特許第6604206号(P6604206)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社デンソーの特許一覧

<>
  • 特許6604206-回転電機の制御装置 図000018
  • 特許6604206-回転電機の制御装置 図000019
  • 特許6604206-回転電機の制御装置 図000020
  • 特許6604206-回転電機の制御装置 図000021
  • 特許6604206-回転電機の制御装置 図000022
  • 特許6604206-回転電機の制御装置 図000023
  • 特許6604206-回転電機の制御装置 図000024
  • 特許6604206-回転電機の制御装置 図000025
  • 特許6604206-回転電機の制御装置 図000026
  • 特許6604206-回転電機の制御装置 図000027
  • 特許6604206-回転電機の制御装置 図000028
  • 特許6604206-回転電機の制御装置 図000029
  • 特許6604206-回転電機の制御装置 図000030
  • 特許6604206-回転電機の制御装置 図000031
  • 特許6604206-回転電機の制御装置 図000032
  • 特許6604206-回転電機の制御装置 図000033
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6604206
(24)【登録日】2019年10月25日
(45)【発行日】2019年11月13日
(54)【発明の名称】回転電機の制御装置
(51)【国際特許分類】
   H02P 21/05 20060101AFI20191031BHJP
   H02P 27/06 20060101ALI20191031BHJP
【FI】
   H02P21/05
   H02P27/06
【請求項の数】18
【全頁数】24
(21)【出願番号】特願2016-1799(P2016-1799)
(22)【出願日】2016年1月7日
(65)【公開番号】特開2016-220516(P2016-220516A)
(43)【公開日】2016年12月22日
【審査請求日】2018年9月18日
(31)【優先権主張番号】特願2015-102664(P2015-102664)
(32)【優先日】2015年5月20日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】100121821
【弁理士】
【氏名又は名称】山田 強
(74)【代理人】
【識別番号】100139480
【弁理士】
【氏名又は名称】日野 京子
(74)【代理人】
【識別番号】100125575
【弁理士】
【氏名又は名称】松田 洋
(74)【代理人】
【識別番号】100175134
【弁理士】
【氏名又は名称】北 裕介
(72)【発明者】
【氏名】秋松 龍之介
(72)【発明者】
【氏名】戸成 辰也
(72)【発明者】
【氏名】内田 智裕
【審査官】 池田 貴俊
(56)【参考文献】
【文献】 特開2005−304237(JP,A)
【文献】 特開2005−271696(JP,A)
【文献】 米国特許出願公開第2005/0073280(US,A1)
【文献】 米国特許出願公開第2005/0210900(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02P 21/05
H02P 27/06
(57)【特許請求の範囲】
【請求項1】
巻線(12U,12V,12W)が巻回された固定子(12)を有する回転電機(10)と、前記巻線に駆動電流を流して前記回転電機を駆動する電力変換器(20)と、を備える回転電機システムに適用される回転電機の制御装置(30,30A)であって、
前記回転電機に作用する電磁力を抑制するように、前記巻線に流す基本波電流に重畳する高調波電流を算出する高調波算出部と、
前記巻線に流す基本波電流に算出された前記高調波電流を重畳した前記駆動電流が、前記巻線に流れるように前記電力変換器を操作する操作部と、を備え、
前記高調波算出部は、前記回転電機の負荷に対応する条件に基づいて、前記重畳する前記高調波電流の振幅及び位相を算出し、
前記回転電機の負荷に対応する条件は、前記回転電機の負荷に影響を与える指令値の条件であって、
上位の制御装置で生成された前記指令値の条件を判定する判定部を備え、
前記高調波算出部は、予め取得されている関係であって、前記高調波電流の振幅及び位相との相間関係、及び判定された前記指令値の条件に基づいて、前記重畳する高調波電流の振幅及び位相を算出する回転電機の制御装置。
【請求項2】
巻線(12U,12V,12W)が巻回された固定子(12)を有する回転電機(10)と、前記巻線に駆動電流を流して前記回転電機を駆動する電力変換器(20)と、を備える回転電機システムに適用される回転電機の制御装置(30,30A)であって、
前記回転電機に作用する電磁力を抑制するように、前記巻線に流す基本波電流に重畳する高調波電流を算出する高調波算出部と、
前記巻線に流す基本波電流に算出された前記高調波電流を重畳した前記駆動電流が、前記巻線に流れるように前記電力変換器を操作する操作部と、を備え、
前記高調波算出部は、前記回転電機の負荷に対応する条件に基づいて、前記重畳する前記高調波電流の振幅及び位相を算出し、
前記回転電機の負荷に対応する条件は、前記巻線を流れている基本波電流の条件、及び前記回転電機の負荷に影響を与える指令値の条件であって、
前記基本波電流の条件と前記高調波電流の振幅及び位相との第1の相間関係、及び前記指令値の条件と前記高調波電流の振幅及び位相との第2の相関関係が予め取得されており、
前記巻線を流れている基本波電流を取得する取得部と、
上位の制御装置で生成された前記指令値の条件を判定する判定部と、を備え、
前記高調波算出部は、前記第1の相間関係及び取得された基本波電流の条件に基づいて、又は、前記第2の相関関係及び判定された前記指令値に基づいて、前記重畳する高調波電流の振幅及び位相を算出する回転電機の制御装置。
【請求項3】
前記基本波電流の条件は、前記基本波電流の振幅である、請求項に記載の回転電機の制御装置。
【請求項4】
前記回転電機は送風機を構成するものであり、
前記指令値の条件は、前記送風機を含む空調装置の送風モードである、請求項1又は2に記載の回転電機の制御装置。
【請求項5】
前記指令値の条件は、前記空調装置の設定温度である、請求項に記載の回転電機の制御装置。
【請求項6】
前記判定部は、前記上位の制御装置で生成された前記回転電機の回転角速度の指令値を判定する、請求項に記載の回転電機の制御装置。
【請求項7】
前記判定部は、前記指令値である前記送風モード及び前記設定温度から、前記送風機から送られる風の流路を判定し、
前記指令値の条件と前記高調波電流の振幅及び位相との相間関係は、前記流路及び前記回転角速度と前記高調波電流の振幅との関係、並びに前記流路及び前記回転角速度と前記高調波電流の位相との関係である、請求項に記載の回転電機の制御装置。
【請求項8】
前記高調波算出部は、前記取得部により取得された前記基本波電流の振幅が大きいほど、前記基本波電流に重畳する前記高調波電流の振幅を大きく算出する、請求項に記載の回転電機の制御装置。
【請求項9】
巻線(12U,12V,12W)が巻回された固定子(12)を有する回転電機(10)と、前記巻線に駆動電流を流して前記回転電機を駆動する電力変換器(20)と、を備える回転電機システムに適用される回転電機の制御装置(30,30A)であって、
前記回転電機に作用する電磁力を抑制するように、前記巻線に流す基本波電流に重畳する高調波電流を算出する高調波算出部と、
前記巻線に流す基本波電流に算出された前記高調波電流を重畳した前記駆動電流が、前記巻線に流れるように前記電力変換器を操作する操作部と、を備え、
前記高調波算出部は、前記回転電機の負荷に対応する条件に基づいて、前記重畳する前記高調波電流の振幅及び位相を算出し、
前記回転電機の負荷に対応する条件は、前記巻線を流れている基本波電流の条件であって、
前記巻線を流れている基本波電流を取得する取得部を備え、
前記高調波算出部は、予め取得されている関係であって、前記基本波電流の条件と前記高調波電流の振幅及び位相との相間関係、及び前記取得部により取得された前記基本波電流の条件に基づいて、前記巻線に流す基本波電流に重畳する前記高調波電流の振幅及び位相を算出し、
