特許第6600304号(P6600304)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ヒストソニックス,インコーポレーテッドの特許一覧 ▶ リージェンツ オブ ザ ユニバーシティー オブ ミシガンの特許一覧

特許6600304衝撃散乱を使用した気泡雲形成のために最適化されたヒストトリプシ励起シーケンス
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6600304
(24)【登録日】2019年10月11日
(45)【発行日】2019年10月30日
(54)【発明の名称】衝撃散乱を使用した気泡雲形成のために最適化されたヒストトリプシ励起シーケンス
(51)【国際特許分類】
   A61N 7/00 20060101AFI20191021BHJP
   A61B 17/00 20060101ALI20191021BHJP
【FI】
   A61N7/00
   A61B17/00 700
【請求項の数】7
【全頁数】18
(21)【出願番号】特願2016-524375(P2016-524375)
(86)(22)【出願日】2014年7月3日
(65)【公表番号】特表2016-527945(P2016-527945A)
(43)【公表日】2016年9月15日
(86)【国際出願番号】US2014045431
(87)【国際公開番号】WO2015003142
(87)【国際公開日】20150108
【審査請求日】2017年6月9日
(31)【優先権主張番号】61/842,820
(32)【優先日】2013年7月3日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】512034863
【氏名又は名称】ヒストソニックス,インコーポレーテッド
(73)【特許権者】
【識別番号】504332090
【氏名又は名称】リージェンツ オブ ザ ユニバーシティー オブ ミシガン
(74)【代理人】
【識別番号】100140109
【弁理士】
【氏名又は名称】小野 新次郎
(74)【代理人】
【識別番号】100075270
【弁理士】
【氏名又は名称】小林 泰
(74)【代理人】
【識別番号】100101373
【弁理士】
【氏名又は名称】竹内 茂雄
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100117640
【弁理士】
【氏名又は名称】小野 達己
(72)【発明者】
【氏名】カンナタ,ジョナサン
(72)【発明者】
【氏名】ホール,ティモシー・エル
(72)【発明者】
【氏名】マックスウェル,アダム
(72)【発明者】
【氏名】テオフィロヴィッチ,デジャン
【審査官】 吉川 直也
(56)【参考文献】
【文献】 米国特許第05582578(US,A)
【文献】 国際公開第2005/018469(WO,A1)
【文献】 特表2009−508649(JP,A)
【文献】 MAXWELL, Adam D. et al.,Cavitation clouds created by shock scattering from bubbles during histotripsy,The Journal of the Acoustical Society of America,米国,Acoustical Society of America,2011年10月,Volume 130, Issue 4,1888-1898
(58)【調査した分野】(Int.Cl.,DB名)
A61N 7/00
A61B 17/00
(57)【特許請求の範囲】
【請求項1】
超音波療法用変換器と、
前記超音波療法用変換器に結合された超音波療法用生成器であって、前記超音波療法用生成器は前記超音波療法用変換器を駆動して、初期圧力波形を組織内へと供給して組織内に少なくとも1つの気泡を生成するように構成され、前記超音波療法用生成器は更に、前記超音波療法用変換器を駆動して、正圧半周期及び負圧半周期を有する第1の散乱圧力波形を前記初期圧力波形から5μsから200μs以内に前記少なくとも1つの気泡内に供給して前記少なくとも1つの気泡の近傍にキャビテーション核を生成するように構成された超音波療法用生成器と
を備え
前記第1の散乱圧力波形の圧力波高値は、前記初期圧力波形の圧力波高値より小さい、
超音波療法システム。
【請求項2】
請求項1に記載のシステムであって、前記初期圧力波形と前記第1の散乱圧力波形とを有する組が、複数回供給される、超音波療法システム。
【請求項3】
請求項1又は2に記載のシステムであって、前記第1の散乱圧力波形の後に第2の散乱圧力波形が前記組織内に供給される、超音波療法システム。
【請求項4】
請求項3に記載のシステムであって、
前記第1の散乱圧力波形は、前記初期圧力波形から第1の遅延時間後に供給され、
前記第2の散乱圧力波形は、前記第1の散乱圧力波形から、前記第1の遅延時間と異なる第2の遅延時間後に供給される、超音波療法システム。
【請求項5】
請求項1に記載のシステムであって、前記第1の散乱圧力波形の圧力波高値は前記少なくとも1つの気泡の近傍にキャビテーション核を生成するのに十分な圧力振幅である、システム。
【請求項6】
請求項1に記載のシステムであって、前記超音波療法用生成器は更に、前記超音波療法用変換器を駆動して、前記第1の散乱圧力波形の後に、前記少なくとも1つの気泡の近傍にキャビテーション核を生成するために、少なくとも1つの追加的な散乱パルスを供給するように構成される、システム。
【請求項7】
請求項1に記載のシステムであって、前記超音波療法用生成器は、
前記初期及び散乱圧力波形を始動するための波形を生成するように構成された制御器と、
前記制御器と結合された高電圧電源と、
前記制御器からの前記波形及び前記高電圧電源からの高電圧を受け取り、前記波形を増幅するように構成された増幅器と、
前記超音波療法用変換器のインピーダンスを前記増幅器とマッチングさせるように構成されたマッチングネットワークと
を更に備える、システム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
