(58)【調査した分野】(Int.Cl.,DB名)
裏面に入力側第1電極が形成され、表面に出力側第2電極が形成され、さらに表面に前記第1電極と前記第2電極間の電流を制御する第3電極が形成された複数の半導体チップを第1の方向に配列した半導体チップ列と、
前記複数の半導体チップの前記第1電極が接続される第1電極パターンと、前記複数の半導体チップの前記第3電極が接続される第3電極パターンが前記第1の方向に形成されたセラミック基板と、
前記セラミック基板の上方に形成され、前記第1電極パターンに接続される第1電極引き出し部を有する第1電極リードフレームと、
前記半導体チップの上方で前記第1の方向に形成された梁部と、前記複数の半導体チップの前記第2電極が接続される第2電極引き出し部とを有する第2電極リードフレームと、
前記第1電極引き出し部が接続される第1電極端子と、
前記第2電極引き出し部が接続される第2電極端子と、
前記第3電極パターンが接続される第3電極端子と、
を備える半導体モジュール部を備え、
前記第1電極引き出し部と前記第2電極引き出し部が前記梁部を挟んで対向し、前記第1電極端子から第1電極リードフレームと前記第1電極パターンを通過し、さらに前記第2電極リードフレームを通過して前記第2電極端子に至る配線距離が、前記複数の半導体チップの夫々で同じ長さであり、
前記第3電極パターンは、前記セラミック基板の最も外側に形成され、
前記複数の半導体チップは、表面にセンス電極を有し、前記セラミック基板は、前記第1電極パターンと前記第3電極パターンの間に前記第2電極と同一電位に設定されたセンス電極パターンが形成されている半導体モジュール。
前記半導体モジュール部は、各々がこの半導体モジュール部の構成を備える第1半導体モジュール部と第2半導体モジュール部を含み、前記第1半導体モジュール部の半導体チップ列と前記第2半導体モジュール部の半導体チップ列は前記セラミック基板上に並列に配置されている請求項1に記載の半導体モジュール。
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、複数の半導体チップを並列接続することで大容量化する場合は、各半導体チップ間を流れる電流が大きいために、各半導体チップへの電流経路のインピーダンス分布が問題となる場合がある。例えば、3個の半導体チップを並列接続して一つのスイッチング部を構成する場合、ドレイン端子から供給された電流は、各半導体チップの裏面のドレイン電極から表面のソース電極を通ってソース端子に流れる。このとき、各半導体チップを流れる電流経路の夫々の合計した長さ(以下、配線距離と呼ぶ)が異なると、各半導体チップの電流経路において配線距離の長さに起因するインピーダンスの大きさに差が生じる。インピーダンスの大きさに差があると、例えば配線距離が短い、つまりインピーダンスが小さい半導体チップを流れる電流が大きくなって、一つのスイッチング部内で半導体チップを流れる電流バランスが悪くなり、動作の不安定化や電流集中による半導体チップの破壊につながる不都合がある。2個の半導体チップを並列接続した場合であっても、同様の不都合が考えられるが、並列接続された3個の半導体チップを一つのスイッチング部とした、複数のスイッチング部から構成されるコンバータやインバータのように、使用される半導体チップの数が多い半導体モジュールでは、配線経路が複雑化することから、配線距離の差によるインピーダンスの差が生じやすい。しかし、これまでの半導体モジュールでは、内部での電流バランスまで考慮されていなかった。
【0006】
この発明は、複数の半導体チップを並列接続して一つのスイッチング部を構成する場合に、各半導体チップに流れる電流のバランスを良くし、安定な動作を可能とし、信頼性の高い半導体モジュールの提供を目的とする。
【課題を解決するための手段】
【0007】
この発明の半導体モジュールは、
裏面に入力側第1電極が形成され、表面に出力側第2電極が形成され、さらに表面に前記第1電極と前記第2電極間の電流を制御する第3電極が形成された複数の半導体チップを第1の方向に配列した半導体チップ列と、
前記複数の半導体チップの前記第1電極が接続される第1電極パターンと、前記複数の半導体チップの前記第3電極が接続される第3電極パターンが前記第1の方向に形成されたセラミック基板と、
前記セラミック基板の上方に形成され、前記第1電極パターンに接続される第1電極引き出し部を有する第1電極リードフレームと、
前記半導体チップの上方で前記第1の方向に形成された梁部を有し、前記複数の半導体チップの前記第2電極が接続される第2電極引き出し部を有する第2電極リードフレームと、
