(58)【調査した分野】(Int.Cl.,DB名)
前記外枠部材のウェブ側に位置する前記内枠部材の両フランジと、前記外枠部材の両フランジと、が前記面材に直交する壁厚方向に離間していることを特徴とする請求項1乃至3のいずれか1項に記載の縦枠材。
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、従来の壁式構造では、面材から縦枠材にせん断力が作用する位置と、縦枠材の図心とにずれが生じ、縦枠材に対して偏心曲げが作用する。
このため、複数の枠部材(特許文献1に示す角形鋼管とリップ付溝形鋼)を組み立てて構成される縦枠材では、
図22に示すように、隣り合う枠部材9A、9B同士を固定するねじ部に引き抜き力が作用する。そのため、従来の縦枠材では、前述の引き抜き力に対する抵抗を確保するために、多数のねじ止めを付与する構成となることから、製造性および現場での施工性が低下するという問題があった。
【0006】
本発明は、上述する問題点に鑑みてなされたもので、縦枠材を構成する枠部材同士の離間を抑制して、枠部材の製造性や施工性を向上することができる縦枠材および耐力壁を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記目的を達成するため、本発明に係る縦枠材は、建築物の一部を構成する耐力壁の面材に固定される縦枠材であって、少なくとも1つの内枠溝形鋼と、溝形鋼または角形鋼管からなる1つ、または複数の内部材とを有するとともに、これら前記内枠溝形鋼および前記内部材からなる部材同士が隣接された内枠部材と、前記内枠部材を囲繞する外枠溝形鋼からなる外枠部材と、を備え、前記内枠溝形鋼の開口縁と外枠溝形鋼の開口縁が同じ方向を向いて設置され、前記内枠溝形鋼のウェブには、1つ、または複数の前記内部材が当接され、前記外枠部材が面材に固定され
、前記外枠溝形鋼は、ウェブとフランジの接合部が面取りされていることを特徴としている。
【0008】
また、本発明に係る耐力壁は、上述した縦枠材が前記面材に接合されていることを特徴としている。
【0009】
本発明では、内枠部材のうち内枠溝形鋼と内部材とが外枠溝形鋼に囲繞されることで、内枠溝形鋼と内部材との離間が防止され、地震や風等により建築物に対して水平力(外力)が作用した場合でも内枠溝形鋼と内部材との間に離間が生じることなく、縦枠材として高い剛性と耐力を発揮することができる。しかも、内枠溝形鋼と内部材との離間が外枠溝形鋼によって抑制されることで、組み立て部材のねじ接合箇所を減らしたり、ねじ止めを省略することができ、製造時および施工時の手間を低減することができ、従来の縦枠材よりも低コスト化が可能になる。
また、このように外枠溝形鋼に面取り部分を設けることにより、外枠溝形鋼のウェブがウェブの面外方向に変形することを抑制し、外側の溝形鋼と内枠溝形鋼および内枠部材との一体性を高めることができるので、縦枠材の耐力を向上させることができる。
【0010】
また、本発明では、内枠溝形鋼や内部材の板厚や断面形状を変えることだけで、縦枠材の部材耐力を調整することが可能となる。したがって、建物案件ごとに変化する部材への要求耐力に対して、面材を固定する外枠溝形鋼の仕様を変更せずに、内枠溝形鋼および内部材の板厚や断面形状を変化させるだけで要求耐力を満足する部材仕様を探索することができ、設計の手間を低減することができる。
【0011】
また、本発明に係る縦枠材は、前記外枠部材のフランジ部は、前記内枠溝形鋼のフランジ部とネジ止めされていることが好ましい。
【0012】
また、本発明に係る縦枠材は、前記外枠部材は、前記面材の面に直交する壁厚方向に突出するリップ部を有することが好ましい。
【0013】
この場合には、内枠溝形鋼と前記他の内枠部材が外枠溝形鋼のリップ部によって拘束されるので、内枠溝形鋼と前記他の内枠部材の離間を防ぐことができる。
【0014】