前記基本波電流の条件は、前記基本波電流の振幅であり、
前記高調波算出部は、前記取得部により取得された前記基本波電流の振幅が大きいほど、前記基本波電流に重畳する前記高調波電流の振幅を大きく算出する回転電機の制御装置。
【請求項10】
前記巻線に流す基本波電流の変動角速度のK(Kは2以上の整数)倍の変動角速度をK次角速度と定義し、
前記K次角速度を変動角速度とする電流をK次の高調波電流と定義し、
前記回転電機に作用する電磁力であって、前記K次角速度を変動角速度とする電磁力をK次の電磁力と定義し、
「L」(Lは2以上の偶数)次からLよりも大きい「N−2」(Nは2以上の偶数)次まで、又は「L」次からLよりも小さい「N+2」次までの前記電磁力を抑制範囲とした場合に、
前記高調波算出部は、「L」次から「N」次までに含まれる複数の奇数の次数の前記高調波電流を算出する、請求項1〜9のいずれか1項に記載の回転電機の制御装置。
【請求項11】
巻線(12U,12V,12W)が巻回された固定子(12)を有する回転電機(10)と、前記巻線に駆動電流を流して前記回転電機を駆動する電力変換器(20)と、を備える回転電機システムに適用される回転電機の制御装置(30,30A)であって、
前記回転電機に作用する電磁力を抑制するように、前記巻線に流す基本波電流に重畳する高調波電流を算出する高調波算出部と、
前記巻線に流す基本波電流に算出された前記高調波電流を重畳した前記駆動電流が、前記巻線に流れるように前記電力変換器を操作する操作部と、を備え、
前記高調波算出部は、前記回転電機の負荷に対応する条件に基づいて、前記重畳する前記高調波電流の振幅及び位相を算出し、
前記回転電機の負荷に対応する条件は、前記巻線を流れている基本波電流の条件であって、
前記巻線を流れている基本波電流を取得する取得部を備え、
前記高調波算出部は、予め取得されている関係であって、前記基本波電流の条件と前記高調波電流の振幅及び位相との相間関係、及び前記取得部により取得された前記基本波電流の条件に基づいて、前記巻線に流す基本波電流に重畳する前記高調波電流の振幅及び位相を算出し、
前記巻線に流す基本波電流の変動角速度のK(Kは2以上の整数)倍の変動角速度をK次角速度と定義し、
前記K次角速度を変動角速度とする電流をK次の高調波電流と定義し、
前記回転電機に作用する電磁力であって、前記K次角速度を変動角速度とする電磁力をK次の電磁力と定義し、
「L」(Lは2以上の偶数)次からLよりも大きい「N−2」(Nは2以上の偶数)次まで、又は「L」次からLよりも小さい「N+2」次までの前記電磁力を抑制範囲とした場合に、
前記高調波算出部は、「L」次から「N」次までに含まれる複数の奇数の次数の前記高調波電流を算出する回転電機の制御装置。
【請求項12】
前記基本波電流の条件は、前記基本波電流の振幅である、請求項11に記載の回転電機の制御装置。
【請求項13】
前記巻線に流す基本波電流に重畳する複数の前記高調波電流のうちの少なくとも1つの高調波電流を主高調波電流とし、前記主高調波電流の前記相間関係を表す主近似式又はマップと、前記巻線に流す基本波電流に重畳する複数の前記高調波電流のうちの前記主高調波電流以外の前記高調波電流の振幅及び位相と、前記主高調波電流の振幅及び位相との関係を表す副近似式と、が記憶されている記憶部を備え、
前記高調波算出部は、前記記憶部に記憶されている前記主近似式又は前記マップと前記副近似式とから、前記巻線に流す基本波電流に重畳する複数の前記高調波電流の振幅及び位相を算出する、請求項10〜12のいずれか1項に記載の回転電機の制御装置。
【請求項14】
前記重畳する複数の前記高調波電流のそれぞれの前記相間関係を表す近似式が記憶されている記憶部を備え、
前記高調波算出部は、前記記憶部に記憶されている前記近似式から、前記重畳する複数の前記高調波電流の振幅及び位相を算出する、請求項10〜12のいずれか1項に記載の回転電機の制御装置。
【請求項15】
前記抑制範囲を「6M−2」次及び「6M」次の前記電磁力とする場合、
前記高調波算出部は、前記複数の高調波電流として、「6M−1」次と「6M+1」次の高調波電流を算出する、請求項10〜14のいずれか1項に記載の回転電機の制御装置。
【請求項16】
前記抑制範囲を「6M」次及び「6M+2」の前記電磁力とする場合、
前記高調波算出部は、前記複数の高調波電流として、「6M−1」次と「6M+1」次の高調波電流を算出する、請求項10〜15のいずれか1項に記載の回転電機の制御装置。
【請求項17】
「6M−2」及び「6M」次の前記電磁力を抑制範囲とする場合に、
前記記憶部は、「6M−1」次及び「6M+1」次のいずれか一方の前記高調波電流の前記相間関係を表す前記主近似式又は前記マップと、「6M−1」次の前記高調波電流の振幅及び位相と「6M+1」次の前記高調波電流の振幅及び位相との関係を表す前記副近似式と、が記憶されており、
前記高調波算出部は、前記記憶部に記憶されている前記主近似式又は前記マップと前記副近似式とから、前記巻線に流す基本波電流に重畳する「6M−1」次及び「6M+1」次の前記高調波電流を算出する、請求項13に記載の回転電機の制御装置。
【請求項18】
「6M」及び「6M+2」次の電磁力を抑制範囲とする場合に、
前記記憶部は、「6M−1」次及び「6M+1」次のいずれか一方の前記高調波電流の前記相間関係を表す前記主近似式又は前記マップと、「6M−1」次の前記高調波電流の振幅及び位相と「6M+1」次の前記高調波電流の振幅及び位相との関係を表す前記副近似式と、が記憶されており、
前記高調波算出部は、前記記憶部に記憶されている前記主近似式又は前記マップと前記副近似式とから、前記巻線に流す基本波電流に重畳する「6M−1」次及び「6M+1」次の前記高調波電流を算出する、請求項13又は17に記載の回転電機の制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、回転電機の制御装置に関する。
【背景技術】
【0002】
従来、モータに作用する径方向の電磁力を抑制して、モータの騒音を低減するモータの制御装置が提案されている。その一例として、特許文献1に記載のモータの制御装置がある。特許文献1に記載のモータの制御装置は、インナロータ型モータの制御装置であり、騒音抑制のために、ステータに作用する径方向の6M次(Mは自然数)の電磁力を低減することが効果的であることに着目し、6M次の電磁力を低減している。具体的には、特許文献1に記載のモータ制御装置は、トルク指令値及びモータ回転速度に基づいて算出した基本波電流に、基本波電流の回転角速度の「6M−1」又は「6M+1」(Mは自然数)倍の角速度を持つ高調波電流を重畳して、ステータに作用する6M次の電磁力を低減している。なお、このようなモータの騒音は、アウタロータ型モータの場合、ロータに作用する径方向の電磁力が主な発生要因となる。そのため、アウタロータ型モータの場合は、ロータに作用する電磁力を低減することが望まれる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2007−312520号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
基本波電流の回転角速度が一定であっても、モータの負荷が変化することがある。モータの負荷が変化すると、変化する前と同じ条件の高調波電流を重畳しても、騒音の発生要因となる電磁力を適切に低減できないおそれがある。
【0005】
本発明は、上記実情に鑑み、回転電機の負荷が変化しても、騒音の発生要因となる電磁力を適切に低減可能な回転電機の制御装置を提供することを主たる目的とする。
【課題を解決するための手段】
【0006】
請求項1に記載の発明は、巻線が巻回された固定子を有する回転電機と、前記巻線に駆動電流を流して前記回転電機を駆動する電力変換器と、を備える回転電機システムに適用される回転電機の制御装置であって、前記回転電機に作用する電磁力を抑制するように、前記巻線に流す基本波電流に重畳する高調波電流を算出する高調波算出部と、前記巻線に流す基本波電流に算出された前記高調波電流を重畳した前記駆動電流が、前記巻線に流れるように前記電力変換器を操作する操作部と、を備え、前記高調波算出部は、前記回転電機の負荷に対応する条件に基づいて、前記重畳する前記高調波電流の振幅及び位相を算出する。
【0007】