[0001]本願は、米国特許法第119条の下で、2013年7月3日出願の「Modulated Excitation Sequences for Enhanced Pulsed Ultrasound Cavitational Therapy」と題する米国仮特許出願第61/842,820号の利益を主張するものであり、その出願は本明細書に参照により組み込まれる。
【0002】
[0002]本明細書で言及される公報及び特許出願は全て、個別の各公報又は特許出願が参照により組み込まれることが明確に個別に示されているものとして、同じ範囲にわたって本明細書に参照により組み込まれる。
【0003】
[0003]本開示は、概して、超音波療法によって生じたキャビテーションによる組織の治療に関する。
【背景技術】
【0004】
[0004]ヒストトリプシ(Histotripsy)又はパルス状超音波キャビテーション療法は、音響エネルギーの短く激しい爆発が、焦点領域内に制御されたキャビテーション(微小気泡又は気泡雲の形成)を誘起する技術である。これらの微小気泡の活発な発泡と崩壊は焦点領域内の細胞と組織構造とを自動的に均質化する。これは熱切除の凝固壊死特性とは著しく異なる最終結果である。非熱的なヒストトリプシ領域内で作用するために、音響エネルギーを低いデューティサイクルの高圧振幅音響パルスの形態で供給することが必要である。
【0005】
[0005]従来の集束超音波技術と比べると、ヒストトリプシは以下の重要な利点がある。(1)焦点における破壊プロセスは機械的なものであり、熱的なものではないこと。(2)超音波画像上で気泡雲は明るく表され、それによって治療の正確なターゲッティングと所在が確認できること。(3)治療された組織は超音波画像上でより暗く(低エコー)表されるので、治療されたものを術者が認識できること。(4)ヒストトリプシは、制御された正確な外傷を生むこと。マイクロウェーブ、高周波、又は高強度集束超音波(HIFU)と異なり、ヒストトリプシは熱的物理療法でないことを強調するのは重要である。
【0006】
[0006]前立腺組織のヒストトリプシ均質化のイヌにおける初期の研究は、経腹的にヒストトリプシを供給するように配置された療法用変換器を採用していた。これらの研究では、前立腺は肌の表面からほんのわずかな距離に位置し、変換器から肌を通過して超音波エネルギーを集束させるための比較的広い経路が存在していた。従って、これらの研究において採用された球状のヒストトリプシ療法用変換器は、14cmの口径と、10cmの焦点距離(Fナンバー=0.71)とを有していた。大きなFナンバーを有するヒストトリプシ療法用変換器は、小さなFナンバーを有する変換器に比べて、著しく効率が低い。このような非効率性は、主に、衝撃波の形成をもたらす非線形の音響伝播に起因する。
【0007】
[0007]専用の療法用変換器及びドライブエレクトロニクスが、ヒストトリプシ療法を会陰を通じて前立腺に集束させるために設計されてきた。ヒストトリプシ療法を前立腺に供給するように構成された療法用変換器100の一例が図1に示される。変換器100は、筐体104内に配置された複数の超音波変換器要素102を備え得る。変換器は、ヒストトリプシ波形を変換器から組織へと供給するように構成された波形生成器に接続され得る。この進入路からの前立腺の深さは、上述のイヌのモデルにおける深さよりも著しく深い。更に、骨盤の骨格解剖構造及び超音波撮像プローブの径直腸的位置は、有効な変換器の口径を著しく減少させた。筐体の下側外周の切り欠き部106は、主径においてFナンバー=0.85であり、切り欠き部においてFナンバー=0.98である超音波撮像プローブ(不図示)を収容するように構成され得る。
【0008】
[0008]卓上実験及びモデリングに基づいて、療法用変換器励起パラメータの初期セット(3サイクル/パルス、750Vpp、500Hz PRF(パルス繰返し周波数))がこの変換器でのイヌに対する試験のために選択された。この励起シーケンスは、水中でのピーク負圧及びピーク正圧が約25MPa及び100MPaである非線形の焦点圧力波形を生成した。このシーケンスパラメータは気泡雲形成に最適化されていなかったため、我々は、このシーケンス及びその変形を、標準的な、すなわち最適化されていない、シーケンスと定義する。
【発明の概要】
【発明が解決しようとする課題】
【0009】
[0009]この標準的な励起シーケンス及びその変形は、約30匹のイヌ被験体を治療し、実現可能性、投与(パルスの累積数)、及び治療実施のガイドラインを確立するために使用された。次いで、更に10匹のイヌ被験体が確認試験において治療された。これらの研究は著しく有効性のある結果をもたらしたが、確認実験における10匹のうちの2匹の被験体において、焦点前の腹部直筋に明らかな微小傷(不顕性の繊維症(subclinical fibrosis))が観察されたことから、より効率的にエネルギーを供給するヒストトリプシパルスシーケンスを開発して、安全プロファイルを向上する必要があるという結論が導かれた。変換器が発展し骨格解剖的障害物を通ってより深く組織内に進入するようになるにつれて、ヒストトリプシの効率を向上させる必要性はより重要になるものと思われる。
【課題を解決するための手段】
【0010】
[00010]焦点前での加熱の減少につながる向上した効率は、比較的大きなFナンバー(Fナンバー>0.8)を有する超音波療法用変換器を必要とする、骨格解剖的障害物を通過した肌の表面下深くの柔軟な組織が目標とされる際には不可欠である。柔軟な組織の向上したヒストトリプシ均質化のために最適化されたシーケンスは、シーケンスの効率を最適化することによって焦点前での熱傷の可能性を低減するために開発されてきた。最適化された励起シーケンスの向上した効率は、組織内でのヒストトリプシ気泡雲の生成開始の可能性を増大させ、組織を通って並進する際の消滅する気泡雲の発生を低減する。更に、最適化されたシーケンスは、神経血管構造のような線維弾性がより高い重要な体内構造を保護しつつ、繊維状組織又はより密度の低い組織を選択的に切除するために設計することもできる。
【0011】