また、本発明に係る縦枠材は、前記外枠溝形鋼は、ウェブとフランジの接合部が面取りされていることが好ましい。
【0015】
このように外枠溝形鋼に面取り部分を設けることにより、外枠溝形鋼のウェブがウェブの面外方向に変形することを抑制し、外側の溝形鋼と内枠溝形鋼および内枠部材との一体性を高めることができるので、縦枠材の耐力を向上させることができる。
【0016】
また、本発明に係る縦枠材は、前記外枠部材のウェブ側に位置する前記内枠部材の両フランジと、前記外枠部材の両フランジと、が前記面材に直交する壁厚方向に離間していることが好ましい。
【0017】
本発明では、内枠部材と外枠溝形鋼との間に隙間(ポケット部)が設けられるので、面材を縦枠材に止めつけるには、外枠溝形鋼のフランジ1枚の鋼板のみを固定ねじで固定すればよい。そのため、部材に高い耐力が要求されて内枠溝形鋼や内部材の仕様変更が生じた場合でも、面材と縦枠材の接合方法に仕様変更が生じないので縦枠材の耐力壁へのネジ止めに関する製造手間や施工手間を均一化することができる利点もある。
また、内枠溝形鋼と内部材を接合する接合ねじが前述のポケット部に突出しない構成となることから、この接合ねじと面材に固定するための固定ねじとが干渉することがなく、施工性を向上させることができる。
【0018】
また、本発明に係る縦枠材は、前記外枠溝形鋼の板厚寸法は、前記内部材および前記内枠溝形鋼の板厚寸法よりも小さく、かつ設定された前記面材の板厚よりも大きいことが好ましい。
【0019】
このように縦枠材と面材の板厚寸法を設定することで、外枠溝形鋼が内枠溝形鋼と内部材を囲繞して両者の離間の防止する効果を確実なものにするとともに、面材から作用するせん断力に対して、縦枠材が十分な耐力を有する仕様とすることができる。
【発明の効果】
【0024】
本発明の縦枠材および耐力壁によれば、縦枠材を構成する部材同士の離間を抑制することで、縦枠材の製造性や施工性を向上することができる。
【図面の簡単な説明】
【0025】
【
図1】本発明の第1の実施の形態による縦枠材および耐力壁の構成を示す部分斜視図である。
【
図2】
図1に示す縦枠材の水平断面図であって、内枠溝形鋼の溝内に接合金物を示した図である。
【
図4】
図2に示すA−A線矢視図であって、縦枠材の下方部分を示す側面図である。
【
図5】
図2に示すB−B線矢視図であって、縦枠材の下方部分を示す側面図である。
【
図6】第2の実施の形態による縦枠材の構成を示す水平断面図であって、
図3に対応する図である。
【
図7】第3の実施の形態による縦枠材の構成を示す水平断面図である。
【
図8】第4の実施の形態による縦枠材の構成を示す水平断面図である。
【
図9】第5の実施の形態による縦枠材の構成を示す側面図であって、
図5に対応する図である。
【
図10】第1変形例による縦枠材の要部拡大図であって、内枠溝形鋼と外枠溝形鋼との固定状態を示す水平断面図である。
【
図11】第2変形例による縦枠材の要部拡大図であって、内枠溝形鋼と外枠溝形鋼との固定状態を示す水平断面図である。
【
図12】第3変形例による縦枠材の要部拡大図であって、内枠溝形鋼と外枠溝形鋼との固定状態を示す水平断面図である。
【
図13】第1実施例によるCase1、2の解析モデルを示した図である。
【
図14】(a)、(b)は、解析モデルの各部の寸法を示した図である。
【
図15】(a)〜(c)は、解析モデルの各部の寸法を示した図である。
【
図16】実施例によるCase1、2の解析結果を示す図であって、変位と応力の関係を示す図である。
【
図17】実施例によるCase1、2の解析結果を示す図であって、断面効率を示す図である。
【
図18】第6の実施の形態による縦枠材の構成を示す水平断面図である。
【
図19】
図18に示す接合金物の図であって、(a)は側面図、(b)は
図18のC−C線から見た正面図である。
