらの要素は、そのような測定可能なグリッド要素を観察するセンサネットワークによって捕捉され得る。
【0014】
電気グリッドでは、機械対機械の方法が、より優れた制御方法を提供し、かつ、様々な自動化された手段を通じて信号を注入することができる。これは、負荷タップ切換器の位置を変更すること又はコンデンサバンクを切り替えることなどの、人を介した実施例で使用され得る種類の切り替え及び保守動作の自動化を含む。更に、機械対機械の信号注入方法は、制御の精度の高さ及び幅の広さを利用することによって、消費者位置での調整された需要及び負荷を生み出すために末端位置でのアプライアンスなどのデバイスの使用を調整することなどの動作を含めたり、グリッドに影響を与える複数種類の動作の組み合わせについて複雑な調整を実施してより複雑な条件を生成したり、変更を自動力率修正ユニット内に導入したりできる。大量のデータでも、そこに含まれる、特定の組み合わせを反映するサンプルのサイズは限定されたものであるため、このような組み合わせの可能性については、ビッグデータ手法を通じた対処が非常に難しく、組み合わせの可能性が非常に多いことは、ビッグデータを使用したこのような問題の解決をほぼ困難にする。これらは、発電、スイッチ、電圧調整装置、グリッドから電力を受領するスマートメータ及びスマートアプライアンス、並びにシステムによる遠隔制御が可能な他のグリッド構成要素を含む、関連するグリッド構成要素及びネットワーク化されたデバイスの自動制御を通じて開始されてもよい。これらは、ミリ秒レベルの制御機能を活用することによって、新しい電力源の結合又は新しい負荷若しくは自動力率修正ユニットの特定の動作への迅速な応答などの電力品質に関する可変要素を操作し、更にそのような時間により大きな影響を受ける可変要素を含むグリッド動作又は条件の組み合わせをテストする能力を高めることができる。
【0015】
注入される信号は、グリッド条件を変更するために、水道若しくはガスグリッド内の弁を開けること、又は電気グリッドの実施例で、1つの特定の再生可能な電力源を接続すること若しくは1つの変電所からの出力電圧を変更することなど、1つのグリッド動作を指示する単純なものであってもよいし、個々の空間的到達範囲及び時間的到達範囲が重複することによって、重複する到達範囲内の領域で多要素処理を生み出すように調整された複数のグリッド動作から構成される、複合的なものであってもよい。複合的なグリッド動作の1つの例は、電気グリッド内の無効電力に対してよりきめ細かい制御を提供するために、負荷タップ切換器の位置及びコンデンサバンクの切り替えの両方を同時に変更することであってもよい。この多要素処理は、例えば、複数の異なるグリッドパラメータの組み合わせ効果を調べるための、それらのパラメータの変更を含んでもよい。この多要素処理は、例えば、グリッドのより影響を受けやすい隣接部分を、全体的な信号注入のうちの1つの構成部分のみに対して露出し、それらをより狭いか又は異なる動作範囲内に維持することによって保護しながら、グリッド上の1つ以上の特定の位置でのグリッドパラメータの特定の変化の大きさを増加させるための付加的な効果を利用するために、特定のグリッドパラメータの似たような変更について複数の例を生み出すように用いられてもよい。例えば、より強固なノードの周囲にある影響を受けやすいノードでの電力レベルは、それぞれ、より強固なノードを含みかつ他の影響を受けやすいノードを含まない予測空間的到達範囲を有する増加を与えられ、これらの複数の影響を受けやすいノードはそれぞれ、それらのより狭い動作範囲内での電力増加を提供して、組み合わされた電力増加を強固なノードで生み出すが、これはそれぞれの影響を受けやすいノードでの個々の増加を上回る。
【0016】
複合的な信号の場合、時間的及び空間的到達範囲は、複合敵な信号がシステムに与える複数の効果全体をひとまとまりとして取り扱うことにより、予測される。それらの複合的な信号については、個々のグリッド動作は空間的到達範囲及び時間的到達範囲が重複するが、複合的な信号を構成するグリッド動作の定義されたセットは、他のグリッド信号注入に対する当該複合的な信号注入の直交性を維持するために、他の信号がグリッド内に注入されることがないような空間領域及び時間期間を特定するために用いられる、定義されたセットにかかるグリッド動作の組み合わせに対応する一体的な空間的到達範囲及び時間的到達範囲を持つ、単一の信号注入として処理される。
【0017】
複合的な信号は、他のシステムによって導き出されるか若しくはグリッド作業者によって選択された後で、共に実行されるグリッド動作のセット並びにそれらのグリッド動作の時間及び位置として既に定義された、システムへの入力であってもよいし、例えば、組み合わせを調べる部分観測マルコフ決定過程(POMDP)モデルの指示に従って、グリッド動作のセットから複数のグリッド動作を選択する、若しくはグリッド上の位置によって変化する動作条件に基づく制約の中で動作する、システムによって導き出されてもよい。
【0018】