[00011]大きなFナンバーの変換器のために効果的な最適化されたシーケンスは、少なくとも1つの音響的に生成された核(気泡)を生じさせるように設計された初期パルスと、それに続く、最適化された遅延時間の後の、気泡雲を生じさせるために第1の気泡に衝撃波を衝突させることを可能にする衝撃散乱パルス(以後、散乱パルス又は散乱圧力波形と呼ぶ)とを特徴とする。気泡雲の効果を更に維持するために、同様に最適化されたタイミングで後続の散乱パルスが続き得る。パルスと圧力波形とは本願においては交換可能に用いられることに留意されたい。
【0012】
[00012]超音波エネルギーによって組織を治療する方法は、初期圧力波形を超音波療法用変換器から組織内へと供給するステップであって、初期圧力波形は組織内に少なくとも1つの気泡を生成するように構成されるステップと、散乱圧力波形を、少なくとも1つの気泡の寿命期間内に超音波療法用変換器から少なくとも1つの気泡内へと供給するステップと、散乱圧力波形によって少なくとも1つの気泡の近傍にキャビテーション核を生成するステップとを備える。
【0013】
[00013]いくつかの実施形態において、散乱圧力波形は、初期圧力波形から5μsから200μs以内に供給される。
[00014]一実施形態において、方法は、初期圧力波形を供給するステップ及び散乱圧力波形を供給するステップを、組織の治療が完了するまで繰り返すステップを更に備える。
【0014】
[00015]一実施形態において、初期圧力波形の圧力振幅及び/又は周期数(サイクル数)は、組織の加熱を低減させるために最小化される。
[00016]別の実施形態において、散乱圧力波形の圧力波高値は、焦点領域に追加的なキャビテーション核を生じさせるのに十分な振幅である。
【0015】
[00017]代替的な実施形態において、散乱圧力波形の圧力振幅及び/又は周期数は、組織の加熱を低減させるために最小化される。
[00018]いくつかの実施形態において、方法は、散乱圧力波形を供給するステップの後に、第2の散乱圧力波形を少なくとも1つの気泡及びキャビテーション核に向かって供給するステップを更に備える。
【0016】
[00019]いくつかの実施形態において、第2の散乱圧力波形は、散乱圧力波形から5μsから1s以内に供給される。
[00020]別の実施形態において、方法は、少なくとも1つの気泡及び/又はキャビテーション核がもはや組織内に残存しなくなるまで、追加的な初期圧力波形を供給することなく追加的な散乱圧力波形を供給するステップを更に備える。
【0017】
[00021]いくつかの実施形態において、追加的な散乱圧力波形は5μsから1s毎に供給される。
[00022]一実施形態において、初期圧力波形及び散乱圧力波形を備えるパルスシーケンスは、1〜5000Hzの範囲のシーケンスPRFを有する。
【0018】
[00023]他の実施形態において、散乱圧力波形は初期圧力波形よりも少ないエネルギーを介在する組織に供給する。
[00024]一実施形態において、初期圧力波形と散乱圧力波形とは、実質的に同様な圧力振幅を有する。別の実施形態において、散乱圧力波形の圧力振幅は初期圧力波形の圧力振幅よりも小さい。代替的な実施形態において、散乱圧力波形の圧力振幅は初期圧力波形の圧力振幅よりも大きい。
【0019】
[00025]超音波エネルギーによって組織を治療する方法であって、初期圧力波形を超音波療法用変換器から組織内へと送出するステップであって、初期圧力波形は組織内に少なくとも1つの気泡を生成するように構成されるステップと、散乱圧力波形を、少なくとも1つの気泡の寿命期間の間に、超音波療法用変換器から少なくとも1つの気泡内へと送出するステップであって、散乱圧力波形は組織内で衝撃正圧半周期及び衝撃負圧半周期を有する衝撃焦点圧力波形となるように構成され、衝撃正圧半周期は少なくとも1つの気泡に衝突し、散乱し、反転し、衝撃負圧半周期と建設的に干渉して負圧半周期波形を形成するように構成されるステップと、正圧半周期波形と少なくとも1つの気泡との間の衝撃散乱メカニズムによって、少なくとも1つの気泡の近傍にキャビテーション核を生成するステップとを備える方法が提供される。
【0020】
[00026]超音波エネルギーを組織に供給する方法であって、組織内に少なくとも1つの気泡を生成するために少なくとも5MPaのピーク負圧を提供するように構成された初期パルスを、超音波療法用変換器から供給するステップと、第1の散乱パルスを、少なくとも1つの気泡内に初期パルスから5μsから200μs以内に供給するステップと、第1の散乱パルスと少なくとも1つの気泡との間の衝撃散乱メカニズムによって、少なくとも1つの気泡の近傍に核のキャビテーション雲を生成するステップとを備える方法が提供される。
【0021】
[00027]超音波療法用変換器と、超音波療法用変換器に結合された超音波療法用生成器であって、超音波療法用生成器は超音波療法用変換器を駆動して、初期圧力波形を組織内へと供給して組織内に少なくとも1つの気泡を生成するように構成され、超音波療法用生成器は更に、超音波療法用変換器を駆動して、第1の散乱圧力波形を初期圧力波形から5μsから200μs以内に少なくとも1つの気泡内に供給して少なくとも1つの気泡の近傍にキャビテーション核を生成するように構成された超音波療法用生成器と、を備える超音波療法システムが提供される。
【0022】
[00028]いくつかの実施形態において、第1の散乱パルスの圧力波高値は少なくとも1つの気泡の近傍にキャビテーション核を生成するのに十分な圧力振幅である。
[00029]他の実施形態において、超音波療法用生成器は更に、超音波療法用変換器を駆動して、第1の散乱圧力波形の後に、少なくとも1つの気泡の近傍にキャビテーション核を生成するために、少なくとも1つの追加的な散乱パルスを供給するように構成される。
【0023】
[00030]一実施形態において、超音波療法用生成器は、初期及び散乱圧力波形を始動するために複雑な波形を生成するように構成された制御器と、制御器と結合された高電圧電源と、制御器及び高電圧電源から複雑な波形を受け取り、増幅するように構成された増幅器と、超音波療法用変換器のインピーダンスを増幅器とマッチングさせるように構成されたマッチングネットワークとを更に備える。