請求項1に記載の発明によれば、巻線に流す基本波電流に重畳される高調波電流が算出される。さらに、基本波電流に高調波電流が重畳された電流が駆動電流とされ、駆動電流が回転電機の巻線に流されて、回転電機が駆動される。
【0008】
ここで、回転電機の負荷に対応する条件に基づいて、重畳する高調波電流の振幅及び位相が算出される。よって、回転電機の負荷が変化した場合でも、変化した負荷に対応した高調波電流が基本波電流に重畳される。したがって、回転電機の負荷が変化しても、騒音の発生要因となる電磁力を適切に低減することができる。
【0009】
基本波電流の回転角速度が一定であっても、回転電機の負荷が変化することで、基本波電流の振幅や位相といった条件が変化することがある。基本波電流の条件が変化すると、基本波電流の条件が変化する前と同じ条件の高調波電流を重畳しても、騒音の発生要因となる電磁力を適切に低減できないおそれがある。
【0010】
請求項2に記載の発明は、前記回転電機の負荷に対応する条件は、前記巻線を流れている基本波電流の条件であって、前記巻線を流れている基本波電流を取得する取得部を備え、前記高調波算出部は、予め取得されている関係であって、前記基本波電流の条件と前記高調波電流の振幅及び位相との相間関係、及び前記取得部により取得された前記基本波電流の条件に基づいて、前記巻線に流す基本波電流に重畳する前記高調波電流の振幅及び位相を算出する。
【0011】
請求項2に記載の発明によれば、基本波電流の条件と、重畳する高調波電流の振幅及び位相との相間関係が予め取得されており、予め取得されている相間関係及び取得された基本波電流の条件に基づいて、重畳する高調波電流の振幅及び位相が算出される。すなわち、基本波電流の条件に応じた高調波電流が算出される。よって、回転電機の負荷が変化することにより、基本波電流の条件が変化した場合でも、負荷の変化に対応した高調波電流が基本波電流に重畳される。そのため、巻線を流れる基本波電流の条件が変化しても、騒音の発生要因となる電磁力を適切に低減することができる。
【0012】
また、回転電機に対する指令値の条件が変化することで、回転電機の負荷が変化することがある。よって、回転電機に対する指令値の条件が変化すると、変化する前と同じ条件の高調波電流を重畳しても、騒音の発生要因となる電磁力を適切に低減できないおそれがある。
【0013】
請求項3に記載の発明は、前記回転電機の負荷に対応する条件は、前記回転電機の負荷に影響を与える指令値の条件であって、上位の制御装置から送信された前記回転電機に対する前記指令値の条件を判定する判定部を備え、前記高調波算出部は、予め取得されている関係であって、前記高調波電流の振幅及び位相との相間関係、及び判定された前記指令値の条件に基づいて、前記重畳する高調波電流の振幅及び位相を算出する。
【0014】
請求項3に記載の発明によれば、回転電機の負荷に影響を与える指令値の条件と、重畳する高調波電流の振幅及び位相との指令関係が予め取得されており、予め取得されている相間関係及び判定された指令値の条件に基づいて、重畳する高調波電流の振幅及び位相が算出される。すなわち、負荷に影響を与える指令値の条件に応じた高調波電流が算出される。よって、指令値の条件が変化することにより、回転電機の負荷が変化した場合でも、負荷の変化に対応した高調波電流が基本波電流に重畳される。そのため、負荷に影響を与える指令値の条件が変化しても、騒音の発生要因となる電磁力を適切に低減することができる。
【図面の簡単な説明】
【0015】
図1】モータシステムの構成を示す図。
図2】モータの鉛直断面図。
図3】モータの円環モードを示す図。
図4】10次から14次への電磁力の変換手法を示す図。
図5】10次及び12次の電磁力を低減する場合における、基本波電流の振幅と11次及び13次の高調波電流の振幅との関係を示す図。
図6】10次及び12次の電磁力を低減する場合における、基本波電流の振幅と11次及び13次の高調波電流の位相との関係を示す図。
図7】高調波電流が重畳された基本波電流の推移を示す図。
図8】14次から10次への電磁力の変換手法を示す図。
図9】14次及び12次の電磁力を低減する場合における、基本波電流の振幅と11次及び13次の高調波電流の振幅との関係を示す図。
図10】14次及び12次の電磁力を低減する場合における、基本波電流の振幅と11次及び13次の高調波電流の位相との関係を示す図。
図11】車載空調装置の風の流路を示す概略図。
図12】第3実施形態に係るモータシステムの構成の一部分を示す図。
図13】10次及び12次の電磁力を低減する場合における、回転速度及び流路と11次の高調波電流の振幅との関係を示す図。
図14】10次及び12次の電磁力を低減する場合における、回転速度及び流路と11次の高調波電流の位相との関係を示す図。
図15】10次及び12次の電磁力を低減する場合における、回転速度及び流路と13次の高調波電流の振幅との関係を示す図。
図16】10次及び12次の電磁力を低減する場合における、回転速度及び流路と13次の高調波電流の位相との関係を示す図。
【発明を実施するための形態】
【0016】
(第1実施形態)
以下、回転電機の制御装置を具現化した各実施形態について、図面を参照しつつ説明する。各実施形態に係る制御装置は、車載空調装置を構成するブロワ用モータに適用することを想定している。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。
【0017】
まず、本実施形態に係るモータシステム(回転電機システム)の構成について、図1及び図2を参照しつつ説明する。本実施形態に係るモータシステムは、モータ10、インバータ20、電流センサ15、回転角センサ50及び制御装置30を備える。
【0018】
モータ10は、三相の集中巻の永久磁石同期機であり、インバータ20を介して直流電源であるバッテリ80から電力の供給を受けて駆動する。図2は、モータ10を、回転軸に垂直な断面で切断した断面図である。中心点Оは、回転軸が通る点である。モータ10は、ステータ12(固定子)及び円環状のロータ14(回転子)を備えている。また、本実施形態において、モータ10は、極対数Pが「5」で、スロット数Sが「12」のモータを採用している。
【0019】
ロータ14は、ロータ14及びステータ12の径方向において、ステータ12の外側にステータ12に対してギャップを有して配置されている。ロータ14は、ロータ14の周方向に並べられた複数個の永久磁石14aと、複数個の永久磁石14aを連結する軟磁性体のバックヨーク14bとを備えている。本実施形態では、永久磁石14aの個数は10個となっている。各永久磁石14aは、互いに同一形状であり、1つの磁極を構成している。永久磁石14aは、ロータ14の径方向に着磁され、周方向に隣り合う永久磁石14aの極性は、互いに異なる極性となっている。すなわち、ロータ14の周方向において、S極の永久磁石14aとN極の永久磁石14aとが交互に配置されている。なお、図2において、永久磁石14a上に記載されている矢印は、S極からN極の向きを示す。
【0020】
ステータ12は、12個のティース12aと12個のスロット12bとを備えている。12個のスロット12bの幅は等しく、ティース12aとスロット12bは、ステータ12の周方向に交互に配置されている。すなわち、ティース12aは、ステータ12の周方向に等間隔で配置されている。そして、ティース12aには、三相の巻線12U,12V,12Wが巻回されている。
【0021】
インバータ20(電力変換器)は、三相のインバータであり、上アームスイッチSUpと下アームスイッチSUnの直列体、上アームスイッチSVpと下アームスイッチSVnの直列体、及び上アームスイッチSWpと下アームスイッチSWnの直列体を、備えている。各直列体は、バッテリ80に対して並列に接続されている。各スイッチとしては、IGBTやMOSFET等の半導体スイッチング素子を採用することができる。また、各直列体の接続点は、ステータ12の巻線12U,12V,12Wの第1端にそれぞれ接続されている。巻線12U,12V,12Wの第2端同士は、中性点Nで接続されている。
【0022】
制御装置30は、CPU、ROM,RAM及びI/O等を備えたマイクロコンピュータ、並びに記憶装置41等から構成されており、モータ10の制御量をその指令値に制御するように、インバータ20を操作する。本実施形態では、モータ10の制御量を、回転角速度としており、制御装置30には、レゾルバ等の回転角センサ50により検出されたロータ14の磁極位置に応じた検出信号が入力される。