グリッド応答を調べる信号注入は、任意の制御されたグリッド活動に対する空間的及び時間的な規則性を有し、即時的な様式又は規則的に遅延する様式で同時発生する波形を、例えば、主成分分析又はフーリエ分析を通じて探索することによって構成されてもよい。このような波形又は成分波形の統計的規則性(例えば、周波数、電圧、及び/又は電流)は、グリッド動作をグリッド条件の変更と結び付けることによって、グリッド動作の能動的な制御に基づきグリッド条件を操作するために使用できる選択肢のセットを提供する。また、特定の信号注入の空間的到達範囲及び時間的到達範囲を決定するために、観察された時刻及び位置での、グリッド動作に対するこれらの波形成分に関するデータが使用されてもよい。
【0019】
ステップ102で信号注入の空間的到達範囲を計算し、ステップ104で信号注入の時間的到達範囲を計算するために、プロセッサが使用される。空間的到達範囲は、センサが、その注入された信号の位置及び性質に基づき、その信号に対する応答を示す領域である。空間的到達範囲は、高信頼区間に対して、注入された信号に対する応答を示すであろう最も遠いセンサを予測し、かつ他の如何なる試験も、それが現在の試験の空間的不確実性の期間中に空間的不確実性の領域内の応答を生成する可能性が高い場合に行われないようにすることによって、計算されてもよい。時間的到達範囲は、センサネットワークが、注入された信号に関連するイベントを観察する期間である。これは、信号自体の継続時間、及び信号に対する予想されるセンサ応答の継続時間、例えば、信号注入を実施する特定のグリッド動作に波形成分を関連付ける履歴データに基づく予測、を含む。この時間的到達範囲は、センサ応答完了にかかる高信頼区間での予想時刻を使用して決定されてもよく、かつそれを、関連データのための継続時間、及び共通の空間的到達範囲を有する他の試験を除外する期間として使用してもよい。これらの注入された信号の空間的及び時間的到達範囲は、注入された信号の性質及び大きさに基づくグリッドの現在のモデル、構成要素及び接続、並びに/又は摂動に対するグリッド応答に関する現在のデータに基づいてもよい。例えば、配給ネットワーク上のコンデンサバンクを切り替えることによって行われる信号注入の場合、空間的到達範囲は、配給ネットワークの下流部分であってもよく、時間的到達範囲の例は、コンデンサバンクの切り替えによって導入された過渡信号が安定するまでにかかる時間であってもよい。これらの到達範囲を計算するための1つの特定の方法は、ベイズ因果ネットワークであり、これは、まずデータマイニングを通じて相関関係を発見し、その後直接、それらの特定された相関関係内の因果関係及び指向性をテストする。ガスグリッド内では、例えば、圧力増加の空間的到達範囲は、パイプの分岐、パイプの容積、及び圧力下でのガスの挙動などのグリッド構成要素のマップ、特に、増加した圧力よりも下流のグリッドの区分及び圧力増加の大きさに基づき決定されてもよい。時間的到達範囲は、増加した圧力が維持される期間に、圧力が観察可能な効果を有することが予想される最も遠い箇所で次第に弱まるまでの圧力増加の効果の時間遅れを加算したものであってもよく、これも、パイプの分岐及び容積並びにガスグリッドの圧力特性などの、ユーティリティ及びグリッドの既知の特性に依存する。データが信号注入に関連付けられる時間的及び空間的到達範囲を変更しながら継続的な信号注入を実施し、交絡するほど大きくならない最大限度の信号注入を捕捉する時間的及び空間的到達範囲を見つけ出すことによって、空間的及び時間的到達範囲に関する履歴データが能動的に生成されてもよい。これは、信号注入に対するピーク測定応答を生成する空間的及び時間的到達範囲値を見つけ出すことによって決定されてもよい。
【0020】
測定は、ユーティリティグリッド106上に分散した複数のセンサで行われる。センサ測定は、典型的には連続的である。センサは、例えば、水道グリッドの場合は、その応答がパイプを通る水流の速度に基づく水流メータ、ガスグリッドの場合は、その応答がメタン濃度に基づくメタン検出器、及び電気グリッドの場合は、終端での電圧及び電流波形を提供する、ケーブル接続されたセンサの終端であってもよい。センサデータはまた、データが収集された時刻及びデータが収集された特定のセンサ又は位置に関するメタデータ又は他の指示を含んでもよい。
【0021】
ステップ106でグリッド全体に対して行われた測定は、その後、ステップ108で信号注入に関連付けられる。ステップ108で行われる関連付けは、ステップ102及び104で計算された空間的及び時間的到達範囲に基づく。空間的及び時間的到達範囲は、信号注入がセンサによって捕捉された効果をもたらす可能性が高い時刻及び空間を表す。ステップ106で収集されたセンサデータは、そのセンサデータに付属する、時刻及び位置情報を提供するためのメタデータを使用して、センサ測定の時刻及びセンサ又はデータの位置によってパースされる。このパースは、センサデータを、特定の時刻及び位置での読み取り値に影響を与え得る特定の信号注入へと割り当てる。グリッドに対する信号注入の時間的又は空間的到達範囲外に位置するいくつかのセンサデータが収集されてもよい。このデータは、特定の信号注入には関連付けられない。これによって、グリッド沿いで複数の信号注入を同時に行い、かつ特定のセンサ応答を特定の信号注入へと帰することが可能となるため、グリッドセンサを特徴付けるための自動化された信号注入方法の効率が改善される。
【0022】