【0024】
[00031]超音波エネルギーによって組織を治療する方法であって、超音波エネルギーによって、組織内に少なくとも1つの気泡を生成するステップと、衝撃焦点圧力波形を少なくとも1つの気泡に衝突させるステップと、少なくとも1つの気泡の近傍にキャビテーション核を形成するステップと、を備える方法が提供される。
【0025】
[00032]一実施形態において、衝突させるステップは、少なくとも1つの気泡の寿命期間の間に実行される。
[00033]別の実施形態において、衝突させるステップは、生成するステップから5μsから200μs以内に実行される。
【0026】
[00034]代替的な実施形態において、キャビテーション核を形成するステップは、衝撃焦点圧力波形と少なくとも1つの気泡との間の衝撃散乱メカニズムによって達成される。
[00035]本発明の新規な特徴は、以下の特許請求の範囲に詳細に述べられている。本発明の特徴及び利点は、本発明の原理が利用される例示的な実施形態について述べる以下の詳細な説明及び添付の図面を参照することによってより良く理解されるであろう。
【図面の簡単な説明】
【0027】
図1】[00036]一実施形態による、超音波療法用変換器を示す図である。
図2】[00037]図2aは水中における気泡雲生成開始の図である。図2bは水中における気泡雲生成開始の図である。図2cは水中における気泡雲生成開始の図である。
図3】[00038]一実施形態による焦点圧力波形を示す図である。
図4】[00039]図4aは衝撃散乱を示す概念図である。図4bは衝撃散乱を示す概念図である。図4cは衝撃散乱を示す概念図である。図4dは衝撃散乱を示す概念図である。図4eは衝撃散乱を示す概念図である。
図5a】[00040]組織に超音波を供給するための初期圧力波形及び散乱圧力波形を含むパルスシーケンスの実施形態を示す図である。
図5b】組織に超音波を供給するための初期圧力波形及び散乱圧力波形を含むパルスシーケンスの他の実施形態を示す図である。
図5c】組織に超音波を供給するための初期圧力波形及び散乱圧力波形を含むパルスシーケンスの他の実施形態を示す図である。
図6】[00041]キャビテーションによって組織を治療するための好適なシーケンスを供給するように構成されたシステムの図である。
【発明を実施するための形態】
【0028】
キャビテーションの生成
[00042]好適な実施形態の開発のための重要な背景情報を提供するキャビテーション核及び気泡雲形成のいくつかの原理が本明細書において開示される。キャビテーション核は、組織への低圧力の供給の結果として形成される個々の気泡である。気泡雲は、変換器の焦点又はその近傍に生じるキャビテーション核の密な群れからなる。キャビテーション核(気泡雲)の形成は、双方ともにヒストトリプシ療法の鍵となる要素である。
【0029】
[00043]キャビテーション核の形成の可能性
[00044]キャビテーション核は、少なくとも1つのキャビテーション核(気泡)を生じさせるのに必要な圧力レベルに近い又は超えるピーク負(ピーク希薄)圧を組織が受けると、組織内に形成され得る。このレベルは可変であり、組織の特性(構造及び組成、溶解ガス含有量、及び不純物の存在)、変換器の形状(焦点距離及びfナンバー)及びシーケンス方式(PRF;周期数(サイクル数))などの複数の要素に依存することに留意されたい。1つの音響パルスから形成されるキャビテーション核の数は、達成されたピーク負圧と直接的な関係があるものと思われている。
【0030】
[00045]キャビテーションの経時変化
[00046]キャビテーション核は最大サイズまで成長し、次いで崩壊する。気泡の生成開始、成長、次いで崩壊というプロセスのキャビテーションの経時変化は媒体(すなわち、組織の種類)に依存する。液体に対するキャビテーションの経時変化は、ゼラチン及び柔軟な組織内での経時的変化よりも時間がかかる。表1は、キャビテーションの生成開始、成長及び崩壊の時間を水中とゼラチン中とで比較したものである。図2a〜図2cは、典型的なキャビテーションの経時変化を示した図である。図2aは、組織、水又はゼラチンといった媒体内でのキャビテーション208の生成開始を示す。図2bはキャビテーション208の最大サイズまでの成長を図示し、そこではキャビテーション気泡が焦点領域内でひとまとまりになる。図2cはキャビテーション208の崩壊を示し、そこではほとんど全てのキャビテーション気泡が崩壊し消滅している。
【0031】
【表1】
【0032】
[00047]音響衝撃及び気泡雲形成のための衝撃散乱メカニズム
[00048]音響波形が媒体中を移動するとき、正の(圧縮)半周期は負の(希薄)半周期よりも速く移動する。この効果により、圧力波形は非線形になり、圧力波形の正の半周期と負の半周期との間での急激な移行を生じさせる。この移行の傾きが増すにつれて正の半周期の圧力振幅は増大し、圧力波形はより非線形に又は「衝撃を受ける」ようになると言われている。これは、衝撃焦点圧力波形と称され得る。非線形性のレベルは圧力波形の圧力振幅及び媒体内を伝播する距離に依存する。図3は、正の半周期及び負の半周期を伴う衝撃焦点圧力波形の例を図示する。衝撃焦点圧力波形は複数の正及び負の半周期を含み得ることを理解されたい。
【0033】
[00049]本開示によれば、キャビテーション核は、衝撃散乱の結果として組織内に形成され得る。衝撃散乱は、音響波形の衝撃正圧半周期が既存の気泡によって反射又は散乱され、続いて衝撃正圧半周期が音響波形の入射した負圧半周期と加法的に結合するように反転されたときに起こる。この生成された結合した新たな負圧半周期が十分に大きければ(すなわち、対象となる組織又は媒体に固有の閾値よりも大きい、例えば、5MPaピーク負圧よりも大きい)、追加的なキャビテーション核が任意の既存の核の近傍に生じる。このプロセスは、結合した新たな負圧半周期の圧力が、新たなキャビテーション核を生じさせるのに不十分になるまで繰り返される。
【0034】