前記第1電極引き出し部が接続される第1電極端子と、
前記第2電極引き出し部が接続される第2電極端子と、
前記第3電極パターンが接続される第3電極端子と、
を備える半導体モジュール部を備え、
前記第1電極引き出し部と前記第2電極引き出し部が前記梁部を挟んで対向し、前記第1電極端子から前記第1電極リードフレームと前記第1電極パターンと前記第2電極リードフレームとを通過して前記第2電極端子に至る配線距離が、前記複数の半導体チップの夫々で同じ長さである。
また、この発明は、前記第3電極パターンは、前記セラミック基板の最も外側に形成され、前記複数の半導体チップは、表面にセンス電極を有し、前記セラミック基板は、前記第1電極パターンと前記第3電極パターンの間に前記第2電極と同一電位に設定されたセンス電極パターンが形成されている。
【0008】
この発明において、半導体チップは典型的にはMOSFETチップであり、その場合、前記第1電極はドレイン電極であり、前記第2電極はソース電極であり、前記第3電極はゲート電極である。
【0009】
セラミック基板上で第1の方向に配列された複数の半導体チップは、それらの第1電極がセラミック基板上の第1電極パターンに接続され、また、第2電極は前記第1の方向に形成された梁部を含む第2電極リードフレームに接続される。また、第1電極端子は第1電極リードフレームの第1電極引き出し部に接続され、第2電極端子は第2電極リードフレームの第2電極引き出し部に接続される。主電流は、第1電極端子→第1電極リードフレーム→第1電極パターン→複数の半導体チップの第1電極→複数の半導体チップの第2電極→第2電極リードフレーム→第2電極端子の経路で流れる。
【0010】
主電流が流れる経路にはインピーダンスが存在し、上記経路は半導体チップ毎に異なっている。この発明では、前記第1電極引き出し部と前記第2電極引き出し部を前記梁部を挟んで対向させることで、前記第1電極端子から前記第1電極引き出し部を含む前記第1電極リードフレームと、前記第1電極パターンと、前記第2電極引き出し部を含む第2電極リードフレームとを通過して前記第2電極端子に至る配線距離が、前記複数の半導体チップの夫々で同じ長さに設定する。このような配置を行うことで、第1電極端子から半導体チップまでの距離と第2電極端子から半導体チップまでの距離との加算距離が、各半導体チップで同一となり、その結果、各半導体チップに流れる主電流の大きさが同一となる。
【発明の効果】
【0011】
この発明では、一列に配列した複数の半導体チップを並列接続して半導体チップ列を構成する場合に、各半導体チップに流れる主電流の大きさを同一に出来るため、電流のバランスを良くし、安定な動作を可能とする。
【発明を実施するための形態】
【0013】
図1は、この発明の実施形態である半導体モジュールの概略平面図、第2図、第3図は視角を変えた概略斜視図、
図5は第1半導体モジュール部1aの詳細な平面図である。
【0014】
半導体モジュール1は、第1半導体モジュール部1aと第2半導体モジュール部1bを備えている(
図1参照)。第1半導体モジュール部1aは第1半導体チップ列3を備え、第2半導体モジュール部1bは第2半導体チップ列4を備えている。
図1において、第1半導体チップ列3は前方に、第2半導体チップ列4は後方に配置されている。第1半導体チップ列3と第2半導体チップ列4は、略同一構成であり、これらの半導体チップ列3、4は一つのセラミック基板2上に長手方向(第1の方向)に平行に設けられている。
【0015】
第1半導体チップ列3は、セラミック基板2の長手方向(第1の方向)に配列されている3個のMOSFET半導体チップ3a、3b、3cで構成される。
【0016】
第1半導体モジュール部1aは、さらに、セラミック基板2に形成された、ドレイン(第1電極)パターン300と、ゲート(第3電極)パターン301と、ソースセンスパターン302とを備える。ドレイン(第1電極)パターン300は、第1電極パターンに対応し、ゲートパターン301は第3電極パターンに対応している。これらのパターン300、301、302は、全体としてセラミック基板2の長手方向(第1の方向)に平行に形成されており、基板2の外側から順に、ゲートパターン301、ソースセンスパターン302、ドレインパターン300の位置関係となっている。
【0017】
また、ドレインパターン300は、第1半導体チップ列3の下面に位置し、同チップ列3の半導体チップ3aのドレイン電極30D(