【0023】
制御装置30は、CPUがROMに記憶されているプログラムを実行することにより、後述する各機能を実現して、回転角速度を指令角速度ωm*に制御する。各機能は、電気角演算器31、角速度演算器32、偏差算出部33、基本波電圧算出部34、第1高調波電流算出部35、第2高調波電流算出部36、第1高調波電圧算出部37、第2高調波電圧算出部38、第1重畳部39a、第2重畳部39b、LPF42及び変調部40である。
【0024】
電気角演算器31は、回転角センサ50から受信した検出信号に基づいて、モータ10の回転角である電気角θeを算出する。角速度演算器32は、電気角演算器31により算出された電気角θeを時間微分して、モータ10の回転角速度ωmを算出する。回転角速度ωmは、機械角速度である。
【0025】
偏差算出部33は、指令角速度ωm*から、角速度演算器32により算出されたモータ10の実際の回転角速度ωmを差し引いて、速度偏差Δωを算出する。指令角速度ωm*は、制御装置30よりも上位の外部装置から制御装置30へ送信される。詳しくは、ユーザが車載空調装置の風量を選択すると、選択した風量に対応した指令角速度ωm*が、制御装置30へ送信される。
【0026】
基本波電圧算出部34は、速度偏差Δω、電気角θe及び回転角速度ωmに基づいて、回転角速度ωmを指令角速度ωm*にフィードバック制御するための操作量として、式(1)で表される3相高低座標系におけるU,V,W相の基本波電圧VUB,VVB,VWBを算出する。詳しくは、基本波電圧算出部34は、速度偏差Δωの比例積分制御(PI制御)により、電気角一周期に渡る基本波電圧VUB,VVB,VWBを算出する。ここでは、各基本波電圧VUB,VVB,VWBの変動角速度の算出に、電気角速度ωeが用いられる。電気角速度ωeは、入力された回転角速度ωmに極対数Pを乗算した値として算出すればよい。そして、算出された各基本波電圧VUB,VVB,VWBを、入力された電気角θeに対応させて出力する。各基本波電圧VUB,VVB,VWBは、波形形状が互いに同一であってかつ、電気角で位相が互いに「2π/3」ずれた波形となっている。
【0027】
【数1】
【0028】
巻線12U,12V,12Wのそれぞれに、式(1)に示す基本波電圧VUB,VVB,VWBを印加すると、式(2)に示す基本波電流IUB,IVB,IWBが流れる。
【0029】
【数2】
【0030】
ここで、モータ10の巻線12U,12V,12Wに電流が流れ、回転磁界が生成されると、ロータ14に径方向の電磁力が作用する。この電磁力は、ロータ14の周方向において変動する力であり、ロータ14をステータ12の方に引き付ける吸引力、及びロータ14をステータ12から引き離す反発力として作用し、弾性体であるロータ14を振動させる加振力となる。この電磁力の周波数が、ロータ14の円環モードの共振周波数と一致する場合、モータ10の騒音、詳しくは磁気音が増大するおそれがある。以下、円環モードについて説明する。
【0031】
円環モードは、ロータ14の径方向に加わる加振力に起因して、ロータ14に生じる周期的な変動のモードである。図3に、円環モードの例として、1〜4次の円環モードを示す。図3は、ロータ14の鉛直断面の模式図である。図3において、破線は、ロータ14に加振力が作用していない状態におけるロータ14の形状(以下、原形状という)を示し、実線は、ロータ14に加振力が作用している状態におけるロータ14の形状を示す。また、一点鎖線は、ロータ14に加振力が作用してロータ14が変位する状態で、互いにπだけ離間する二つの節を結ぶ節線である。隣接する節同士の中間点が腹となる。節の部分においては、ロータ14に加振力が作用しても、ロータ14は原形状からほとんど変位しない。
【0032】
1次の円環モードは、ロータ14が、回りつつ1本の節線を基準として変位するモードである。詳しくは、1次の円環モードは、原形状に対して、1か所の腹が径方向に伸長するとともに、伸長する腹からπだけ離間した1か所の腹が径方向に収縮するモードである。2次の円環モードは、ロータ14が、回りつつ2本の節線を基準として変位するモードである。詳しくは、2次の円環モードは、原形状に対して、互いにπだけ離間した2か所の腹が径方向に伸長するとともに、伸長する2か所の腹から「π/2」だけ離間した2か所の腹が径方向に収縮するモードである。
【0033】
3次の円環モードは、ロータ14が、回りつつ3本の節線を基準として変位するモードである。詳しくは、3次の円環モードは、原形状に対して、「2π/3」間隔で離れた3か所の腹が径方向に伸長するとともに、伸長する3か所の腹から「π/3」だけ離間した3か所の腹が径方向に収縮するモードである。4次の円環モードは、ロータ14が、回りつつ4本の節線を基準として変位するモードである。詳しくは、4次の円環モードは、原形状に対して、「π/2」間隔で離れた4か所の腹が径方向に伸長するとともに、伸長する4か所の腹から「π/4」だけ離間した4か所の腹が径方向に収縮するモードである。X(Xは自然数)次の円環モードを生じさせる加振力は、吸引力が増加する箇所と吸引力が減少する箇所との角度間隔が、「π/X」となる力である。
【0034】
これらの円環モードは、それぞれ固有の共振周波数(共振角速度)を有している。そして、各円環モードを生じさせる加振力の周波数が、各円環モードの共振周波数近傍となることで、ロータ14の共振現象が生じる。加振力の実際の周波数が共振周波数近傍となる場合、モータ10の磁気音が増大し、可聴周波数帯域におけるノイズレベルが大きくなる等の問題が生じる。そのため、各円環モードの共振周波数近傍となる周波数の電磁力を低減することが望まれる。
【0035】
また、特許文献1に記載されているように、一般に、同期モータでは、トルクリップルの次数である6M(Mは正の整数)次の電磁力(節点力)が、騒音の要因となりやすいため、6M次の電磁力を低減させることが望まれる。なお、電磁力の主要成分は、偶数次数の電磁力であることが知られている。
【0036】
すなわち、各円環モードの共振周波数近傍となる周波数の電磁力、及び6M次の電磁力が磁気音の要因となりやすいため、これらの電磁力を低減することが望まれる。特に、本実施形態において、モータ10は、車載空調装置のブロワ用モータとして用いられ、車室内に設置されている。そのため、快適な車室内環境を実現するためには、磁気音の要因となる電磁力を低減することが望まれる。なお、ここでは、基本波電流IUB,IVB,IWBの変動角速度のK(Kは2以上の整数)倍の変動角速度をK次角速度とし、K次角速度を変動角速度とする電磁力をK次の電磁力とする。また、K次角速度を変動角速度とする電流をK次の高調波電流とする。
【0037】
特許文献1では、「6M−1」次又は「6M+1」次の高調波電流を基本波電流に重畳させて、6M次の電磁力を低減させている。以下、「6M−1」次の高調波電流を基本波電流に重畳させて、6M次の電磁力を低減させる手法について説明する。次の式(3)は、β次の高調波電流を表す。
【0038】
【数3】
【0039】
ここで、「β=6M−1」とする場合、高調波電磁力FHは次の式(4)となる。
【0040】
【数4】
【0041】
式(4)は、「6M−1」次の高調波電流を、巻線12U,12V,12Wに流すと、「6M」次及び「6M−2」次の電磁力が、ロータ14に作用することを表している。すなわち、「6M−1」次の高調波電流の係数e,fを調整することにより、「6M」次及び「6M−2」次の電磁力を制御できることを表している。特許文献1では、係数e,fを調整して、「6M」次の電磁力を低減させている。
【0042】
しかしながら、「6M」次の電磁力を低減させると、「6M−2」次の電磁力が増大する。すなわち、「6M」次の電磁力が、「6M−2」次の電磁力に変換される。そのため、「6M−2」次が共振周波数近傍の周波数であった場合、モータ10の騒音が増大するおそれがある。
【0043】
一方、「6M−2」次が共振周波数近傍の周波数であった場合、係数e,fを調整して、「6M−2」次の電磁力を低減させると、「6M」次の電磁力が増大する。すなわち、「6M−2」次の電磁力が、「6M」次の電磁力に変換される。「6M」次は、トルクリップルの次数であるとともに、共振周波数近傍から十分に離れていないことがある。そこで、「6M−2」次及び「6M」次の両方の電磁力を低減するためには、「6M−2」次の電磁力を「6M」次の電磁力に変換し、さらに、「6M」次の電磁力を、他の次数の電磁力に変換することが考えられる。