[00050]図4a〜4eは、ヒストトリプシ療法の衝撃散乱方法を示す概念図である。上側のフレームは既存の気泡408及び衝撃正圧半周期410を図示し、下側のフレームは超音波パルス圧力分布412を図示する(水平線414は圧力振幅ゼロを示す)。既存の気泡408は、上述したように初期パルス又はシーケンスによって形成され得る。次いで、衝撃散乱方法の一実施形態に従って、衝撃圧力波形は、気泡の寿命期間の間に、気泡408に向かって送出され得る。
【0035】
[00051]図4a〜4eにおいて、入射した衝撃圧力波形412は、矢印416によって示されるように、既存の気泡408に向かって左から右に伝播する。入射した衝撃圧力波形は、気泡の寿命期間の間に、気泡に向かって及びその内部へと供給され得、入射した衝撃圧力波形は気泡と干渉し合う。図4aにおいて、上述したように組織内に既に生成された単一の既存の気泡408が図示される。図4bに図示されるように、入射した衝撃圧力波形の初期負圧半周期によって、この気泡のサイズは増大する。図4cにおいて、入射した衝撃圧力波形412の衝撃正圧半周期410は気泡408と衝突し、正圧半周期は散乱し始める。散乱された衝撃正圧半周期は反転し、入射した衝撃圧力波形412の衝撃負圧半周期413と建設的に干渉して、気泡408の近傍又は背後に追加的なキャビテーション核420を生成する一過性の、大きな振幅の負圧半周期418(図4c〜図4eにおいて円形の破線418として示される)を生じさせる。負圧半周期418は、矢印422によって示されるように右から左へと伝播する。図4eに図示されるように、負圧半周期418がキャビテーション核の形成のための閾値よりも小さくなるまで、追加的なキャビテーション核420が衝撃正圧波形410の反対方向に生じる。このプロセスは、既存の気泡408及び追加的なキャビテーション核420に向かって及びその内部へ送出される連続的な衝撃圧力波形によって繰り返し行われ得る。
【0036】
[00052]この衝撃散乱方法によって形成されるキャビテーション核は、療法用変換器に向かって成長する傾向にあり、その範囲はパルス(波形)の高圧力周期数(高圧力サイクル数)及びパルス繰返し周波数(PRF)に依存する。衝撃波形の周期数(サイクル数)を最小化すること又はシーケンスPRFを減少することは、気泡雲の長さの減少及び時間平均強度の減少従って熱投与量減少のための効果的な方法である。
【0037】
[00053]衝撃散乱を使用した向上した気泡雲形成
[00054]本開示において説明される好適なヒストトリプシ励起シーケンスの鍵となる要素は、(1)初期パルス又は初期圧力波形と称され、組織内に少なくとも1つの気泡を形成するように構成された、シーケンスの第1のパルス、(2)散乱パルス又は散乱圧力波形と称され、衝撃散乱によって少なくとも1つの気泡の近傍にキャビテーション核を生成するように構成された、シーケンスの第2のパルス、及び(3)初期パルスと散乱パルスとの間の特定の遅延時間、である。
【0038】
[00055]これらのパルスのための主要パラメータは、対象となる組織内に少なくとも1つの気泡を生成するように初期パルスが構成されなければならない。これは、上述のように、従来のヒストトリプシ初期パルス、又は沸騰によって組織内に気泡形成を誘起可能なHIFU又は沸騰ヒストトリプシなどの他の超音波技術によって達成可能である。散乱パルスは、キャビテーション核の衝撃散乱形成に十分な高い圧力波高値を有さなければならない。いくつかの実施形態において、これらのパルスの間の遅延時間は5μsから200μsの範囲であり得る。別の実施形態において、これらのパルスの間の遅延時間は5μsから40msの範囲であり得る。別の実施形態において、これらのパルスの間の遅延時間は5μsから1sの範囲であり得る。
【0039】
[00056]別の実施形態において、初期パルスにおいて使用される圧力振幅及び/又は周期数(サイクル数)は、増加又は減少され得る。初期パルスにおける圧力振幅及び/又は周期数を増加すると、組織内にキャビテーションを生じさせる可能性を高めることができる。しかしながら、これはまた、組織に供給される時間平均強度及び熱投与量、並びに気泡雲の範囲を増加させる恐れがある。初期パルスの圧力振幅及び/又は周期数を減少すると、シーケンスの強度及び熱投与量は減少するが、キャビテーションを生成及び/又は維持するシーケンスの能力を制限する恐れがある。
【0040】
[00057]別の実施形態において、散乱パルスにおいて使用される圧力振幅及び/又は周期数は、増加又は減少され得る。散乱パルスにおける圧力振幅及び/又は周期数を増加すると、組織内にキャビテーションを生じさせる可能性を高めることができる。しかしながら、これはまた、組織に供給される時間平均強度及び組織に供給される熱投与量、並びに気泡雲の範囲を増加させる恐れがある。散乱パルスの圧力振幅及び/又は周期数を減少すると、シーケンスの強度及び熱投与量は減少するが、キャビテーションを生成及び/又は維持するシーケンスの能力を制限する恐れがある。
【0041】
[00058]シーケンスPRFは、時間平均強度及びその結果としての熱投与量が安全限界内に保たれることを想定すると、5000Hz程度でよい。好適な範囲は治療される組織に依存する。より高いPRFは、より高密度で繊維性の組織に対して推奨され、低いPRFは、より低密度の組織に対して及びより繊維性が高く多くの場合重要な組織の保護のために推奨される。ヒストトリプシによって組織をその剛性に基づいて選択的に治療することは、シーケンス展開の有望な設計、性能考察であり得る。
【0042】
[00059]いくつかの実施形態において、シーケンスPRFを減少させることなくシーケンスの強度及び熱投与量を減少するために、(初期パルスの圧力振幅及び/又は周期数と比べて)より小さな圧力振幅及び/又は周期数を有する追加的な散乱パルスが適用され得る。
【0043】