【
図20】第2実施例による試験体の構成を示す水平断面図であって、(a)は比較例を示す図、(b)は実施例を示す図である。
【
図21】第2実施例による大型接合金物の図であって、(a)は側面図、(b)は
図18のC−C線から見た正面図である。
【
図22】従来の縦枠材に地震力が作用したときの状態を示す図である。
【発明を実施するための形態】
【0026】
以下、本発明の実施の形態による縦枠材および耐力壁について、図面に基づいて説明する。
【0027】
(第1の実施の形態)
図1乃至
図3に示すように、本実施の形態による建築物用の縦枠材1は、面材10に固定されて枠組みされる建築物の枠組壁工法における耐力壁の一部を構成している。耐力壁Tは、面材10と、面材10の一方の面に沿って上下方向に延在する縦枠材1と、縦枠材1の上下端部に取り付けられた接合金物4と、水平方向に延在する横枠材(図示省略)とで構成されている。このような耐力壁Tは、スチールハウス、ツーバイフォー住宅、或いは木質パネル工法等の建築物に適用することができる。
ここで、縦枠材1の部材軸方向に直行し、なおかつ面材10の面方向に沿う方向を壁面水平方向Xといい、縦枠材1の部材軸方向に直行し、なおかつ壁面水平方向Xに直交する方向を壁厚方向Yという。
【0028】
縦枠材1は、内枠溝形鋼21(内枠部材)と、溝形鋼からなる内溝形鋼22(内部材、内枠部材)と、内枠溝形鋼21および内溝形鋼22を囲繞する外枠溝形鋼31(外枠部材)と、を備えている。内枠溝形鋼21および内溝形鋼22からなる部材同士が隣接されている。そして、縦枠材1は、内枠溝形鋼21の溝開口縁21aと外枠溝形鋼31の溝開口縁31aとがいずれも壁面水平方向Xで同じ方向を向くように配置され、内部材22と内枠溝形鋼21は、外枠溝形鋼31によって離間を防止できる構成となっている。
【0029】
内枠溝形鋼21、内溝形鋼22は、ウェブ21B、22Bの幅寸法が異なる形状であって、互いにウェブ21B、22Bの外面同士を当接させて接合ねじ23により連結されている。また本実施の形態では、内枠溝形鋼21、内溝形鋼22は、それぞれ両フランジ端縁から壁厚方向Yの内側に突出するリップ部21c、22cを有している。
なお、内溝形鋼22は、内枠溝形鋼21のウェブ21Bの外周部に対して、内溝形鋼22のリップ部22cの外周部を当接させるように配置しても良い。この場合には、内枠溝形鋼21のウェブ21Bと内溝形鋼22のリップ部22cをねじ止めすることが可能となる。
また、接合ねじ23による接合箇所は、壁厚方向Yに二箇所ずつで上下方向に所定の間隔をあけて配置されている。なお、接合ねじ23の接合箇所は、縦枠材1の材軸方向に300mm以下の間隔で設けることが望ましい。
【0030】
外枠部材3の外枠溝形鋼31は、フランジ31Aの幅が、内枠溝形鋼21、内溝形鋼22のフランジ21A、22Aの幅の和と略同一で、かつウェブ31Bの幅寸法が内枠溝形鋼21のウェブ21Bの幅寸法と略同一となる形状をなしている。外側溝形鋼31は、両フランジ端縁から壁厚方向Yの内側に突出するリップ部31cを有している。なお、本実施の形態では、外枠溝形鋼31のリップ部31cが設けられているが、このリップ部31cを省略した構成のものでも良い。
【0031】
外枠溝形鋼31のリップ部31cは、内枠溝形鋼21のリップ部21cの外面同士が当接し、外枠溝形鋼31のフランジ31Aは、内枠溝形鋼21のフランジ21Aとが当接した状態で配置されている。内溝形鋼22のリップ部22cは、外枠溝形鋼31のウェブ31Bに当接している。ここで、
図1〜3の符号Oは、縦枠材1の中心部(以下、図心Oという)を示している。
【0032】
外枠溝形鋼31の両フランジ31Aと、内溝形鋼22の両フランジ22Aの間には、Y方向に隙間(ポケット部24)が形成されている。このポケット部24内に固定ねじ5の先端部が位置するので、面材10と縦枠材1を止めるねじが他の接合ネジ23に干渉することを回避できる。