【0044】
「6M−1」次の高調波電流を巻線12U,12V,12Wに流すことにより、「6M−2」次及び「6M」次の電磁力がロータ14に作用したように、「6M+1」次の高調波電流を巻線12U,12V,12Wに流すことにより、「6M」次及び「6M+2」次の電磁力がロータ14に作用する。すなわち、「6M+1」次の高調波電流の係数e,fを調整することにより、「6M」次及び「6M+2」次の電磁力を制御できる。よって、「6M−1」次の高調波電流をモータ10に流すことにより、「6M−2」次の電磁力を「6M」次の電磁力に転換するとともに、「6M+1」次の高調波電流をモータ10に流すことにより、「6M」次の電磁力を「6M+2」次の電磁力に転換できる。すなわち、「6M−2」次及び「6M」次の電磁力を低減することができる。さらに、「6M+3」次以降の奇数次数の高調波電流をモータ10に流せば、「6M+4」次以降の偶数次数の電磁力も低減できる。
【0045】
このように、複数の奇数次数の高調波電流を基本波電流に重畳させることにより、所定の範囲の偶数次の電磁力を低減することができる。詳しくは、「L」次(Lは2以上の偶数)から、「L」次よりも大きい「N−2」次(NはLと異なる2以上の偶数)までの電磁力を抑制範囲とした場合は、「L」次から「N」次までに含まれる複数の連続する奇数次数の高調波電流を、基本波電流に重畳すればよい。このようにすると、「L」次から「N−2」次までの電磁力が順次転換されて、「N」次の電磁力になる。よって、「L」次から「N−2」次までの電磁力を低減することができる。
【0046】
本実施形態では、図4に示すように、「6M−2」次を共振周波数近傍の周波数として、「6M−2」次及び「6M」次の電磁力を抑制範囲とし、「6M−1」次及び「6M+1」次の高調波電流を基本波電流に重畳させる。本実施形態では、M=2とした例を示し、11次(「6M−1」次)の高調波電流を第1高調波電流IUH1,IVH1,IWH1とし、13次(「6M+1」次)の高調波電流を第2高調波電流IUH2,IVH2,IWH2とする。すなわち、本実施形態では、10次及び12次の電磁力を抑制範囲とし、11次及び13次の高調波電流を基本波電流に重畳させて、抑制範囲の電磁力を14次の電磁力に転換する例を示す。なお、ここで示す次数は、極対数P=1とした場合の次数である。実際には、極対数P=5の場合は、極対数P=1とした場合の5倍の次数となる。
【0047】
ここで、指令角速度ωm*が同じ値であっても、モータ10の負荷が変動すると、基本波電流の条件が変化する。基本波電流の条件とは、基本波電流の振幅及び位相である。
【0048】
モータ10の負荷が変動する要因としては、車載空調装置の送風モードの変更が挙げられる。車載空調装置の吹き出し口は、インストルメントパネルや後部座席の足元等にあり、車載空調装置の送風モードとしては、インストルメントパネルの吹き出し口から風を吹き出すフェイスモードや、後部座席の足元の吹き出し口から風を吹き出すフットモード等がある。よって、車載空調装置の送風モードが異なると、モータ10から吹き出し口までの流通経路である流路Pの体積が異なり、風の流通抵抗が異なる。そのため、車載空調装置の送風モードを変化させると、モータ10の負荷が変化して、指令角速度ωm*が同じであっても、基本波電流の条件が変化する。また、車格によっても、モータ10から吹き出し口までの流通経路の体積が異なるため、異なる車種で同じ指令角速度ωm*が指令されても、基本波電流の条件は異なるものとなる。
【0049】
式(3)及び式(4)から算出される高調波電流は、基本波電流を所定の条件とした場合における、基本波電流に重畳すべき高調波電流である。基本波電流の条件が変化すれば、基本波電流に重畳すべき高調波電流も変化する。そのため、例えば、所定の条件の基本波電流に対応した振幅及び位相を持つ「6M−1」次の高調波電流を、所定の条件から条件が変化した後の基本波電流に重畳させても、適切に抑制範囲の電磁力を低減できないおそれがある。
【0050】
よって、モータ10を流れる基本波電流の条件に応じて、基本波電流に重畳する高調波電流の振幅及び位相を設定する必要がある。そこで、車載空調装置の送風モード毎に、基本波電流に重畳する高調波電流のマップを予め作成し、メモリに記憶しておく手法が考えられる。しかしながら、この手法の場合、保有マップ数が非常に多くなり、使用メモリ量が膨大になるため、低価格帯の車種に搭載されているような低グレードのマイコンには実装できない。また、このような低グレードのマイコンを、高グレードのマイコンに変更する場合、コストの増加が問題となる。さらに、車載空調装置のモード毎に、高調波電流のマップを作成する手法の場合、車種ごとに高調波電流のマップを作成しなければならず、工程の増加やコストの増加につながる。
【0051】
そこで、本実施形態では、モータ10を流れる基本波電流の条件と、重畳する高調波電流の振幅及び位相との電流間関係(相間関係)を予め用意するとともに、モータ10を流れる基本波電流の振幅を取得するようにした。本実施形態では、3相の基本波電流を平衡させるように制御するため、モータ10の負荷が変動しても、基本波電流の位相はずれず振幅のみが変化するため、基本波電流の条件は振幅だけとしている。
【0052】
そして、予め用意した電流間関係と取得した基本波電流の振幅とから、重畳する高調波電流の振幅及び位相を設定することにした。以下、本実施形態において、基本波電流IUB,IVB,IWBに重畳させる、第1高調波電流IUH1,IVH1,IWH1、及び第2高調波電流IUH2,IVH2,IWH2を算出する手法を説明する。
【0053】
第1高調波電流算出部35は、11次の第1高調波電流IUH1,IVH1,IWH1を算出する。また、第2高調波電流算出部36は、13次の第2高調波電流IUH2,IVH2,IWH2を算出する。基本波電流の振幅Iaと、11次の高調波電流の振幅I11及び13次の高調波電流の振幅I13との間には、図5に示す電流間関係がある。また、基本波電流の振幅Iaと、11次の高調波電流の位相β11及び13次の高調波電流の位相β13との間には、図6に示す電流間関係がある。11次の高調波電流の振幅I11と13次の高調波電流の振幅I13とは等しく、振幅I11及び振幅I13は、基本波電流の振幅Iaが大きくなるほど、大きくなる傾向がある。また、11次の高調波電流の位相β11と13次の高調波電流の位相β13とは、基本波電流の振幅Iaの変化に対して同じ変化をするが、位相β13の方が位相β11よりも、大きくなる方向にオフセットしている。
【0054】
本実施形態では、11次の高調波電流を主高調波電流として、11次の高調波電流の振幅I11及び位相β11のそれぞれと、基本波電流の振幅Iaとの関係を近似した主近似式を、記憶装置41に予め格納しておく。さらに、11次の高調波電流の振幅I11と13次の高調波電流の振幅I13との関係、及び11次の高調波電流の位相β11と13次の高調波電流の位相β13との関係を近似した副近似式を、記憶装置41に予め格納しておく。主近似式は、次の式(5)及び式(6)で表され、副近似式は、次の式(7)及び式(8)で表される。本実施形態では、式(5)〜(7)の近似式は、指令角速度ωm*と関連付けられて記憶装置41に格納されている。
【0055】
なお、Ib11は、モータ10の所定の動作点を基準点とした場合に、基準点における基準波電流に重畳するべき11次の高調波電流の振幅である。これは、上記式(4)から予め算出される。ΔIaは、基準点における基本波電流の振幅に対する基本波電流の振幅の偏差である。K50は補正係数であり、K50・ΔIaは、基準高調波電流に対する補正項を表す。また、A,B,Cは、位相近似係数、αは位相補正項である。
【0056】
【数5】
【0057】
【数6】
【0058】
【数7】
【0059】
【数8】
【0060】
第1高調波電流算出部35は、モータ10を流れる基本波電流の振幅Ia、及び、指令角速度ωm*に対応する近似式(5)及び(6)から、振幅I11及び位相β11を算出する。モータ10を流れる基本波電流は、電流センサ15によりモータ10を流れる駆動電流を検出し、検出した駆動電流にLPF42(ローパスフィルタ)を適用することにより取得される。
【0061】