[00060]図5a〜5cは、ヒストトリプシ療法の衝撃散乱方法の間に組織内にキャビテーションを生成し維持するために使用され得るヒストトリプシの初期及び散乱パルスシーケンス3つの異なる実施形態を示す。図5aにおいて、組織内に少なくとも1つの気泡を形成するように構成された圧力波形を備える初期パルス524aは、組織内に送出され得る。特定の遅延時間が経過した後に、散乱パルス526aが、組織内の、初期パルス524aによって形成された少なくとも1つの気泡に向かって及びその内部へ送出され得る。いくつかの実施形態において、これらのパルスの間の特定の遅延時間は5μsから200μsの範囲であり得る。別の実施形態において、これらのパルスの間の遅延時間は5μsから40msの範囲であり得る。別の実施形態において、これらのパルスの間の遅延時間は5μsから1sの範囲であり得る。組織内を移動するにつれて、散乱パルス526aは衝撃焦点圧力波形となり、散乱パルスの少なくとも1つの衝撃正圧半周期が少なくとも1つの気泡に衝突し、少なくとも1つの気泡によって散乱される。散乱パルスの衝撃正圧半周期は反転し、散乱パルスの衝撃負圧半周期と建設的に干渉して、初期パルスによって生成された少なくとも1つの気泡の背後に追加的なキャビテーション核を生成する、一過性の、大きな振幅の負圧半周期を生じさせる。これらの初期及び散乱パルスのパルスシーケンスペアは、図5aに図示されるように(パルスペア524b/526b、524c/526c、524d/526d、・・・、524n/526n)、結果として生じたキャビテーションから組織内に所望の切除効果を達成するために繰り返され得る。本実施形態において、初期及び散乱パルスの双方の圧力振幅及び/又は周期数は同一又は略同一でよい。
【0044】
[00061]図5bは、散乱パルス524a〜524nの圧力振幅が対応する初期パルスの圧力振幅よりも小さいことを除いては図5aの実施形態と同様の、別の実施形態を図示する。衝撃の原理によって、ピーク正波は、ピーク負波と比べて増幅され、従って、反射及び反転された正波によって必要とされる負圧を依然として供給しつつも、散乱パルスを生じさせるために使用される圧力振幅は減少され得る。この実施形態は、図5aの実施形態よりも、より効率的であり、組織内に供給されるエネルギー投与量はより少ない。しかしながら、別の実施形態において、散乱パルスの圧力振幅は対応する初期パルスの圧力振幅よりも大きくてもよい。
【0045】
[00062]図5cは、図5a及び図5bの実施形態の変形である、別の実施形態を示す。この実施形態においては、初期パルス524aの後に、特定の遅延時間の後に、散乱パルス526aが続くが、図5aのようにその後に別の初期/散乱パルスのペアが続く代わりに、散乱パルス526aの後に、第2の遅延時間の後に、別の散乱パルス526bが続く。気泡雲の効果を維持し(例えばパルス526c、526d)、結果として生じたキャビテーションから組織内に所望の切除効果を達成するために、適切な遅延時間の後に、複数の散乱パルスが組織内に供給され得る。散乱パルスの圧力振幅は、初期パルスの圧力振幅よりも小さくても、それと等しくても、又はそれよりも大きくてもよい。いくつかの実施形態において、後続の散乱圧力波形のための遅延時間は、第1の散乱圧のために使用された遅延時間とは異なってよい。例えば、第1の散乱圧力波形は、初期圧力波形から5μsから200μs以内に供給されてよいが、後続の散乱圧力波形は、5μsから200μs、5μsから40ms、又は5μsから1s以内に供給されてよい。キャビテーションが組織内に再生成される必要がある場合は、図5cの524n/526nによって図示されるように、シーケンスは別の初期/散乱パルスペアによって再度開始されてよい。図5bの実施形態と同様に、この実施形態もまた、より小さな圧力振幅の散乱パルスを使用するが、使用する初期パルスはより少ない。この実施形態の結果として、図5a〜図5cの実施形態の中で組織へのエネルギー投与量は最も少なくなる。この方式は、従来のヒストトリプシシーケンスと比べて、投与量を著しく低減(例えば、50%ほども)する可能性を有する。
【0046】
[00063]気泡雲がひとたび確立されたときの初期パルスの振幅の減少又は消滅
[00064]初期/散乱ペアの目的は、衝撃散乱によって組織内にキャビテーションを生成することである。気泡雲がひとたび生成されたとき、焦点が移動されないならば、気泡雲の効果を維持するために初期パルスはもはや必要とされなくてよい。この場合、システムは、まず初期/散乱ペアによって気泡雲を生じさせ、その後に、焦点が移動するまで、(初期パルスの圧力振幅と比べて)より小さい圧力振幅の散乱パルスが続くように設計されてよい。この点において、プロセスは繰り返される。
【0047】
[00065]シーケンス展開を可能にするシステムソフトウェア及びハードウェアの設計
[00066]ヒストトリプシシステム及び生成器は、本明細書で説明される超音波パルスシーケンスをサポートするために非常に複雑な波形を生成するように構成される。システム600の単純化されたブロック図が図6に示される。システムの主要な構成要素は、コンピュータ/制御器602、USB−シリアルコンバータ604、マイクロコントローラ606、FPGA(フィールドプログラマブルゲートアレイ)608、高電圧制御器及び電源610、増幅器612、及び療法用変換器614、である。
【0048】
[00067]生成器の全ての制御は、コンピュータ/制御器602(例えば、標準的なPC)上で動作可能で、USBシリアル通信604を介して生成器と通信可能な「ヒストトリプシサービスツール」ソフトウェアを使用して確立され得る。
【0049】
[00068]システム600は、複数組の異なる駆動パラメータを受信し、それらをループするように構成され、全てのパラメータ(PRF,電圧振幅、周期数、セット当たりのパルス数、周波数、変換器の使用可能なエレメントチャンネル(transducer element channels enabled)、及び遅延時間)を生成されるパルス毎に異なって設定可能な、広範囲のカスタムシーケンスを生じさせる機能をユーザに提供する。パルス間の遅延時間は、パラメータセットのPRFによって、又はパルス当たりの周期数としてゼロを指定することによって指定され得る。
【0050】
[00069]全体的な電圧振幅制御のために、高電圧レベルはマイクロコントローラ606及び高電圧制御器610を通じて適宜変更される。この方法は、高電圧ライン上の全ての蓄電器が放電するまでに時間がかかりすぎるため、2つのパルス間での動的な電圧振幅変更には使用できない。パルス間での動的な電圧振幅変更には、所望のパルス電圧及びその結果としての圧力振幅を生成するためにパルスのデューティサイクルが変調されるFPGA608においてPWM(パルス幅変調)が使用される。