【0033】
図1に示す外枠溝形鋼31の厚さ寸法t1は、内枠溝形鋼21および内溝形鋼22の厚さ寸法t2よりも小さく、かつ面材10の板厚t0よりも大きくなるように設定されている。つまり、t0<t1<t2となるように設定される。例えば、面材10が0.4mm以上1.2mm以下の厚さの場合における外枠溝形鋼31は、厚さ寸法t1が0.4mm以上2.3mm未満でなおかつ面材10よりも板厚の厚い薄板軽量形鋼を用いることが好ましい。また、内枠溝形鋼21および内溝形鋼22は、板厚寸法が、0.4mm以上3.0mm以下の鋼板であることが好ましい。
【0034】
また、縦枠材1は、
図4及び
図5に示す基礎6に配置した薄板軽量溝形鋼からなる下枠材(不図示)のウェブに立設させ、縦枠材1と基礎6とは
図2に示す接合金物4によって接合されている。
接合金物4は、鋼材からなる底板41と立上り板42とを有している。この接合金物4を内枠溝形鋼21の溝部内に配置し、立上り板42を内枠溝形鋼21のウェブ21Bに当てがい、その当接部において接合ねじ23で両者を接合する。また、底板41は横枠材のウェブに載置し、基礎6に埋設されたアンカーボルト43の突出部を横枠材と底板41のボルト挿通孔を挿通させ、その突出先端のねじ部にナット44を締結する。これにより縦枠材1は、接合金物4を介して基礎6に固定されている。なお、内枠溝形鋼21と内溝形鋼22の厚さは同じでなくも良い。
【0035】
以上説明した建築物用の縦枠材および耐力壁によれば、
図1及び
図2に示すように、内枠溝形鋼21と内溝形鋼22が外枠部材31に囲繞されることで、内枠溝形鋼21と内溝形鋼22との離間が防止され、地震や風等により建築物に対して水平力(外力)が作用した場合でも内枠溝形鋼21と内溝形鋼22との間に離間が生じることなく、高い剛性と耐力を発揮することができる。しかも、内枠溝形鋼21と内溝形鋼22の離間が抑制されることで、組み立て部材の接合ねじ23による接合箇所数を減らしたり、ねじ止めを省略することができ、製造時および施工時の手間を低減することができ、従来の縦枠材よりも低コスト化が可能になる。
【0036】
また、本実施の形態では、外枠溝形鋼31の内側に収納する内枠溝形鋼21および内溝形鋼22の板厚や断面形状を変えることだけで、縦枠材1の部材耐力の調整が可能となる。したがって、建物案件ごとに変化する部材への要求耐力に対応して、部材耐力を容易に調整でき、部材仕様の探索に要する手間を低減することができる。
【0037】
また、本実施の形態では、内溝形鋼22と外枠溝形鋼31との間にポケット部24が設けられるので、面材10を縦枠材1に止めつけるには、外枠溝形鋼31のフランジ31Aの鋼板のみを固定ねじ5で固定すればよい。そのため、内枠溝形鋼21や内溝形鋼22の仕様の影響を受けること無く面材10を縦枠材1に止め付ける作業を遂行でき、部材に高い耐力が要求されて内溝形鋼22の仕様が変化する場合でも、面材10と縦枠材1を固定する固定ねじ5の仕様変更を生じることなく縦枠材1を高耐力化でき、縦枠材1の耐力壁10へのネジ止めに関する製造手間や施工手間を均一化できる利点もある。
【0038】
また、内枠溝形鋼21および内溝形鋼22同士を接合する接合ねじ23が前述のポケット部24に突出しない構成となることから、この接合ねじ23と面材10に固定するための固定ねじ5とが干渉することがなく、施工性を向上させることができる。
【0039】
また、本実施の形態では、外枠溝形鋼31の板厚寸法t1が内枠溝形鋼21および内溝形鋼22の板厚寸法t2よりも小さく、かつ設定された面材10の板厚寸法t0よりも大きく設定されているので、外枠溝形鋼31が内枠溝形鋼21と内溝形鋼22を囲繞して両者の離間の防止する効果を確実なものにするとともに、面材10から作用するせん断力に対して、縦枠材1が十分な耐力を有する仕様とすることができる。