そして、第2高調波電流算出部36は、第1高調波電流算出部35により算出された振幅I11及び位相β11、並びに指令角速度ωm*に対応する近似式(7)及び(8)から、振幅I13及び位相β13を算出する。本実施形態では、第1高調波電流算出部35及び第2高調波電流算出部36が、高調波算出部に相当する。また、記憶装置41が記憶部に相当し、LPF42が取得部に相当する。
【0062】
なお、13次の高調波電流を主高調波電流(第1高調波電流)とし、近似式(5)及び(6)を、13次の高調波電流の振幅I13及び位相β13のそれぞれと、基本波電流の振幅Iaとの関係を近似した主近似式としてもよい。
【0063】
第1高調波電圧算出部37は、モータの電圧方程式を用いて、第1高調波電流算出部35により算出された第1高調波電流IUH1,IVH1,IWH1を、第1高調波電圧VUH1,VVH1,VWH1に変換する。同様に、第2高調波電圧算出部38は、第2高調波電流IUH2,IVH2,IWH2を、第2高調波電圧VUH2,VVH2,VWH2に変換する。
【0064】
第1重畳部39aは、基本波電圧算出部34により算出された基本波電圧VUB,VVB,VWBに、第1高調波電圧算出部37により算出された第1高調波電圧VUH1,VVH1,VWH1を、それぞれ加算する。第2重畳部39bは、第1重畳部39aの出力電圧であるVUB+VUH1,VVB+VVH1,VWB+VWH1に、第2高調波電圧算出部38により算出された第2高調波電圧VUH2,VVH2,VWH2を、それぞれ加算する。第2重畳部39bの出力電圧であるVUB+VUH1+VUH2,VVB+VVH1+VVH2,VWB+VWH1+VWH2が、それぞれ巻線12U,12V,12Wに印加する電圧の指令電圧VU,VV,VWとなる。
【0065】
巻線12U,12V,12Wに指令電圧VU,VV,VWを印加することにより、基本波電流に高調波電流が重畳された駆動電流IU,IV,IWが流れる。駆動電流IU,IV,IWは、それぞれ、IUB+IUH1+IUH2,IVB+IVH1+IVH2,IWB+IWH1+IWH2である。図7に、U相の駆動電流IUを示す。V相の駆動電流IV及びW相の駆動電流IWは、駆動電流IUと波形形状が同一で、電気角において位相が「2π/3」ずれた波形となる。
【0066】
変調部40は、インバータ20の各相の出力電圧を、U相の指令電圧VUとするための操作信号gUp,gUn、V相の指令電圧VVとするための操作信号gVp,gVn、及びW相の指令電圧VWとするための操作信号gWp,gWnを生成する。本実施形態では、各指令電圧VU,VV,VWとキャリア信号との比較に基づいたPWM処理によって、各操作信号を生成する。操作信号gUp,gUn,gVp,gVn,gWp,gWnは、それぞれ、スイッチSUp,SUn,SVp,SVn,SWp,SWnのオン・オフを制御するゲート駆動信号である。変調部40により生成された各操作信号が、インバータ20の各スイッチに送信されることにより、駆動電流IU,IV,IWが、それぞれ巻線12U,12V,12Wに流れるように、インバータ20の各スイッチが操作される。なお、本実施形態では、変調部40が操作部に相当する。
【0067】
以上説明した第1実施形態によれば、以下の効果を奏する。
【0068】
(1)基本波電流の振幅Iaと、重畳する高調波電流の振幅I11,I13及び位相β11,β13との相間関係が予め取得されている。そして、予め取得されている相間関係、及び取得されたモータ10を流れる基本波電流の振幅Iaに基づいて、重畳する高調波電流の振幅I11,I13及び位相β11,β13が算出される。すなわち、基本波電流の振幅Iaに応じた高調波電流IUH1,IVH1,IWH1及びIUH2,IVH2,IWH2が算出される。よって、モータ10の負荷が変化することにより、同じ指令角速度ωm*において基本波電流の振幅Iaが変化した場合でも、負荷の変化に対応した高調波電流IUH1,IVH1,IWH1及びIUH2,IVH2,IWH2が、基本波電流IUB,IVB,IWBに重畳される。そのため、巻線12U,12V,12Wを流れる基本波電流IUB,IVB,IWBの振幅Iaが変化しても、騒音の発生要因となる電磁力を適切に低減することができる。
【0069】
(2)「L」次からLよりも大きい「N−2」次までが抑制範囲とされた場合に、「L」次から「N」次までに含まれる複数の奇数の次数の高調波電流が算出される。このように、基本波電流に複数の奇数の次数の高調波電流を重畳することにより、抑制範囲の電磁力が、抑制範囲の外側の「N」次の電磁力に変換される。よって、抑制範囲の電磁力を適切に抑制することができる。
【0070】
(3)「6M−2」次及び「6M」次の電磁力を抑制範囲とした場合、「6M−1」次及び「6M+1」次の高調波電流を基本波電流に重畳することにより、抑制範囲の電磁力を「6M+2」次の電磁力に変換できる。また、「6M−1」次及び「6M+1」次のいずれか一方の高調波電流の振幅及び位相が、相間関係を表す主近似式から設定され、他方の高調波電流の振幅及び位相が、「6M−1」次の高調波電流と「6M+1」次の高調波電流との関係を表す副近似式から算出される。よって、使用メモリ量及び演算処理負荷を抑制しつつ、モータ10の負荷に対応した「6M−1」次及び「6M+1」次の高調波電流を算出し、適切に電磁力を低減できる。また、車種が変わっても、同じ主近似式及び副近似式を用いることができるので、コストを抑制できる。
【0071】
(第1実施形態の変形例)
・主近似式を記憶装置41に格納する代わりに、図5及び図6に示すような、主近似式に対応するマップを記憶装置41に格納しておいてもよい。このようにしても、主近似式と副近似式の両方をマップとして記憶装置41に格納する場合よりも、記憶装置41のメモリ量を抑制できるとともに、主近似式を記憶装置41に格納しておく場合よりも、制御装置30の演算負荷を低減することができる。すなわち、使用メモリ量の増加を抑制しつつ、演算負荷を軽減することができる。
【0072】
(第2実施形態)
次に、第2実施形態に係る制御装置30について、第1実施形態に係る制御装置30と異なる点を、図8図10を参照して説明する。
【0073】
第1実施形態では、「L」次からLよりも大きい「N−2」次までの電磁力を抑制範囲とし、「L」次から「N」次までに含まれる複数の奇数次数の高調波電流を基本波電流に重畳させて、抑制範囲の電磁力を「N」次の電磁力に転換させた。特に、第1実施形態では、「6M−2」次及び「6M」次の電磁力を抑制範囲とし、「6M−1」次及び「6M+1」次の高調波電流を基本波電流に重畳させて、抑制範囲の電磁力を「6M+2」次の電磁力に転換させる例を示した。第2実施形態では、「L」次からLよりも小さい「N+2」次までの電磁力を抑制範囲とし、「L」次から「N」次までに含まれる複数の奇数次数の高調波電流を基本波電流に重畳させる。
【0074】
特に、本実施形態では、図8に示すように、「6M+2」次及び「6M」次の電磁力を抑制範囲とし、「6M+1」次及び「6M−1」次の高調波電流を基本波電流に重畳させて、抑制範囲の電磁力を「6M−2」次の電磁力に転換させる。本実施形態では、M=2とした例を示し、13次の高調波電流を第1高調波電流IUH1,IVH1,IWH1とし、11次の高調波電流を第2高調波電流IUH2,IVH2,IWH2とする。すなわち、本実施形態では、14次及び12次の電磁力を抑制範囲とし、13次及び11次の高調波電流を基本波電流に重畳させて、抑制範囲の電磁力を10次の電磁力に転換する例を示す。
【0075】
第1高調波電流算出部35は、13次の第1高調波電流IUH1,IVH1,IWH1を算出する。また、第2高調波電流算出部36は、11次の第2高調波電流IUH2,IVH2,IWH2を算出する。基本波電流の振幅Iaと、11次の高調波電流の振幅I11及び13次の高調波電流の振幅I13との間には、図9に示す電流間関係(相間関係)がある。また、基本波電流の振幅Iaと、11次の高調波電流の位相β11及び13次の高調波電流の位相β13との間には、図10に示す電流間関係(相間関係)がある。図9及び図10は、転換先の電磁力の次数が異なるため、図5及び図6と異なるマップとなっているが、図5及び図6と同様の傾向を示している。
【0076】