ステップ108の、信号注入及びセンサデータの関連付けのための例示的な方法が、
図5で詳細に示される。ステップ500では信号注入が選択され、ステップ502ではその信号注入の到達範囲データが受領され、ステップ504ではセンサデータが時刻によってパースされ、その後のステップ506ではセンサデータが位置によってパースされ、ステップ508ではパースステップで特定されたセンサデータが信号注入に関連付けられ、ステップ510では追加の信号注入が確認され、それらの信号注入に対して処理が反復される。
【0023】
ステップ500では信号注入が選択される。信号注入は、まだグリッドセンサデータが関連付けられていない信号注入のセットから選択される。その後、ステップ502では、その信号注入の到達範囲データが受領される。到達範囲データは、選択された信号注入の特定の空間的及び時間的到達範囲であり、これは信号注入の性質に基づき計算され、メモリ内に記憶される。このデータは、信号注入の実際の時刻及び位置と組み合わされて、信号注入がユーティリティグリッドに対してグリッド上又はその付近のセンサによって検出される効果を有する可能性が高かった空間領域及び時間期間を画定する。
【0024】
ステップ504では、センサデータが時刻によってパースされる。センサデータは、連続的な測定の対象となるサンプル又は時間範囲に関連付けられたタイムスタンプを有する。タイムスタンプが付加された個々のサンプルに対する、時刻によるパースは、信号注入の時刻及び信号注入の時間的到達範囲に基づく、サンプルが取得された時刻と、センサデータが信号注入に関連付けられ得る時間の範囲との比較である。このパースが、信号注入の時刻から始まり、時間的到達範囲だけ継続する、データが信号注入に関連付けられ得る範囲を作成する。
【0025】
ステップ506では、センサデータが位置によってパースされる。センサデータはまた、センサの位置も、座標として直接的に、又は、既知の位置を有する、データを収集したセンサの識別子などとして間接的に含む。データは位置によってパースされ、これは、信号注入の空間的到達範囲及びその信号注入の位置を使用して、センサデータが信号注入に関連付けられる領域を決定することによって行われる。座標又はセンサ位置がその領域に対して比較され、その領域内のセンサデータが信号注入に関連付けられ得る。この実施例では、既に時刻によってパースされ、信号注入に関連付けられる可能性があると判定されたデータに対して、位置によるパースが行われ、これは、このステップの後でもなお信号注入に関連付けられ得るデータが、ステップ508で信号注入に関連付けられることを意味する。この実施例では、データがまず時刻によって、その後位置によってパースされるが、このパースするステップは、逆の順序で行われるか又は同時に行われて、結果が組み合わされてもよい。このような実施例では、信号注入の空間的到達範囲内のセンサで、その信号注入の時間的到達範囲内の時刻にデータが収集された場合に、データがその信号注入に関連付けられる。
【0026】
パースされたデータはその後、ステップ508で信号注入に関連付けられる。パースするステップで特定された、信号注入の時刻及び位置の空間的及び時間的到達範囲内のデータが、信号注入に関連付けられる。この関連付けは、その関連付けを、メタデータ、タグ、データ自体のセグメント、又はデータが特定の信号注入に関連付けられていることを特定する他の手段として、センサデータに追加することによって行われてもよい。任意に、この関連付け段階の間、交絡したデータが、それが既に別の信号注入に関連付けられているが、時刻及び位置によるパースに基づき、現在の信号注入に関連付けることができるものとして特定された場合に、特定されてもよい。このような状況では、データ点が、そのデータ点に影響を与えた信号注入(単数又は複数)が不確実であることから、如何なるデータ点にも関連付けられないように、フラグ付けされるか若しくは破棄されるか、又はその関連付けが解除されてもよい。
【0027】
ステップ510では、関連付けられたデータをまだ有していない追加の信号注入が存在するかどうかが確認され、関連付けられたデータをまだ有していない任意の信号注入に対して、これらのステップが反復されてもよい。この関連付けは、例えば、各信号注入に、それがデータに関連付けられているかどうかを示すメタデータのカテゴリを含め、そのメタデータを関連付けステップ中に0から1へと変更することによって行われる。この例では、信号注入に対してメタデータが確認され、いずれかの信号注入が、それらのセンサデータとの関連付けを表す0をまだ有しているかどうかが決定される。現在の全ての信号注入がセンサデータに関連付けられたときに、関連付け処理は終了する。
【0028】
図1に戻ると、ステップ110では、センサ応答モデルの更新が、ステップ108からの関連付けられたセンサデータ、信号注入およびセンサに関するデータ、並びに現在の既存のセンサ応答モデルに基づき行われる。センサ応答モデルは、そのセンサ出力を、可変要素のレベル又はセンサ上の特定のグリッド条件の存在若しくはその可能性へとマップする様々なモデルのうちの1つであってもよい。それはまた、センサ出力を可変要素の特定の値又はセンサ周辺の状態へと結び付ける複数の代替モデルであってもよい。特定の更新処理は、意味をセンサ出力へと割り当てるために選択された特定のモデル(単数又は複数)に依存する。