なお、縦枠材1は、使用する環境条件などに応じて、表面処理などの防錆処理を施すようにしてもよい。
【0040】
上述のように本実施の形態による縦枠材および耐力壁では、縦枠材1を構成する部材同士の離間を抑制することで、縦枠材1の製造性や施工性を向上することができる。
【0041】
次に、本発明の縦枠材および耐力壁の他の実施の形態について、添付図面に基づいて説明するが、上述の第1の実施の形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、第1の実施の形態と異なる構成について説明する。
【0042】
(第2の実施の形態)
図6に示すように、第2の実施の形態による縦枠材1Aは、外枠溝形鋼31のウェブ31Bとフランジ31Aの接合部が面取りされた面取り部32が形成された構成となっている。内溝形鋼22のウェブ22Bの幅寸法は、内枠溝形鋼21のウェブ21Bの幅寸法より小さく、かつ外枠溝形鋼31のウェブ31Bの幅寸法に略一致している。外枠溝形鋼31のウェブ31Bの幅寸法は、ウェブ31Bと面取り部32との接合部33が内溝形鋼22のフランジ22Aの先端部に当接する位置となる寸法とする。
このように外枠溝形鋼31に面取り部32を設けることにより、外枠溝形鋼31のウェブ31Bの面外変形、すなわち
図6の二点鎖線Pに示すような面取り部32を有さない外枠溝形鋼31に生じ得る面外変形が抑制でき、縦枠材1Aの一体性を確実に確保することができる。
【0043】
(第3の実施の形態)
図7に示す第3の実施の形態による縦枠材1Bは、外枠溝形鋼31の内側に一対の内溝形鋼25、25(内部材、内枠部材)を設けた構成となっている。一対の内溝形鋼25、25は、互いにウェブ25B、25B同士を当接させて背合わせに配置し、それぞれ一方のフランジ25Aが内枠溝形鋼21のウェブ21Bに対して接合ねじ23により接合され、他方のフランジ25Aが外枠溝形鋼31のウェブ31Bに当接された構成となっている。
なお、外枠溝形鋼31の内側に設ける内溝形鋼25は、上記のように一対であることに限定されず、1つであってもよい。この場合、1つの内溝形鋼25のフランジ25A、25Aを、それぞれ内枠溝形鋼21のウェブ21Bの外周部、外枠溝形鋼31のウェブ31Bの内周部に当接させた構成とすることができる。また、内部材が一対の内溝形鋼25、25で構成される場合は、それぞれのウェブ25B、25B同士をねじ止めしてもよい。
【0044】
(第4の実施の形態)
図8に示す第4の実施の形態による縦枠材1Cは、一対の内枠溝形鋼26、26を設けるとともに、内溝形鋼22に代えて角形鋼管27を設けた構成となっている。一対の内枠溝形鋼26、26は、互いに溝開口縁を同じ方向に向けてフランジ26A、26A同士を当接させて配置している。そして、内枠溝形鋼26は、それぞれのウェブ26Bが内枠角形鋼管27に対して接合ねじ23により接合された構成となっている。
内枠角形鋼管27は、断面中空矩形状の鋼製角鋼(角パイプ)であって、外枠溝形鋼31の両フランジ31Aとの間に、ポケット部24が形成されている。
【0045】
(第5の実施の形態)
図9に示す第5の実施の形態による縦枠材1Dは、上述した第1の実施の形態における外枠溝形鋼31のリップ部31c及び内枠溝形鋼21のリップ部21cの両方の下方部分に切欠部31d、21dを設けた構成となっている。切欠部31d、21dを設けることで、溝開口部の幅寸法が大きくなるので、
図5に示すような基礎6に埋め込まれたアンカーボルト43と縦枠材1Dを接合する際に、ナット44の締め込み作業が容易になり、施工性を向上させることができる。
なお、外枠溝形鋼31のリップ部31cの下方部分のみに切欠部31dを設けた構成、もしくは内枠溝形鋼21のリップ部21cの下方部分のみに切欠部21dを設けた構成としてもよい。
【0046】
(変形例)
図10〜