図6参照)が直接半田付けされている。ゲートパターン301とソースセンスパターン302には、それぞれ、詳細については後述のように(
図5)、第1半導体チップ列3のゲート電極30Gとソースセンス電極30SSがワイヤにより半田付けされている。
【0018】
第1半導体モジュール部1aは、さらに、第1電極リードフレーム5と第2電極リードフレーム7とを備える。第1電極リードフレーム5は、ドレイン端子(第1電極端子)50に接続されるドレイン引き出し部(第1電極引き出し部)51と、ドレイン引き出し部51に接続される第1接合部52とを備える。第2電極リードフレーム7は、ソースドレイン端子(第1電極端子兼第2電極端子)70に接続されるソースドレイン引き出し部(第2の接合部)(第1電極引き出し部兼第2電極引き出し部)71と、ソースドレイン引き出し部71に接続される第1梁部72とを備える。
【0019】
ドレイン端子50と、ドレイン引き出し部51及び第1接合部52を構成する第1電極リードフレーム5とは、1枚の細長状の金属板を折曲、切断して形成されている。その形状は、
図2、
図3に示すように、ドレイン端子50の端部から先を細く切断し、下方向に折曲してドレイン引き出し部51を形成し、さらに、そのドレイン引き出し部51の先端部を下方向に折曲して第1接合部52を形成する。そして、第1接合部52がセラミック基板2に形成されているドレインパターン300に半田付けされている。
【0020】
また、ソースドレイン端子70と、第2電極リードフレーム7を構成するソースドレイン引き出し部71と、第1梁部72も1枚の金属板を折曲、切断して形成されている。使用する金属板は細長状の略L字型である。
図2、
図3に示すように、ソースドレイン端子70の端部を下方向に折曲してソースドレイン引き出し部71を形成し、さらに、そのソースドレイン引き出し部71の先端部から直角に伸びる板部を上方向に折曲して第1梁部72を形成する。
【0021】
ドレイン端子50とソースドレイン端子70は、セラミック基板2の一方の側部側(
図1では後方側部側)に位置するようにその配置が決められている。
【0022】
第1梁部72は、第1半導体チップ列3の上方に垂直に立設された形状となる板状のフレームであり、半導体チップ列3の各半導体チップ3a、3b、3cのソース電極に直接半田付けされている。
【0023】
以上の構成で、ドレイン引き出し部51とソースドレイン引き出し部71とは、第1梁部72を挟んで対向する位置関係となっている。このような位置関係とすることで、後述のように、ドレイン端子50から前記第1電極リードフレーム5と前記ドレインパターン300と前記第2電極リードフレーム7とを通過してソースドレイン端子70に至る配線距離を、複数の半導体チップの夫々で同じ長さとすることができる。
【0024】
第2半導体モジュール部1bの第2半導体チップ列4は、セラミック基板2の長手方向(第1の方向)に配列されている3個のMOSFET半導体チップ4a、4b、4cから構成される。第2半導体チップ列4は、全体として第1半導体チップ列3に隣接して形成され、
図1では、第1半導体チップ列3の後方に形成されている。
【0025】
第2半導体モジュール部1bは、さらにセラミック基板2に形成したドレインパターン400と、ゲートパターン401と、ソースセンスパターン402とを備える。ドレインパターン400は第1電極パターンに対応し、ゲートパターン401は第3電極パターンに対応している。これらのパターン400、401、402は、全体としてセラミック基板2の長手方向(第1の方向)に平行に形成されており、基板2の後方の外側から順に、ゲートパターン401、ソースセンスパターン402、ドレインパターン400の位置関係となっている。
【0026】
また、ドレインパターン400は、半導体チップ列4の下面に位置し、同チップ列4のドレイン電極40Dが直接半田付けされている。ゲートパターン401とソースセンスパターン402には、それぞれ、各半導体チップのゲート電極とソースセンス電極がワイヤにより半田付けされている。これらの半田付け構造については、第1半導体チップ列3の半導体チップ列と同様である。
【0027】
第2半導体モジュール部1bは、さらに、第1電極リードフレームと第2電極リードフレームとを備える。第1電極リードフレームは、ソースドレイン端子70(第2半導体モジュール部1bのドレイン端子と第1半導体モジュール部1aのソース端子を兼用)に接続されるソースドレイン引き出し部71(第1電極引き出し部)(第2接合部を兼用)を備える。第2電極リードフレームは、ソース端子60に接続されるソース引き出し部(第2電極引き出し部)61と、ソース引き出し部61に連結する第2梁部62とを備えている。