【0029】
モデルの更新が、センサ応答の特徴付けを改善するために使用されてもよい。これらの実施形態では、部分観測マルコフ決定過程又は同様の技術で信頼状態を反証するために、センサ応答データが使用されてもよい。信頼状態は、センサデータを特徴付ける、ある個数の代替モデルである。信頼状態の反証によって、出力を処理するために、質の低いモデルが取り除かれ、その結果、センサ応答を、測定された可変要素のレベル、又はセンサ上若しくはその付近の関心のある条件の存在へとマップし、センサに到達する信号注入からのデータに基づく更新されたモデルを使用して、センサの感受性及び精度を改善するための方法である、最も優れたモデルの使用へと集約される。
【0030】
センサ応答モデルの更新は、センサ出力が特定の条件を示すタイミングを特定するために使用される分類子又は確率推定の改良であってもよい。分類子は、あるワールド状態又はイベントが特定のセンサ出力によって示されることを決定する。これは、分類子がそのセンサ出力データをあるカテゴリへとマップするためである。確率推定も同様に、センサ出力をワールド状態又はイベントへとマップするが、所与のセンサ出力に対する状態又はイベントのあり得る確率の範囲として、それを行う。ガスグリッド条件のための分類子の例は、例えば、センサネットワーク上の3つの隣接するセンサからの、ベースラインレベルの2倍へと上昇したメタンレベルを示す信号が、優先度の高い潜在的な漏れというイベントであってもよい。電気グリッド条件のための分類子の例は、例えばフーリエ又はウェーブレット変換分析を通じて見つかる、特定の電力源又は負荷と、電力品質への特定の観察可能な影響との間の関連付けの発見であってもよい。分類子の更新の1つの具体的な例は、グリッドの例では、ソーラー電力源の接続に関連付けられた波形データをフーリエ分析することで、ソーラー電力源をグリッド内へと組み込むことの影響に伴う電力品質を低下させる信号を特定し、その成分を当該再生可能な電力源の組み込みの結果として特定することであってもよい。
【0031】
センサ応答モデルは、特定の時間枠からのデータに基づいてもよく、この時間枠は、モデルが更新されるときに調整されてもよく、かつ、事前定義された期間であってもよいし、動的に決定されたものであってもよい。事前定義された期間の例では、センサ応答モデルは、過去30日間のみのデータに基づいてもよく、この場合、更新処理は、新しく収集されたデータを取り込むことに加えて、30日よりも古いデータを削除することを含む。センサ応答モデル内で使用されるデータの期間は、動的に調整されてもよい。例えば、トリガが設定されてもよく、該トリガにより、現在のセンサデータの追加が、信号注入と、システムの応答挙動に生じた変化を示す特定の閾値を超えるセンサ出力との確立された関係について、平均値又は信頼区間をシフトさせる場合に、このシステム応答挙動の変化を正確に発見及び反映するために、履歴データが破棄され、信号注入とセンサ出力との間の関係を決定するためのデータ収集が再度実行されてもよい。
【0032】
特定の信号注入に関連付けられたセンサデータを使用してセンサ応答モデルを更新するための1つの特定の例示的な方法を、
図6で詳細に示す。この例では、600で、関連付けられたセンサデータを使用して、信号注入の効果に関する知識のデータベースが更新される。この処理は、602で信号注入に関連付けられたデータを受領すること、604で信号注入応答データを更新すること、及び606で信号注入応答データの平均及び信頼区間を更新することを含む。600で更新された知識データベースは、608でセンサ応答モデルを検証するために使用される。この処理は、610でセンサ応答モデルを選択すること、612でセンサ応答モデルを使用して信号注入に対する予測応答を計算すること、614でその予測を信号注入の効果の平均及び信頼区間と比較すること、及び616で予測応答が信頼区間の範囲外にある場合に無効なモデルを破棄することを含む。上記処理は、618で全てのセンサモデルが信号注入の効果に関する更新された知識に対してテストされるまで追加のセンサ応答モデルについて反復され、それらのモデルがテストされたら、620で処理が終了する。
【0033】
ステップ602では、信号注入に関連付けられたデータが受領される。このデータは、ユーティリティグリッドに対して行われた信号注入に関連付けられており、かつ、この関連付けがデータ収集の時刻及び位置と、信号注入の時刻、位置、並びに空間的及び時間的到達範囲とに基づき行われた、センサデータである。
【0034】
ステップ602で受領されたデータは、ステップ604で信号注入応答データを更新するために使用される。この信号注入応答データは、センサ応答に対する信号注入の効果に関する推測統計の表として記憶されてもよい。この表は、特定の信号注入とそのセンサ応答への効果との間の関係を記述してもよい。この表で記述される信号注入に関連付けられたセンサデータが選択され、データベースへと追加される。その後、ステップ606では、この更新されたデータベースを使用して、信号注入とセンサ応答との間の関係に関する更新された平均及び更新された信頼区間が計算される。