図12は、上述した実施の形態の変形例1〜3を示している。変形例1〜3は、外枠溝形鋼31のフランジ31Aと、内枠溝形鋼21のフランジ21Aとを、外側から連結ねじ28で連結する構成となっている。このように変形例1〜3では、内枠溝形鋼21と外枠溝形鋼31とが連結ねじ28によって固定されているので、外枠溝形鋼31と内枠溝形鋼21との一体性を確保することができる。
【0047】
図10に示す第1変形例による縦枠材1Eは、外枠溝形鋼31のフランジ31Aに内枠溝形鋼21の方向に溝内側に突となる凹部31dを形成した構成となっている。この凹部31dは、上下方向に連続する溝状であってもよいし、連結ねじ28の挿入部のみに設けられていてもよい。
第1の変形例では、内枠溝形鋼21のリップ部21cの頂部が、外枠溝形鋼31のリップ部31cに当接していてもよいし、当接していなくてもよい。
また第1変形例では、凹部31dを設けることで、連結ねじ28の頭部28aが外枠溝形鋼31の外周表面に突き出し面材10と干渉することを防止できる。
【0048】
図11に示す第2変形例による縦枠材1Fは、外枠溝形鋼31のフランジ31Aに凹部31dを設ける構成に加え、内枠溝形鋼21のリップ部21cを溝側にU字状に折り返した形状とした構成となっている。
第2の変形例では、内枠溝形鋼21のリップ部21cの頂部が、外枠溝形鋼31のリップ部31cに当接していてもよいし、当接していなくてもよい。
【0049】
図12に示す第3変形例による縦枠材1Gは、外枠溝形鋼31がリップ部を有さない形状であり、なおかつ内枠溝形鋼21のリップ部21cを溝の外側にU字状に折り返した形状とした構成となっている。そして、外枠溝形鋼31のフランジ先端部31fが、内枠溝形鋼21のリップ部21cの折り返し部分に挿入されている。
【0050】
次に、上述した実施の形態による建築物用の縦枠材および耐力壁の効果を裏付けるための実施例について以下に説明する。
【0051】
(第1実施例)
本第1実施例では、
図13に示すように、外枠溝形鋼31の有無をパラメータとしたFEM解析を行い、上述した実施の形態に示す縦枠材の効果を確認した。
本解析では、
図13に示すCase1、2について解析モデル(
図14、
図15参照、図中の単位はmm)を作成し、部材軸方向に分布する分布荷重を図心(断面重心)と偏心させた位置に作用させることで
図16、
図17に示すような結果を得た。
【0052】
Case1は、面取り部32を有する外枠溝形鋼31の溝内に、リップ部を有する内枠溝形鋼21と内部材22を配し、溝形鋼21と溝形鋼22との接合ねじ23を剛体でモデル化した解析モデルである。
Case2は、Case1の解析モデルにおいて、外枠溝形鋼31を除いた比較例の解析モデルである。
なお、Case1、2の各解析モデルの構成要素の寸法は、
図14(a)、(b)、及び
図15(a)〜(c)に示している。
また、解析の条件は、要素はシェル要素を使用し、素材は40キロ普通鋼を想定し、板厚は外枠溝形鋼31の板厚寸法を2.2mm、内枠溝形鋼21および内溝形鋼22の板厚寸法を3mmとし、解析モデルの上下方向の長さ寸法は、2730mmとした。
【0053】
図16及び
図17を用いて解析結果について説明する。
図16は、変位δ(mm)と応力σ(=荷重P/断面積A)の関係を示している。ここで、変位δは解析モデル最上部の軸方向変位、荷重Pは解析で計測した鉛直方向荷重、断面積Aは各縦枠材単体の断面積の総和である。
図17は、最大耐力/全塑性耐力で表される断面効率を示している。
【0054】
解析結果によると、
図17に示すように、Case1、2を比較すると、最大応力σは、外枠溝形鋼による囲繞が有る構成(Case1)が無い構成(Case2)よりも7.7%向上したことが確認できた。すなわち、
図17に示すように、断面効率は、外枠溝形鋼による囲繞が有る構成(Case1)の方が無い構成(Case2)よりも7.7%高いことが確認できた。