【0028】
ソース引き出し部61は、上方から見てL字状にされていて、その前方端は第2梁部62の左端部に接続されている。したがって、ソース端子60は第2梁部62の第1の方向の中央部に位置している。
【0029】
ソースドレイン引き出し部71の裏面は、セラミック基板2に形成されているドレインパターン400に直接半田付けされている。このようにソースドレイン引き出し部71はドレインパターン400に半田付け接続するための接合部(第2接合部)を兼ねている。
【0030】
ソースドレイン端子70とソース端子60は、セラミック基板2の一方の側部側(
図1では後方側部側)に位置するようにその配置が決められている。
【0031】
以上の構成で、第2半導体モジュール部1bでは、ソースドレイン端子70は第1電極端子に、ソース端子60は第2電極端子に、ドレインパターン400は第1電極パターンに、ゲートパターン401は第3電極パターンに対応し、第1電極リードフレームはソースドレイン引き出し部71(第2の接合部)を含み、第2電極リードフレームはソース引き出し線61と第2梁部62を含んでいる。
【0032】
第2半導体モジュール部1bは第1半導体モジュール部1aと同様に、ソースドレイン引き出し部71とソース引き出し部61とが、第2梁部62を挟んで対向する位置関係となっている。このような位置関係とすることで、後述のように、ソースドレイン端子70からソースドレイン引き出し部71と、前記ドレインパターン400と、第2梁部62と、ソース引き出し部61とを通過してソース端子60に至る配線距離を、複数の半導体チップの夫々で同じ長さとすることができる。
【0033】
図3から分かるように、第2半導体チップ列4の第2梁部62は、半導体チップ列の上方で基板前方側に傾斜して立設された板状のフレームであり、各半導体チップのソース電極に直接半田付けされている。この第2梁部62が半導体チップ列の左端部付近でL字状のソース引き出し部61の前方端に連結する。ソース端子60、ソース引き出し線61、第2梁部62は、1枚の金属板を適宜切断し、且つ折曲して形成される。
【0034】
第2梁部62が基板前方側に傾斜して立設されていることにより、この第2梁部62は第1半導体チップ列3の第1梁部72に近接する。このような構造にした理由については後述する。
【0035】
第1半導体チップ列3と第2半導体チップ列4は、以上のように、いずれもセラミック基板2の長手方向である第1の方向に配列され、また、各チップ列を構成する3個の半導体チップは、共通のドレインパターンと共通の梁部に接続されるため、各半導体チップ列の複数の半導体チップは並列接続された構成となっている。また、ソースドレイン端子70は、第1半導体チップ列3のソース端子と第2半導体チップ列4のドレイン端子を兼用する共通(兼用)端子とされている。これによりこの半導体モジュールは、
図4のような回路構成となる。
【0036】
図4では、第1半導体チップ列3は3個のMOSFET半導体チップ3a、3b、3cから構成され、第2半導体チップ列4は3個のMOSFET半導体チップ4a、4b、4cから構成されていることを模式的に示し、また、第1半導体チップ列3のドレイン端子50、ソースドレイン端子70と、第2半導体チップ列4のソースドレイン端子70、ソース端子60を示している。なお、ソースドレイン端子70は、第1半導体チップ列3のソース端子と第2半導体チップ列4のドレイン端子の兼用端子として使用されることを示している。このような回路構成の半導体モジュールは、第1半導体チップ列3と第2半導体チップ列4を交互にオンオフする制御方法で使用される。
【0037】
次に
図5を参照して第1半導体チップ列3についての詳細な構成について説明する。上記に述べたように、第1半導体チップ列3は、3個の半導体チップ3a、3b、3cで構成されるが、各半導体チップは同じ構成であるため、以下、半導体チップ3aについてのみ説明する。
【0038】
半導体チップ3aは、その表面にソース電極30S、ゲート電極30G、ソースセンス電極30SSが形成されている。ソース電極30Sは比較的広い面積で2か所に形成され、このソース電極30Sは第1梁部72の端部に形成されている脚部73aに直接半田付けされている。ゲート電極30Gは、ワイヤでゲートパターン301に半田付け接続され、ソース電極30Sと電気的に同一電位となるようにチップ内で接続されているソースセンス電極30SSは、ワイヤでソースセンスパターン302に半田付け接続されている。