【0051】
[00070]ヒストトリプシサービスツール
[00071]ヒストトリプシサービスツールは任意のPC上で動作するアプリケーションであり、システムを制御するために使用される。ヒストトリプシサービスツールは、療法の開始/停止、高電圧レベルと療法パラメータ(PRF,周期数、デューティレシオ、使用可能なチャンネル、遅延など)の設定と読み取り、及び他のサービス及びメンテナンスに関連する項目の設定と読み取りが可能である。
【0052】
[00072]USB−シリアルコンバータ
[00073]USB−シリアルコンバータ604は、マイクロコントローラ606と通信するために、USB接続をシリアルに変換する。
【0053】
[00074]マイクロコントローラ
[00075]マイクロコントローラ606は、コンピュータ/制御器602(ヒストトリプシサービスツール)と通信し、動作パラメータの設定/読み取り、療法の開始/停止などを行う。マイクロコントローラ606は全てのパラメータを保存するために内部のフラッシュメモリを使用できる。マイクロコントローラは、複雑なパルスを生成するために必要なFPGA608の全ての駆動パラメータと通信する。マイクロコントローラはまた、シリアル通信を使用して高電圧制御器及び電源610とも通信し、駆動電圧の適切なレベルの設定/読み取りを行う。
【0054】
[00076]FPGA
[00077]FPGA608はマイクロコントローラ606から情報を受信し、増幅器612を駆動するために必要な複雑なパルスシーケンスを生成する。パルスの速度は10ns刻みで計測されることが不可欠であるので、FPGAは100MHzのクロックで動作可能である。
【0055】
[00078]高電圧制御器及び電源
[00079]高電圧制御器及び電源610は、増幅器の出力において適切な電圧振幅レベルを得るために増幅器回路に供給される必要のあるDC電圧のレベルに関する命令を、マイクロコントローラ606から受け取る。
【0056】
[00080]増幅器
[00081]増幅器612はFPGAによって生成されたパルスを受け取り、高電圧制御器及び電源から高電圧を供給される。増幅器612は、療法用変換器のインピーダンスを増幅器のインピーダンスに適切にマッチングさせるマッチングネットワーク部材を通じて療法用変換器614に供給される高電圧振幅パルスを生成する。高電圧振幅パルスの生成中にピーク電流要求に応えるために十分なエネルギーを保存可能な多数の蓄電器を使用することが必要である。
【0057】
[00082]「発明を実施するための形態」において記載されるデータ構造及びコードは、典型的にはコンピュータ可読記憶媒体に記憶され、この媒体はコンピュータシステムによる使用のためにコード及び/又はデータを記憶可能な任意の装置又は媒体でよい。コンピュータ可読記憶媒体は、揮発性メモリ、又は不揮発性メモリ、又はディスクドライブ若しくは磁気テープ若しくはCD(コンパクトディスク)若しくはDVD(デジタル多用途ディスクあるいはデジタルビデオディスク)等の磁気及び光記憶装置、又は既知の若しくは後に開発されるコンピュータ可読記憶媒体を記憶することができる他の媒体を含むが、これらに限定されるものではない。
【0058】
[00083]「発明を実施するための形態」セクションに記載された方法及び処理は、上述したようなコンピュータ可読記憶媒体に記憶され得るコード及び/又はデータとして具現化することができる。コンピュータシステムがコンピュータ可読記憶媒体に記憶されたコード及び/又はデータを読み取り、実行するとき、コンピュータシステムは、データ構造及びコードとして具現化され、コンピュータ可読記憶媒体内に記憶された方法及び処理を実行する。
【0059】
[00084]更に、上述の方法及びプロセスは、ハードウェアモジュールに含まれ得る。例えば、ハードウェアモジュールは、特定用途向け集積回路(ASIC)チップ、フィールドプログラマブルゲートアレイ(FPGA)、及び既知の又は後に開発される他のプログラム可能論理装置を含み得るが、これらに限定されるものではない。ハードウェアモジュールは起動されると、ハードウェアモジュールはハードウェアモジュール内部に含まれる方法及びプロセスを実施する。
【0060】
[00085]本明細書に含まれる実例及び例証は、例示を目的とし制限を目的とすることなく、主題が実施され得る特定の実施形態を示す。前述のとおり、構造的及び論理的な置換及び変更が本開示の範囲から逸脱することなくなされ得るように他の実施形態が利用可能でありかつ導出できる。本発明に関する主題のそのような実施形態は、もしも実際上2つ以上が開示されている場合、単に利便性のため、本出願の範囲をいかなる単一の発明又は発明の概念にも自発的に制限することを意図することなく、本明細書において、個別に又は一括して「発明」という用語によって称され得る。従って、本明細書において特定の実施形態が図示され説明されたが、同様の目的を達成すると予想される任意の構成が、示されている特定の実施形態に置換され得る。本開示は、様々な実施形態の任意の及び全ての適応型又は変型にも及ぶものと意図される。上述の実施形態及び本明細書において具体的に説明されていない他の実施形態の組み合わせは、上記の説明を精査することによって当業者には明らかになるであろう。
[形態1]
超音波エネルギーによって組織を治療する方法であって、
初期圧力波形を超音波療法用変換器から組織内へと供給するステップであって、前記初期圧力波形は前記組織内に少なくとも1つの気泡を生成するように構成されるステップと、
散乱圧力波形を、前記少なくとも1つの気泡の寿命期間内に、前記超音波療法用変換器から前記少なくとも1つの気泡内へと供給するステップと、
前記散乱圧力波形によって前記少なくとも1つの気泡の近傍にキャビテーション核を生成するステップと
を備える方法。
[形態2]
形態1に記載の方法において、前記散乱圧力波形は、前記初期圧力波形から5μsから200μs以内に供給される、方法。
[形態3]
形態1に記載の方法において、前記初期圧力波形を供給するステップ及び前記散乱圧力波形を供給するステップを、前記組織の治療が完了するまで繰り返すステップを更に備える、方法。