これにより、本発明が、外枠溝形鋼の内側に収納された内枠溝形鋼と内溝形鋼の間に生じる離間を確実に防止し、部材耐力を向上させる効果を発揮することが確認できた。
【0055】
(第6の実施の形態)
次に、
図18に示す第6の実施の形態による耐力壁Tの縦枠材1Hについて説明する。
耐力壁Tには、縦枠材1の部材軸方向の端部に接合金物4が取り付けられている。ここで、
図18は、縦枠材1Hにおける部材軸方向の下端部で接合金物4が設けられる部分の水平断面図である。
第6の実施の形態の縦枠材1Hは、上述した第1の実施の形態と同様であり、内枠溝形鋼21(内枠部材)と、溝形鋼からなる内溝形鋼22(内部材、内枠部材)と、内枠溝形鋼21および内溝形鋼22を囲繞する外枠溝形鋼31(外枠部材)と、を備えている。そして、内枠溝形鋼21および内溝形鋼22は、それぞれのウェブ21B、22B同士が互いに背中合わせにして当接されている。
【0056】
接合金物4は、
図19(a)、(b)に示すように、内枠溝形鋼21のウェブ21Bに対して当接される帯板45と、この帯板45に固定され、かつ建築物の基礎に対して図示しないアンカーボルト(アンカー材)によって固定されるベース板46と、を備えている。帯体45には、内枠溝形鋼21および内溝形鋼22のウェブ21B、22Bに接合するための接合ねじ23を挿通させる複数のボルト孔45aが形成されている。帯板45の幅寸法L
W0は、内部材の幅寸法L
W2よりも大きい寸法に設定されている。
なお、上述した
図7に示す第3の実施の形態のように、複数の内溝形鋼25、25が設けられる場合には、内枠溝形鋼21のウェブ21Bの幅寸法をL
W1とし、一対の内溝形鋼25、25の両幅寸法を合わせた全幅寸法をL
W2とする。さらに、内溝形鋼が3つ以上設けられる場合も、それら全ての全幅寸法をL
W2とする。
【0057】
さらに、縦枠材1Hは、内枠溝形鋼21の幅寸法L
W1、及び内部材(内溝形鋼22)の幅寸法L
W2が(1)式の関係を満たしている。
【0059】
このように第6の実施の形態では、内部材(内溝形鋼22)の幅寸法L
W2が接合金物4の帯板45の幅寸法L
W0よりも小さいことから、接合金物4から内枠溝形鋼21のウェブ21Bに作用する局所的な曲げに対して内溝形鋼22が抵抗し、内枠溝形鋼21におけるウェブ21Bの面外変形を抑制することができ、接合金物4周辺の局部変形による耐力壁Tの剛性の低下を抑えることができる。そのため、接合金物4の高さを低くして金物の小型化が可能となる。つまり、接合金物4の高さを低くしても前記ウェブ21B、22Bの面外変形による影響を受けずに大きな寸法の接合金物4と同等の剛性・耐力を発揮することができる。
また、この場合には、帯板45、内枠溝形鋼21のウェブ21B、および内溝形鋼22のウェブ22Bが一体的に設けられ、互いにずれたり、開きが生じることが無くなるので、これらの局部変形による耐力壁Tの剛性低下を確実に防止することができる。
【0060】
(第2実施例)
第2実施例は、上述した第6の実施の形態による建築物用の縦枠材および耐力壁の効果を裏付けるための実施例について以下に説明する。
第2実施例では、
図20(a)に示す比較例による第1試験体S1と、
図20(b)に示す実施例による第2試験体S2を設けて、接合金物4が設けられる部分の内枠溝形鋼21のウェブ21Bと内部材(内溝形鋼22)のウェブ22Bの剛性を測定して比較した。
図20(a)に示す比較例による第1試験体S1は、外枠部材が省略されており、二重に設けられる内枠溝形鋼21(211、212)と内溝形鋼22の幅寸法が同等となっている。そして、内枠溝形鋼211、212の2枚のウェブ21Bと内溝形鋼22の1枚のウェブ22Bの厚さ寸法はそれぞれ3.2mmで、合計3枚のウェブが積層された構成となっている。一方、