【0035】
608では、信号注入とセンサ応答との間の関係に関する現に更新された知識を使用して、センサ応答モデルがテスト及び検証される。まず610では、センサ応答モデルのセットからセンサ応答モデルが選択される。この選択はランダムであってもよいし、セットリストから順次にであってもよく、又は例えば、センサ応答モデルが信頼状態であるベイズ因果ネットワークを通じて、有効性の推定に基づき選択されてもよい。612では、選択されたセンサ応答モデルを使用して、信号注入に対する予想応答が計算される。この計算は、信号注入の時刻、位置、及び性質、並びにセンサ応答モデルを使用して、その特定の信号注入に対するセンサ応答の推定を作成する。ステップ614では、この予想応答が現在の平均及び信頼区間と比較される。このステップでは、センサ応答モデルに従った予想応答が、信号注入に関連付けられたセンサ応答データと比較される。予想応答が現在の信号注入応答データの信頼区間の範囲内である場合、モデルは引き続き有効となる。予想応答が信号注入に対するセンサ応答に対する信頼区間の範囲外である場合、モデルは無効と判定され、616でそのモデルが破棄される。有効なモデルが、受領したセンサデータを評価するために使用される。
【0036】
この処理は、ステップ618で、信号注入に対するセンサ応答の現在のデータベースに対してまだテストされていないセンサ応答モデルを確認しながら反復される。これは、例えば、データベースが最後に更新された時刻及びモデルが最後に更新された時刻の両方に対してタイムスタンプを保持し、モデル更新タイムスタンプをデータベース更新タイムスタンプに対して確認することによって判定されてもよい。全てのモデルが最新である場合、処理は620で終了する。
【0037】
その後、更新されたセンサモデル(単数又は複数)がセンサ結果を解釈するために使用され、これによって、様々なワールド状態又はイベントを検出及び報告するセンサの能力が、センサ応答モデル(単数又は複数)の不正確な側面を反証することで改善される。この更新されたセンサモデルは、ガスグリッド上の特定の十台な漏れ、又は電気グリッド上における対応措置を必要とする電力品質の逸脱若しくは電圧の降下、に対するアラームなどの応答をトリガするために使用されてもよい。更新されたセンサモデルは、現場に既に配置されたセンサを使用して生成され、これによって、センサの自動校正並びにその局所環境及びベースライン条件に対する調整が可能となり、センサ読み取り値の精度及び信頼性が改善され、かつ、特定のグリッド条件をグリッド作業者に通知する能力が改良される。
【0038】
図2は、複数の同時の信号注入が存在するグリッド上で、異なるセンサからのデータを異なる信号注入へ関連付けることについて説明するための、ユーティリティグリッド、これに関連付けられたセンサ、及びグリッドに対してほぼ同じ時刻に行われるいくつかの信号注入の到達範囲の1つの特定の例を示す。この例は、時刻及び空間が重複する信号注入からの交絡によって特定の校正の精度を低下させることなく、そのような現場での自動校正の効率を最大化する。ユーティリティグリッド200は、ユーティリティ(例えば、電気、ガス、又は水道)の供給源を様々なユーティリティ消費者へと接続するラインのセットである。センサネットワークは、位置202、204、206、208及び210に配置されたセンサを含む。信号注入は、位置212、214、及び216で行われる。212での信号注入は、到達範囲領域218によって表される空間的到達範囲を有する。214での信号注入は、到達範囲領域220によって表される空間的到達範囲を有する。216での信号注入は、到達範囲領域222によって表される空間的到達範囲を有する。空間的到達範囲領域218、220、及び222は重複しないため、信号注入は、同じ時刻に展開されるにもかかわらず、互いに交絡しない。空間的到達範囲領域218、220、及び222のサイズは全て異なる。これは、信号注入の性質(例えば、電気グリッド内で電力源を接続することと、搬送ラインの選択を切り替えること)若しくは大きさ(例えば、ガスグリッドに対する信号注入のpsi単位の圧力増加)の違い、又は、グリッド内の特定の信号注入位置周辺での違いに基づく効果の予測到達範囲(例えば、水道グリッド内の、流量が増加している特定のノードから分岐した水道ラインの容積)によるものであり得る。空間的到達範囲領域218内に配置された、センサ位置202のセンサで、信号注入212の時間的到達範囲の間に、その信号注入212に関連付けられたセンサデータが収集される。空間的到達範囲領域220内に配置された、センサ位置204及び206のセンサで、信号注入214の時間的到達範囲の間に、その信号注入214に関連付けられたセンサデータが収集される。空間的到達範囲領域222内に配置された、センサ位置208のセンサで、信号注入216の時間的到達範囲の間に、その信号注入216に関連付けられたセンサデータが収集される。この期間中の全ての空間的到達範囲領域の外に位置する、センサ位置210に配置されたセンサは、信号注入212、214、及び216のうちのいずれに関連付けられたデータも有さない。その後、このようなデータの関連付けが、上記方法のステップ110に従ってセンサ応答モデル及びグリッド条件を更新するために使用されてもよく、これによって、センサをグリッド上のそれらの位置で自動的に校正することが可能となり、かつ、それらのセンサのイベント又はワールド状態を検出及び報告する能力が改良される。