[形態4]
形態1に記載の方法において、前記初期圧力波形の圧力振幅及び/又は周期数は、組織の加熱を低減させるために最小化される、方法。
[形態5]
形態1に記載の方法において、前記散乱圧力波形の圧力波高値は、焦点領域に追加的なキャビテーション核を生じさせるのに十分な振幅である、方法。
[形態6]
形態1に記載の方法において、前記散乱圧力波形の前記圧力振幅及び/又は周期数は、組織の加熱を低減させるために最小化される、方法。
[形態7]
形態1に記載の方法において、前記散乱圧力波形を供給するステップの後に、第2の散乱圧力波形を前記少なくとも1つの気泡及び前記キャビテーション核に向かって供給するステップを更に備える、方法。
[形態8]
形態7に記載の方法において、前記第2の散乱圧力波形は、前記散乱圧力波形から5μsから1s以内に供給される、方法。
[形態9]
形態7に記載の方法において、前記少なくとも1つの気泡及び/又は前記キャビテーション核がもはや前記組織内に残存しなくなるまで、追加的な初期圧力波形を供給することなく追加的な散乱圧力波形を供給するステップを更に備える、方法。
[形態10]
形態9に記載の方法において、前記追加的な散乱圧力波形は5μsから1s毎に供給される、方法。
[形態11]
形態1に記載の方法において、前記初期圧力波形及び前記散乱圧力波形を備えるパルスシーケンスは、1〜5000Hzの範囲のシーケンスPRFを有する、方法。
[形態12]
形態1に記載の方法において、前記散乱圧力波形は前記初期圧力波形よりも少ないエネルギーを介在する組織に供給する、方法。
[形態13]
形態1に記載の方法において、前記初期圧力波形と前記散乱圧力波形とは、実質的に同様な圧力振幅を有する、方法。
[形態14]
形態1に記載の方法において、前記散乱圧力波形の圧力振幅は前記初期圧力波形の圧力振幅よりも小さい、方法。
[形態15]
形態1に記載の方法において、前記散乱圧力波形の圧力振幅は前記初期圧力波形の圧力振幅よりも大きい、方法。
[形態16]
超音波エネルギーによって組織を治療する方法であって、
初期圧力波形を超音波療法用変換器から組織内へと送出するステップであって、前記初期圧力波形は前記組織内に少なくとも1つの気泡を生成するように構成されるステップと、
散乱圧力波形を、前記少なくとも1つの気泡の寿命期間の間に、前記超音波療法用変換器から前記少なくとも1つの気泡内へと送出するステップであって、前記散乱圧力波形は前記組織内で衝撃正圧半周期及び衝撃負圧半周期を有する衝撃焦点圧力波形となるように構成され、前記衝撃正圧半周期は前記少なくとも1つの気泡に衝突し、散乱し、反転し、前記衝撃負圧半周期と建設的に干渉して負圧半周期波形を形成するように構成されるステップと、
前記正圧半周期波形と前記少なくとも1つの気泡との間の衝撃散乱メカニズムによって、前記少なくとも1つの気泡の近傍にキャビテーション核を生成するステップと
を備える方法。
[形態17]
超音波エネルギーを組織に供給する方法であって、
前記組織内に少なくとも1つの気泡を生成するために少なくとも5MPaのピーク負圧を提供するように構成された初期パルスを、超音波療法用変換器から供給するステップと、
第1の散乱パルスを、前記少なくとも1つの気泡内に、前記初期パルスから5μsから200μs以内に供給するステップと、
前記第1の散乱パルスと前記少なくとも1つの気泡との間の衝撃散乱メカニズムによって、前記少なくとも1つの気泡の近傍に核のキャビテーション雲を生成するステップと
を備える方法。
[形態18]
超音波療法用変換器と、
前記超音波療法用変換器に結合された超音波療法用生成器であって、前記超音波療法用生成器は前記超音波療法用変換器を駆動して、初期圧力波形を組織内へと供給して組織内に少なくとも1つの気泡を生成するように構成され、前記超音波療法用生成器は更に、前記超音波療法用変換器を駆動して、第1の散乱圧力波形を前記初期圧力波形から5μsから200μs以内に前記少なくとも1つの気泡内に供給して前記少なくとも1つの気泡の近傍にキャビテーション核を生成するように構成された超音波療法用生成器と
を備える超音波療法システム。
[形態19]
形態18に記載のシステムであって、前記第1の散乱パルスの圧力波高値は前記少なくとも1つの気泡の近傍にキャビテーション核を生成するのに十分な圧力振幅である、システム。
[形態20]
形態18に記載のシステムであって、前記超音波療法用生成器は更に、前記超音波療法用変換器を駆動して、前記第1の散乱圧力波形の後に、前記少なくとも1つの気泡の近傍にキャビテーション核を生成するために、少なくとも1つの追加的な散乱パルスを供給するように構成される、システム。
[形態21]
形態18に記載のシステムであって、前記超音波療法用生成器は、
前記初期及び散乱圧力波形を始動するために複雑な波形を生成するように構成された制御器と、
前記制御器と結合された高電圧電源と、
前記制御器及び前記高電圧電源から前記複雑な波形を受け取り、増幅するように構成された増幅器と、
前記超音波療法用変換器のインピーダンスを前記増幅器とマッチングさせるように構成されたマッチングネットワークと
を更に備える、システム。
[形態22]
超音波エネルギーによって組織を治療する方法であって、
超音波エネルギーによって、前記組織内に少なくとも1つの気泡を生成するステップと、
衝撃焦点圧力波形を前記少なくとも1つの気泡に衝突させるステップと、
前記少なくとも1つの気泡の近傍にキャビテーション核を形成するステップと
を備える方法。
[形態23]
形態22に記載の方法において、前記衝突させるステップは、前記少なくとも1つの気泡の寿命期間の間に実行される、方法。
[形態24]
形態23に記載の方法において、前記衝突させるステップは、前記生成するステップから5μsから200μs以内に実行される、方法。
[形態25]
形態22に記載の方法において、前記キャビテーション核を形成するステップは、前記衝撃焦点圧力波形と前記少なくとも1つの気泡との間の衝撃散乱メカニズムによって達成される、方法。
図1
図2a-2c】
図3
図4a
図4b
図4c
図4d-4e】
図5a
図5b
図5c
図6