図20(b)に示す実施例による第2試験体S2は、上述した第1実施例の
図14(a)の解析モデルとほぼ同等の構成となっている。第2試験体S2では、内枠溝形鋼21の1枚のウェブ21Bと内溝形鋼22の1枚のウェブ22Bの厚さ寸法はそれぞれ3.2mmで、合計2枚のウェブが積層された構成となっている。接合金物4は、両試験体S1、S2ともに帯体45と各ウェブ21B、22Bを複数(
図20ではそれぞれ水平方向に4本、全44本)のねじ径8mmの接合ねじ23で固定されている。なお、各部材(内枠溝形鋼21、内部材22、接合金物4)は、40キロ級の普通鋼を使用した。
【0061】
本実験では、比較例、実施例のそれぞれにおいて、
図21(a)、(b)に示す接合金物4(大型接合金物4A)と、大型接合金物4Aよりも高さ寸法の小さな
図19(a)、(b)に示す接合金物4(小型接合金物4B)を取り付けて実験を行った。
表1に実験結果を示す。表1に示す実験結果は、小型接合金物4Bを用いた接合部の引張実験から得た接合部剛性を、大型接合金物4Aを用いた接合部の引張実験で得た接合部剛性で無次元化したものである。
なお、表1では、大型接合金物4Aを「HD金物 大」で示し、小型接合金物4Bを「HD金物 小」で示している。
【0063】
表1に示すように比較例では、大型接合金物4Aを使用した接合部の剛性に対する小型接合金物4Bを使用した接合部の剛性の比率が0.88となり、接合部剛性が12%低下した。一方で本発明の実施例では、大型接合金物4Aを使用した接合の剛性に対する小型接合金物4Bを使用した接合部の剛性の比率が1.04となり、接合部金物を小型化しても、大型接合金物4Aを用いた接合部と同等の剛性が確保されることが確認できる。実施例の場合には、内溝形鋼22の幅寸法が接合金物4Aの帯板45の幅寸法よりも小さいことから、接合金物4における帯板45が当接される内枠溝形鋼21のウェブ21Bの局部変形を内溝形鋼22が抑制して、接合金物4の高さ寸法の大小に関わらず、同等の剛性が発揮された。
【0064】
以上、本発明による縦枠材および耐力壁の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
【0065】
例えば、本実施の形態では、外枠溝形鋼31と内枠溝形鋼21、内溝形鋼22がリップ付溝形鋼としているが、リップ部の無い溝形鋼を用いることも可能である。この場合、上述した変形例1〜3に示すように連結ねじ28によって外枠溝形鋼31と内枠溝形鋼21が固定ねじなどで固定され、内枠溝形鋼21と内溝形鋼22の離間が抑制される構成とする。また、溝形鋼や角形鋼管の組み合わせの数量、向き等は適宜選定して配置することができる。
このように、内枠溝形鋼21と内溝形鋼22を外枠溝形鋼31が囲繞することで、内枠溝形鋼21と内溝形鋼22の離間が抑制されていれば良いのであって、その拘束手段は、リップ部の当接やねじ止めによる拘束手段に限定されることはない。
【0066】
また、縦枠材1の内枠溝形鋼21、内溝形鋼22、および外枠溝形鋼31の長手寸法、幅寸法、厚さ寸法、形状、材質、ねじの本数や位置などの構成は建築物の条件に基づいて適宜設定することができる。
【0067】
また、本実施の形態では、溝形鋼31で囲繞した内枠溝形鋼21と内溝形鋼22が接合ねじ23によって接合されているが、ねじ止めを省略して非接合としてもかまわない。
【0068】
本実施の形態では、縦枠材1の壁厚方向Yの一方のみを面材10に固定した構成としているが、両方を面材10に固定する耐力壁であってもよい。
【0069】
また、本実施の形態では、縦枠材1を接合金物4を介して基礎に接合しているが、この接合金物4の構成は本実施の形態に限定されることはなく、他の構成を採用することも可能である。
【0070】
その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。