【0039】
前記ゲートパターン301は、基板2の前方の最も外側に第1の方向に平行に形成され、基板左端部付近で後方に垂直に折曲されて端部を形成し、この端部にてワイヤ58によりゲート端子80に半田付け接続されている。
【0040】
前記ソースセンスパターン302は、前記ゲートパターン301の内側に同パターン301に沿って形成されている。このソースセンスパターン302は、配置位置がゲートパターン301の内側で、且つ、ドレインパターン300の内側である。そして、ソースセンスパターン302の電位は、基準電位となっているソース電極30Sの電位と同じである。このため、このソースセンスパターン302は、ドレインパターン300に対しシールド効果を発揮する。
【0041】
次に、半導体チップの半田付け構造について説明する。
【0042】
図6は、半導体チップ3aの第1の方向の部分断面図である。
【0043】
セラミック基板2上にドレインパターン300が形成され、その上に半導体チップ3aの裏面のドレイン電極30Dが半田31で半田付けされている。また、半導体チップ3aの表面の二つのソース電極30S、30Sは第1梁部72に半田32、32で半田付けされている。他の半導体チップ3b、3cについても、また、第2半導体モジュール部1bの半導体チップ列4の各半導体チップ4a、4b、4cにおいても同様であるため、説明を省略する。
【0044】
以上の構成の半導体モジュールは、第1のタイミングで第1半導体スイッチ列3をオンして主電流を流し、次の第2のタイミングで第1半導体スイッチ列3をオフし代わりに第2半導体スイッチ列4をオンして主電流を流す。このサイクルを繰り返す。
【0045】
図7は、第1半導体スイッチ列3において、各半導体チップ3a、3b、3cに流れる電流について説明する図であり、
図5の構成を、主電流の流れる経路から見たときの模式図である。第2半導体スイッチ列4においても同様である。
【0046】
第1半導体スイッチ列3のオン時では、主電流Iは、ドレイン端子50から、半導体チップ3a、3b、3cに供給されるが、ドレイン端子50から半導体チップ3aまでの距離X1、ドレイン端子50から半導体チップ3bまでの距離X2、ドレイン端子50から半導体チップ3cまでの距離X3の関係は、
X1<X2<X3
である。
【0047】
一方、ソースドレイン端子70から半導体チップ3aまでの距離Y1、ソースドレイン端子70から半導体チップ3bまでの距離Y2、ソースドレイン端子70から半導体チップ3cまでの距離Y3の関係は、
Y1>Y2>Y3
である。
【0048】
したがって、
X1+Y1=X2+Y2=X3+Y3
の関係となっている。
【0049】
このように、各半導体チップ3a、3b、3cとドレイン端子50間、または各半導体チップ3a、3b、3cとソースドレイン端子70間の電流路(配線距離)に距離差があっても、ドレイン端子50とソースドレイン端子70間の距離は各チップで同一となるから、チップ毎に流れる主電流の大きさも同一となる。このため、各半導体チップに流れる電流のバランスが良くなる。
【0050】
また、
図3のように、第2半導体モジュール部1bでは、第2梁部62が基板前方側に傾斜して立設され、この第2梁部62が第1半導体モジュール部1aの第1梁部72に近接する構造としている。このため、半導体モジュール部1内部のインダクタンスが低下することになり、高速スイッチング時の異常電圧を抑制することができる。
【0051】
また、ゲートパターン301がセラミック基板2の最も外側に形成され、その内側にソースセンスパターン302が形成され、さらにその内側に主電流の流れるドレインパターン300が形成されているが、このような配線パターンであれば、ソースセンスパターン302が、大きな電流変化があるドレインパターン300に対するシールドとして作用し、ドレインパターン300に流れる電流変化がゲートパターン301に作用することを防ぐことが出来る。第2の半導体モジュール1bでも、同様である。
【0052】
また、各半導体チップは、
図6に示すように、その表裏面に形成されているドレイン電極30Dとソース電極30Sがそれぞれ直接にドレインパターン300と第1梁部72に半田付けされる両面半田付け構造としていることで、半導体モジュールの信頼性の向上、コンパクト化の促進、高放熱化を実現できる。
【0053】
また、端子50、60、70は全て基板2の後方側に配置しているので外部回路との電気的接合が容易であり、モジュール装置の製作の容易性とコンパクト化を実現している。