本実施形態では、13次の高調波電流を主高調波電流として、13次の高調波電流の振幅I13及び位相β13のそれぞれと、基本波電流の振幅Iaとの関係を近似した主近似式を、記憶装置41に予め格納しておく。さらに、13次の高調波電流の振幅I13と11次の高調波電流の振幅I11との関係、及び13次の高調波電流の位相β13と11次の高調波電流の位相β11との関係を近似した副近似式を、記憶装置41に予め格納しておく。主近似式は、次の式(9)及び式(10)で表され、副近似式は、次の式(11)及び式(12)で表される。本実施形態では、式(9)〜(12)の近似式は、指令角速度ωm*と関連付けられて記憶装置41に格納されている。K70は補正係数である。
【0077】
【数9】
【0078】
【数10】
【0079】
【数11】
【0080】
【数12】
【0081】
第1高調波電流算出部35は、モータ10を流れる基本波電流の振幅Ia、及び、指令角速度ωm*に対応する近似式(9)及び(10)から、振幅I13及び位相β13を算出する。
【0082】
そして、第2高調波電流算出部36は、第1高調波電流算出部35により算出された振幅I13及び位相β13、並びに指令角速度ωm*に対応する近似式(11)及び(12)から、振幅I11及び位相β11を算出する。
【0083】
なお、11次の高調波電流を主高調波電流(第1高調波電流)とし、近似式(9)及び(10)を、11次の高調波電流の振幅I11及び位相β11のそれぞれと、基本波電流の振幅Iaとの関係を近似した主近似式としてもよい。
【0084】
第2実施得形態によれば、第1実施形態の効果(1)を奏するとともに、以下の効果を奏する。
【0085】
(4)「L」次からLよりも小さい「N+2」次までが抑制範囲とされた場合に、「L」次から「N」次までに含まれる複数の奇数の次数の高調波電流が算出される。このように、基本波電流に複数の奇数の次数の高調波電流を重畳することにより、抑制範囲の電磁力が、抑制範囲の外側の「N」次の電磁力に変換される。よって、抑制範囲の電磁力を適切に抑制することができる。
【0086】
(5)「6M+2」次及び「6M」次の電磁力を抑制範囲とした場合、「6M−1」次及び「6M+1」次の高調波電流を基本波電流に重畳することにより、抑制範囲の電磁力を「6M−2」次の電磁力に変換できる。また、第1実施形態と同様に、使用メモリ量及び演算処理負荷を抑制しつつ、モータ10の負荷に対応した「6M−1」次及び「6M+1」次の高調波電流を算出し、適切に電磁力を低減できる。
【0087】
(第2実施形態の変形例)
・第1実施形態の変形例と同様に、図9及び図10に示すような、主近似式に対応するマップを記憶装置41に格納しておいてもよい。このようすれば、第1実施形態の変形例と同様に、使用メモリ量の増加を抑制しつつ、演算負荷を軽減することができる。
【0088】
(第3実施形態)
次に、第3実施形態に係る制御装置30Aについて、第1実施形態に係る制御装置30と異なる点を、図11図16を参照して説明する。制御装置30Aは、基本波電流に重畳する高調波電流の算出手法が制御装置30と異なる。本実施形態では、「6M−2」次及び「6M」次の電磁力を抑制範囲とし、「6M−1」次及び「6M+1」次の高調波電流を基本波電流に重畳させる。特に、本実施形態では、M=2とした例を示し、11次の高調波電流を第1高調波電流IUH1,IVH1,IWH1とし、13次の高調波電流を第2高調波電流IUH2,IVH2,IWH2とする。すなわち、本実施形態では、10次及び12次の電磁力を抑制範囲とし、11次及び13次の高調波電流を基本波電流に重畳させて、抑制範囲の電磁力を14次の電磁力に転換する例を示す。なお、第2実施形態のように、14次及び12次の電磁力を抑制範囲とし、13次及び11次の高調波電流を基本波電流に重畳させる場合も、本実施形態に係る高調波電流の算出手法を適用できる。
【0089】
図11に、一般的な車載空調装置内部の概略図を示す。内部には、ドアD1〜D3が設けられている。ドアD1は、外気吸い込みモードと内気吸い込みモードの切替え用ドアである。通常は、外気吸い込みモードで使用する。ドアD2は、冷風と温風の混合割合を調整するエアミックス用のドアであり、車載空調装置の設定温度に応じた位置に制御される。ドアD3は、吹き出し口切替え用のドアであり、送風モードに応じた位置に制御される。吹き出し口としては、デフモード、フェイスモード、及びフットモードの3つ送風モードに対応した3つの吹き出し口がある。また、ドアD1の下流側且つエバポレータの上流側にはファンが設けられており、モータ10はこのファンを駆動するものであり、モータ10及びファンから送風機が構成される。ファンから送られる風の吹き出し口までの流路Pは、ドアD2及びドアD3の位置によって変化する。よって、モータ10の負荷は、設定温度及び送風モードに応じて変化する。なお、ドアD1〜D3は、それぞれ図示しないサーボモータにより駆動される。
【0090】
モータ10及び各サーボモータの各制御装置には、上位の制御装置であるエアコンECU100から指令信号が送信される。車載空調装置がマニュアルエアコンの場合は、ユーザが、車室内の温度、送風モード、風量を設定する。エアコンECU100は、室内がユーザの設定した温度になるように風の吹き出し温度である指令温度T*を算出し、ユーザが設定した送風モードから指令送風モードA*を算出する。さらに、エアコンECU100は、ユーザが設定した風量から、モータ10の指令角速度ωm*を算出する。また、空調装置がオートエアコンの場合は、ユーザは車室内の温度のみを設定する。エアコンECU100は、室内がユーザの設定した温度になるように、指令温度T*、指令送風モードA*及び指令角速度ωm*を算出する。
【0091】
本実施形態では、制御装置30Aが、エアコンECU100で生成された指令値を受信し、受信した指令値の条件に応じて、基本波電流に重畳する高調波電流の振幅及び位相を算出する。第1及び第2実施形態では、モータ10を流れる基本波電流を検出して、重畳する高調波電流の振幅及び位相を算出していた。そのため、第1及び第2実施形態では、指令温度T*や指令送風モードA*が変更された場合、指令値の変更に伴い変化した基本波電流を検出した後に、算出される高調波電流の振幅及び位相が変更される。
【0092】
これに対して、本実施形態では、指令温度T*や指令送風モードA*が変更された場合、変更された指令値に応じて重畳させる高調波電流の振幅及び位相が変更される。そのため、本実施形態では、エアコンECU100で生成された指令値が変化した際に、モータ10を流れる基本波電流が変化する前に、重畳する高調波電流の振幅及び位相が変更される。よって、本実施形態では、モータ10に流れる基本波電流に応じて重畳する高調波電流の振幅及び位相を算出する場合と比べて、重畳する高調波電流の過渡応答性を向上させることができる。また、本実施形態では、基本波電流を検出する電流センサ15を必要としない。以下、制御装置30Aの機能について説明する。
【0093】
図12に、制御装置30Aの一部分の構成を示す。制御装置30Aは、制御装置30の各機能に加えて判定部43の機能を備える。さらに、制御装置30Aは、第1高調波電流算出部35、第2高調波電流算出部36及び記憶装置41の機能が、制御装置30の機能と異なり、これら以外の機能は制御装置30の機能と同じである。以下に、制御装置30Aの判定部43、第1高調波電流算出部35、第2高調波電流算出部36及び記憶装置41の各機能について説明する。
【0094】
判定部43は、エアコンECU100で生成された指令値の条件を判定する。指令値の条件は、指令送風モードA*、指令温度T*及び指令角速度ωm*である。詳しくは、判定部43は、指令送風モードA*及び指令温度T*から、吹き出し口までの流路Pを判定し、指令角速度ωm*から狙いの回転速度Neを判定する。
【0095】
本実施形態では、11次の高調波電流を主高調波電流として、11次の高調波電流の振幅I11及び位相β11のそれぞれと、流路P及び回転速度Neとの相間関係を近似した近似式又はマップを、記憶装置41に予め格納しておく。図13に、振幅I11と流路P及び回転速度Neとの相間関係を示す。また、図14に、位相β11と流路P及び回転速度Neとの相間関係を示す。図13及び図14において、流路PはP1,P2,P3の値を取る。これらの相間関係は、予め実験やシミュレーションにより取得されている。
【0096】
図13及び図14に示す相間関係を表す主近似式は、次の式(13)及び式(14)で表される。式(13)及び式(14)において、i,jは次数であり、Kij及びAijは近似係数である。記憶装置41には、式(13)及び式(14)で表される主近似式、又は図13及び図14の相間関係を示すマップを格納しておく。記憶装置41に主近似式を格納する場合は、式(13)及び式(14)を所定の次数まで展開した式を格納しておけばよい。