【0039】
図3は、調整されたユーティリティグリッドシステムとしての本発明の実施形態の図である。メモリは、フラッシュメモリ、磁気媒体を使用するハードディスクドライブなどの既知のコンピュータ記憶手段であってもよいし、データを記憶することができ、頻繁かつ定期的にアクセスされうる、データ記憶のための他の方法であってもよい。プロセッサは、ソフトウェア命令を通じて計算を実行するように構成されてもよい。構成要素間の接続は、配線で接続されていてもよいし、複数のステップのための共通プロセッサを使用してもよいし、様々な802.11プロトコル、ZigBee(登録商標)若しくはBluetooth(登録商標)規格、イーサネット(登録商標)、又は互いに分離したセンサ、プロセッサ、メモリ、及びモジュール間でデータを送信するための他の類似手段などの、有線若しくは無線手段によってネットワーク接続されてもよい。センサ、メモリ、プロセッサ、及びモジュールは、センサ自体を含む様々な位置に分散されるか、又は中間若しくは中央位置に共に配置されてもよい。
【0040】
信号注入メモリ300は、グリッドに対して行われる信号注入の時刻、位置、及び性質を含む信号注入特性を記憶するように構成されたメモリである。信号注入の性質は、例えば、水道又はガスグリッド内の特定の弁を作動させるなどの、信号注入に影響を与えるためのグリッド条件の変更である。動作が、タービンによって電気グリッドへと供給される電力の量などの可変の大きさを有し得る場合、その大きさも、このメモリ内に記憶されるデータに含まれる。時刻及び位置は、注入の性質で特定される特定の動作の時刻及び位置である。
【0041】
グリッド特性メモリ302は、グリッド構成要素、それらのレイアウト及び接続、並びにユーティリティグリッド沿いのセンサの位置に関するデータを記憶する。このデータは、グリッド構成要素の挙動にかかる、グラフィカルモデル、確率モデル、若しくはマルコフ連鎖モデルを含むグリッドモデル、又は構成要素、それらの位置、接続、及び/若しくはそれらの基本応答特性のデータベースなど、様々な形式で記憶されうる。
【0042】
到達範囲プロセッサ304は、信号注入及びグリッド特性データを使用して空間的及び時間的到達範囲を計算するように構成されたプロセッサであり、任意に、過去の信号注入に関する履歴データも使用して、信号注入の性質、大きさ、位置、グリッド特性、及び過去の応答などの、信号注入に関する可変要素を処理し、信号注入がセンサ読み取り値に影響を与える可能性が高い空間及び時刻を予測することによって、これらの到達範囲を計算してもよい。到達範囲プロセッサ304は、入力として受け取った信号注入及びユーティリティグリッドの特性から到達範囲を計算するために、ベイズ因果ネットワークを適用することが好ましい。
【0043】
センサネットワーク306は複数のセンサであり、ネットワークセンサ314、316、及び318は、ユーティリティグリッド沿いの様々な位置に配置される。これらのセンサは、それらが監視するユーティリティグリッドの上、その内部、又はその付近に存在してもよく、かつ、グリッドの特性、ユーティリティ自体、又は周囲の条件に対するユーティリティグリッドの影響を監視してもよい。例えば、ガスグリッド上では、センサネットワークはガスライン内の圧力センサ及び/又はガスライン付近に配置されたメタンセンサを含んでもよい。水道グリッド上では、センサは例えば、水道ライン上のパイプ内の水流センサであってもよい。電気グリッド上では、センサは例えば、センサ付きのケーブル終端、スマートメータ、変電所に配置された電圧メータ、電力線のたるみメータ、及び/又は電力線の温度センサであってもよい。センサは、検知した可変要素を変換することで、電気波形を出力する。これらのセンサは、互いにネットワーク接続されてもよく、かつ、システムの他の構成要素とネットワーク接続される。これは、デバイス間の信号通信のための様々な既知の有線及び/又は無線手段を通じて行われてもよい。
【0044】
関連付けプロセッサ308は、センサ出力の時刻及び位置、並びに信号注入の時間的及び空間的到達範囲によって、センサデータをパースする。このプロセッサは、グリッド内への信号注入の時刻及び位置に関する情報、並びに信号注入の時間的及び空間的到達範囲を受領する。このデータによって、センサ出力データをセンサ読み取りの時刻及び位置によってパースするために使用される時間期間及び空間が作成され、特定の時刻及び位置でのセンサネットワーク306の出力が適切な信号注入に関連付けられるようになり、それによって、センサ応答モデルが、既知の信号注入に対する応答に関する交絡していないデータを使用して正確かつ効率的に更新されるようになる。
【0045】
モデルメモリ310は、センサ出力を評価するために現在グリッドによって使用されている特徴付け及び/又は分類モデルを記憶するメモリである。これらのモデルは、センサ出力を処理するために使用され得る分類子、確率推定、又は関数であってもよい。システムが、様々なモデルを、センサ出力の理解のための最も優れたモデル(単数又は複数)へと集約させるために、このようなモデルをテストするための信号注入の体系的な実施を通じてテスト及び反証するのに伴い、ネットワーク上のセンサからのデータの特徴付け又は分類ごとに、複数のそのようなモデルが記憶されてもよい。これらのモデルは、例えば、センサ出力を特定のイベントを示すか若しくは示さないものとして分類することによって、又はモデルを使用してセンサ出力を検知されたメトリックの測定値へと変換することによって、センサデータを解釈し、ユーティリティグリッド上でイベントを検出するか若しくは条件を特徴付けるためにアクセス及び使用されてもよい。
【0046】
モデル更新プロセッサ312は、特徴付け及び/又は分類モデルの現在のセットを受領し、それらのモデルに対する更新を、受領したセンサ出力及びそれらの出力に関連する条件に基づき計算及び実施するように構成されたプロセッサである。モデル更新プロセッサ312の機能の1つの例は、信号注入に関連付けられたセンサ出力を受領すること、信号注入の性質及び大きさ並びに現在のセンサ応答モデルを受領すること、センサ応答モデルを使用して信号注入に対するセンサ応答を予測すること、予測応答を信号注入からの実際のセンサデータと比較すること、及び、部分観測マルコフ決定過程を使用して、例えば、予測が実際に測定された値から誤差閾値の量を超えて逸脱するモデルを拒否することによって信頼状態を調整することである。更新されたモデルはモデルメモリ310へと返送されてもよく、そこでこれらのモデルが、センサ出力を解釈して、ユーティリティグリッド沿いでイベントを検出するか又は条件を特徴付けるために使用されてもよい。
【0047】
図4は、調整されたユーティリティグリッドシステムとしての本発明の実施形態における構成要素間の情報の交換を示すデータ流れ図である。信号注入特性400は、大きさ、性質、並びに信号注入がユーティリティグリッド内に導入された時刻及び位置である。このデータは信号注入メモリ402内に記憶される。データは、信号注入メモリ402から到達範囲プロセッサ404へと転送され、そこで到達範囲データ412を計算することに使用され、信号注入メモリ402からモデル更新プロセッサ406へと転送され、そこで現在のモデルでの予測を生成するために使用され、それらの予測がその後、それらのモデルのうちのいくつかを反証するために使用される。信号注入特性400は任意に、データを使用してセンサデータ418をパースし、それを特定の信号注入へと関連付けることができる、関連付けプロセッサ408へと提供されてもよい。
【0048】
グリッド情報410は、グリッド及びその構成要素のレイアウトであり、任意に、グリッド状態及び以前の信号注入に対するグリッド応答に関する履歴データを含んでもよい。グリッド情報410はグリッドメモリ412内に記憶される。グリッド情報410はグリッドメモリ412から到達範囲プロセッサ404へと転送され、そこでグリッド情報は、信号注入の空間的及び時間的到達範囲414を予測するために使用される。グリッド情報410はまた、センサをそれらの位置と一致させてセンサデータ418のパースを可能にするために、関連付けプロセッサ408へと提供されてもよい。グリッド情報410はまた、任意に、信号注入に対する応答の予測に使用するためにモデル更新プロセッサへと提供され、収集されたセンサデータ418に対してモデルが検証されてもよい。
【0049】
到達範囲データ414は、特定の信号注入の影響を受けることが予測される空間及び時間の領域である。到達範囲データ414は、信号注入により影響を受ける時間及び空間の領域を予測するために、到達範囲プロセッサ404によって、信号注入特性400及びグリッド情報410を使用して計算される。到達範囲データは、時間及び空間の領域のサイズ丁度であってもよく、又は、信号注入により影響を受ける具体的な空間領域及び時間期間を含むように、信号注入の時刻及び位置を更に含んでもよい。到達範囲データ414は関連付けプロセッサ408へと送信され、そこで、信号注入に関連付けられ得るセンサデータ418が収集された時間期間及び位置を確認するために使用される。関連付けプロセッサはセンサデータ418をパースして、センサデータが収集された時刻及び位置に基づき、信号注入及びその到達範囲データ414との比較によって、関連付けられたセンサデータ422を生成する。
【0050】
センサデータ418はセンサ420自体からの生の出力であり、典型的には変換器からの電気波形出力である。このデータは典型的には、センサ420によって連続的に生成される。あるいは、センサデータ418は離散のサンプリング期間に取得されてもよく、又はセンサ上若しくはセンサ群付近のメモリに局所的に記憶され、特定の時刻にセンサから取得されてもよい。センサデータ418は、関連付けられたセンサデータ422を生成するために、関連付けプロセッサ408によって使用される。
【0051】
関連付けられたセンサデータ422は関連付けプロセッサ408から出力される。関連付けプロセッサ408は、センサデータ418を到達範囲要素412によってパースし、センサデータ418を特定の信号注入に関連付けることによって、関連付けられたセンサデータ422を生成する。関連付けプロセッサ408によって出力された、関連付けられたセンサデータ422は、モデル更新プロセッサ424へと転送され、そこで、センサ応答モデル426に関する信頼状態を更新するために使用される。センサ応答モデル426は、センサデータを特徴付けてもよいし、分類してもよい。