【0097】
【数13】
【0098】
【数14】
【0099】
さらに、記憶装置41には、11次の高調波電流の振幅I11と13次の高調波電流I13との関係、及び11次の高調波電流の位相β11と13次の高調波電流の位相β13との関係を近似した副近似式を、指令角速度ωm*と関連付けて予め格納しておく。副近似式は、次の式(15)及び式(16)で表される。Kmは補正係数、Δβmは補正項である。
【0100】
【数15】
【0101】
【数16】
【0102】
第1高調波電流算出部35は、判定された流路P及び回転速度Neと、記憶装置41に格納されている主近似式又はマップとに基づいて、11次の高調波電流の振幅I11及び位相β11を算出する。
【0103】
第2高調波電流算出部36は、第1高調波電流算出部35により算出された振幅I11及び位相β11、並びに指令角速度ωm*に対応する式(15)及び式(16)から、振幅I13及び位相β13を算出する。
【0104】
なお、13次の高調波電流を主高調波電流とし、近似式(13)及び(14)を、13次の高調波電流の振幅I13及び位相β13のそれぞれと、流路P及び回転速度Neとの相間関係を近似した主近似式として、記憶装置41に予め格納しておいてもよい。あるいは、13次の高調波電流を主高調波電流とし、図15及び図16の相間関係を示すマップを、記憶装置41に予め格納しておいてもよい。図15は、振幅I13と流路P及び回転速度Neとの相関関係を示す。図16は、位相β13と流路P及び回転速度Neとの相間関係を示す。
【0105】
以上説明した第3実施形態によれば、上記各実施形態の効果(2)〜(5)を奏するとともに、以下の効果を奏する。
【0106】
(6)モータ10の負荷に影響を与える指令値の条件と、重畳する高調波電流の振幅I11,I13及び位相β11,β13との相間関係が予め取得されている。そして、予め取得されている相関関係及び判定された指令値の条件に基づいて、重畳する高調波電流の振幅I11,I13及び位相β11,β13が算出される。すなわち、負荷に影響を与える指令値の条件に応じて、高調波電流IUH1,IVH1,IWH1及びIUH2,IVH2,IWH2が算出される。よって、指令値の条件が変換することにより、モータ10の負荷が変化した場合でも、負荷の変化に対応した高調波電流が基本波電流に重畳される。したがって、モータ10の負荷に影響を与える指令値が変化しても、騒音の発生要因となる電磁力を適切に低減することができる。
【0107】
(7)車載空調装置の送風モード及び設定温度に応じて、風の流路Pすなわちモータ10の負荷が変わる。よって、指令送風モードA*及び指令温度T*に応じた高調波電流を算出することにより、モータ10の負荷に対応した高調波電流を基本波電流に重畳することができる。
【0108】
(8)指令送風モードA*及び指令温度T*から流路Pが判定される。そして、流路P及びモータ10の狙いの回転速度Neと高調波電流の振幅との相間関係から振幅I11,I13が算出され、流路P及び回転速度Neと高調波電流の位相との相間関係から位相β11,β13が算出される。これにより、モータ10の負荷及び回転速度Neに対応した高調波電流を基本波電流に重畳することができる。
【0109】
(他の実施形態)
・第1及び第2実施形態において、3相の基本波電流の平衡が取れていない場合は、モータ10の負荷が変化すると、基本波電流の位相もずれる。そのため、基本波電流の条件を振幅及び位相とし、基本波電流の振幅及び位相と重畳する高調波電流の振幅を表す近似式、及び基本波電流の振幅及び位相と重畳する高調波電流の位相を表す近似式を予め用意するようにしてもよい。
【0110】
・各実施形態において、3つ以上の高調波電流を基本波電流に重畳する場合も、少なくとも1つの高調波電流を主高調波電流として、主高調波電流の振幅及び位相と基本波電流の条件との電流間関係を表す主近似式を、記憶装置41に格納しておけばよい。そして、主高調波電流の振幅及び位相と、重畳するその他の高調波電流の振幅及び位相との関係を表す副近似式を、記憶装置41に格納しておけばよい。このようにすれば、各実施形態と同様に、基本波電流の条件に応じた、3つ以上の高調波電流を設定することができる。また、この場合も、主近似式をマップとして記憶装置41に格納しておいてもよい。
【0111】
・上記各実施形態ではM=2の例を示したが、Mが2以外の場合でも、基本波電流の条件に応じて、重畳すべき高調波電流の振幅及び位相が変わる。よって、Mが2以外の場合でも、上記各実施形態と同様に、主近似式又は主近似式に相当するマップと、副近似式を予め作成し、記憶装置41に格納しておけばよい。なお、主近似式及び副近似式は、Mの値ごとにことなる式となる。
【0112】
・電磁力の抑制範囲は、モータの特性に応じて任意に設定し、電磁力の抑制範囲に応じて適宜主近似式及び副近似式を作成すればよい。
【0113】
・基本波電流に重畳する全ての高調波電流について、高調波電流の振幅及び位相と基本波電流の条件とを近似する近似式をそれぞれ作成して、各近似式を記憶装置41に格納しておいてもよい。すなわち、全て主近似式にし、副近似式を持たなくてもよい。また、使用メモリ量が増加するおそれはあるが、全ての高調波電流の相間関係をマップにして記憶装置41に格納しておいてもよい。
【0114】
・制御装置30は、第1実施形態に係る制御と第2実施形態に係る制御のどちらも実施できるようにしてもよい。このようにすれば、モータ10の回転角速度ωm等の運転状態に応じて、抑制範囲の電磁力をどのように転換するか適宜選択できる。制御装置30Aについても同様にしてもよい。
【0115】
・各実施形態では、基本波電流に複数の奇数次数の高調波電流を重畳させたが、基本波電流に重畳する高調波電流は、1つの奇数次数の高調波電流であってもよい。この場合、重畳する1つの高調波電流について、高調波電流の振幅及び位相と基本波電流の条件とを近似する近似式又はマップを作成して、近似式又はマップを記憶装置41に格納しておけばよい。
【0116】
・第1及び第2実施形態と第3実施形態とを組み合わせてもよい。すなわち、記憶装置41に、基本波電流の条件と高調波電流の振幅及び位相との相間関係と、指令値の条件と高調波電流の振幅及び位相との相間関係の両方を予め格納しておいてもよい。そして、二つの相間関係を適宜切替えて用いて、重畳する高調波電流の振幅及び位相を算出してもよいし、指令値の条件に基づいて高調波電流の振幅及び位相を算出し、更に、基本波電流の条件に基づいて、指令値の条件に基づいて算出した高調波電流の振幅及び位相を補正するようにしてもよい。これにより、重畳する高調波電流の過渡応答性を更に向上させることができる。
【0117】
・第1及び第2実施形態において、電流センサ15を設けず、代わりに、モータ10を流れる駆動電流を検出するオブザーバを、設けてもよい。すなわち、基本波電流を取得する取得部は、オブザーバから構成してもよい。
【0118】
・モータ10の制御量としては、回転角速度に限らず、例えばトルクであってもよい。
【0119】
・モータ10としては、集中巻きのものに限らず、分布巻きのものを用いてもよい。また、モータ10としては、アウタロータ型のものに限らず、インナロータ型のものを用いてもよい。巻き方やロータ型が異なる場合であっても、ロータの共振現象によって騒音が生じるなら、本発明の適用が有効である。また、モータ10の騒音は、ステータ12、又はステータ12とロータ14との双方の共振現象によって生じることも考えられる。この場合であっても、制御装置30の適用は有効である。
【0120】
・モータ10としては、3相モータに限らず、4相以上の多相モータであってもよい。加えて、モータ10としては、ロータに永久磁石を備える永久磁石界磁型同期機に限らず、例えば、ロータ14に界磁巻線を備える巻線界磁型同期機であってもよい。加えて、モータ10としては、ブロワ用に限らない。モータ10は、回転角速度ωmが一定であっても負荷が変化するモータであれば、上記各実施形態を好適に適用することができる。
【符号の説明】
【0121】
10…モータ、12…ステータ、12U,12V,12W…巻線、20…インバータ、30…制御装置。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16