【0052】
センサ応答モデル426は、センサデータ418を、センサ420で発生する特定の状態、条件、又はイベントへとマップする様々なモデルである。これらのモデルは、センサ出力を測定された可変要素のレベルへと変換するモデルの形態を取ってもよいし、センサ出力若しくは出力の組み合わせをグリッド上で発生した特定のイベントへとマップして、そのようなイベントの存在若しくは可能性を示す、分類子若しくは確率推定であってもよい。これらのモデルはセンサ応答のモデルメモリ428内に記憶され、本発明のシステムでは、センサ応答モデル426がモデルメモリ428からモデル更新プロセッサ406へと転送され、そこで応答モデルが、特定の信号注入に帰属させられうる関連付けられたセンサデータ422に基づき、更新又は反証される。更新されたセンサ応答モデル430は、モデル更新プロセッサ406からセンサ応答のモデルメモリ428へと返送される。センサ応答モデルを更新することによって、現場でのセンサの校正が可能となり、センサ出力の理解が改善される。これによって、センサネットワークのセンサによって提供されるイベントの検出及びワールド状態の監視が、漏れ及び電圧低減などの様々な条件に関するアラートなど、ユーティリティ作業者にとって関心のあるワールドイベントに対するセンサ応答に関する正しくないモデルを反復的に反証することを通じて改善されるか、又は、流量を調整すること、若しくは浪費を最小化しながら送信をサポートするよう無効電力レベルを制御することなどの処理最適化作業に使用されるデータなどからノイズが除去される。
【0053】
本発明の例示的実施形態を含む全体的なアーキテクチャの単純な例が、
図7に示される。制御決定層700は、いくつか又は全てのグリッド制御の状態に関する決定を行う。グリッド制御に関する決定は、制御の操作によって互いに影響を与えないサンプルが作成されることを保証し、かつ任意に、高い学習値を提供するため、あるいは電気グリッド内の特定の電圧レベル又はガス若しくは水道グリッド内の流量などの特定のグリッドパラメータを改善するために、制御決定が選択される。制御決定層700からの制御決定は、制御702、704、及び706によって実行される。特定の制御の例としては、コンデンサバンクスイッチ、負荷タップ切換器、電気グリッド上のスイッチ及び記憶デバイス、又は水道及びガスグリッド上の弁及び供給源などが挙げられる。制御は、例えば、スイッチを作動させること、負荷タップ切換器の位置を移動させること、及び弁を絞るか又は開くことによって、制御決定を実行してもよい。制御の動作はグリッドパラメータを変更し、それらの変更はグリッド708内を伝搬する。例えば、ガスグリッド上の弁を開くことが、その弁から一定の距離内で経時的に下流側の圧力を増加させてもよく、又は電気グリッド内で、コンデンサバンクのオン若しくはオフを切り替えることに基づき、電力品質及び無効電力レベルが変更されてもよい。グリッド沿いに配置されたセンサ714、716、及び718は、グリッドパラメータを測定し、グリッド708内の信号注入の伝搬を検出する。信号注入は、それらがグリッド708内を伝搬する度合いに制約があり、これがその信号注入の空間的到達範囲として定義される。空間的到達範囲は、例えば、制御702によって注入される信号により影響を受ける領域の外縁をなし、かつグリッド708へのセンサ714の接続点を含む、空間的到達範囲710であり、制御706によって注入される信号により影響を受ける領域の外縁をなし、かつグリッド708へのセンサ718の接続点を含む、空間的到達範囲712である。データ処理層720は、センサ714、716、及び718からのデータを、その空間的及び時間的到達範囲がそれらのセンサデータを含む信号注入に関連付ける。これは、例えば、空間的到達範囲710に基づき、センサ714からのデータを、制御702により実施された信号注入からのデータに関連付け、また、空間的到達範囲712に基づき、センサ718からのデータを、制御706により実施された信号注入に関連付けることによって行われる。その後、データ処理層720からの関連付けられたセンサデータが、グリッド挙動及びセンサ応答に関する理解を決定するために、データ分析層722によって分析される。例えば、このデータ分析層722によって生成されたグリッド挙動の理解は、通常の動作中のグリッドセンサ714、716、及び718からの出力を解釈して、例えば、電力線内の電圧が降下したときの電圧低減条件に関する閾値又はアラートを設定したり、メタンレベルが通常の動作閾値を超えた場合のアラートを設定したりするために使用される、センサ応答モデルの形態を取ってもよい。データ分析層722は、例えば、グリッド上の信号注入の効果を予測するか、又は学習が特定の信号注入によって改良され得る度合いを計算することによって、反復的にグリッド内への信号注入を調整して実施し、かつ実施する信号注入の選択を改善する情報を提供するために、制御決定層700と連係してもよい。