【課題を解決するための手段】
【0006】
本発明者等は、被覆工具において、一層の平滑性を有し、更なる耐溶着性、耐チッピング性、耐欠損性に優れた硬質被覆層の構造について鋭意研究を重ねた結果、次のような知見を得た。
【0007】
即ち、工具基体表面に、硬質被覆層として少なくともAl
2O
3層を被覆形成した被覆工具において、すくい面のα−Al
2O
3層の最表面の前記課題とされた粒子間部である凹部に対して、酸化ジルコニウムを導入し、そのα−Al
2O
3層の最表面において、面積率が30〜70%である酸化ジルコニウム層を形成した場合に、更なる被膜表面の平滑性の改善がなされ、耐溶着性、耐チッピング性、耐欠損性において、一層優れた被覆工具が得られることを見出したものである。
そして、具体的には、例えば、工具基体のすくい面及び逃げ面に下部層としてのTiC、TiN、TiCNのいずれか1層または2層以上を形成し、該下部層の上に上部層としての
Al
2O
3層を形成し、次いで、すくい面について、30〜70%の面積率のジルコニウム層を形成することによって得ることができる。
なお、必要に応じて、該Al
2O
3層の最表面に、TiN層、TiC層、TiCN層、又は、TiNO層からなる摩耗識別層を形成し、前記すくい面における摩耗識別層を除去するとともに、すくい面最表面に酸化ジルコニウム層を形成する。
【0008】
そして、ここで得られた本発明に係る被膜工具は、すくい面について、ブラスト条件を調整することにより、Al
2O
3層の表面に30〜70%の面積率のジルコニウム層を形成してAl
2O
3層最表面の欠陥の影響を排除するとともに、一層の表面平滑性を高め、耐溶着性を向上させることができ、また、残留応力の低減を図ることができるために、耐チッピング性、耐欠損性に優れたものとなる。
【0009】
本発明は、上記の知見に基づいてなされたものであって、
「(1) WC基超硬合金またはTiCN基サーメットからなる工具基体の表面に、少なくとも下部層と上部層とを含む硬質被覆層が形成されている表面被覆切削工具において、
(a)前記硬質被覆層の下部層は、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層(以下、まとめて、Ti化合物層という。)のうちの2層以上からなり、その内の少なくとも1層はTiCN層で構成した該下部層の表面には、前記硬質被覆層の上部層である、Al
2O
3層が形成されており、
(b)少なくとも、前記表面被覆切削工具のすくい面の該上部層の最表面には、面積率30〜70%にて酸化ジルコニウム層が形成され、前記すくい面におけるAl
2O
3層は10〜200MPaの引張残留応力を有し、表面粗さRaが0.25μm以下であることを特徴とする表面被覆切削工具。
(2) 前記(1)に記載の表面被覆切削工具において、前記すくい面におけるTiCN層の引張残留応力が10〜250MPaであることを特徴とする前記(1)に記載の表面被覆切削工具。
(3)前記(1)または(2)に記載の表面被覆切削工具において、逃げ面の上部層である前記Al
2O
3層の最表面には、TiN層、TiC層、TiCN層、又は、TiNO層が形成されていることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。」
に特徴を有するものである。
【0010】
以下に、この発明の被覆工具について、詳細に説明する。
【0011】
下部層;
Ti化合物層からなる下部層は、基本的には、Al
2O
3層からなる上部層の下部に設けられ、工具基体と上部層のいずれにも強固に密着し、硬質被覆層の工具基体に対する密着性向上に寄与する作用を有するが、下部層自身の特性である高い硬度によって硬質被覆層に高い耐摩耗性、特に優れた耐逃げ面摩耗性を具備する。
このような下部層に好適な膜種としては、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの2層以上のTi化合物層を挙げることができ、その内の少なくとも1層はTiCN層として下部層を構成する。
また、下部層の平均層厚については特に限定するものではないが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方、その平均層厚が20μmを越えると、耐欠損性に悪影響を及ぼすことから、下部層の平均層厚は3〜20μmとすることが望ましい。
【0012】
上部層:
Al
2O
3層からなる上部層は、その硬さ、耐熱性、耐酸化性によって、被覆工具の耐摩耗性を向上させる。本発明では、上部層の層厚を特に制限するものではないが、Al
2O
3層の平均層厚が1μm未満では長期の使用にわたってすぐれた耐摩耗性発揮することができず、一方、その平均層厚が15μmを超えると、チッピング、欠損、剥離等の異常損傷を発生しやすくなる。したがって、Al
2O
3層からなる上部層の平均層厚は1〜15μmとすることが望ましい。
【0013】
すくい面の硬質被覆層:
すくい面に形成される硬質被覆層は、Ti化合物層からなる下部層と、Al
2O
3層からなる上部層と、最表面に面積率30〜70%にて形成される酸化ジルコニウム層とで構成される。
後記する本発明被覆工具の製造法の一例によれば、まず、工具基体のすくい面および逃げ面に下部層としてのTi化合物層を形成し、ついで、下部層表面に上部層としてのAl
2O
3層を形成し、その後、すくい面については、すくい面のAl
2O
3層の表面平滑性を高め、同時に、残留応力の低減を図るためのブラスト処理を行うことにより、Al
2O
3層の表面を面積率30〜70%にて覆う酸化ジルコニウム層が形成されると同時に、表面粗さRaが0.25μm以下、好ましくは0.20μm以下に調整されることで、耐チッピング性と耐溶着性が向上する。
また、ブラスト処理後、Al
2O
3層内の残留応力は緩和され、引張残留応力の値は10〜200MPa、好ましくは、10〜150MPaとすることで、硬質被覆層全体としての耐チッピング性、耐欠損性、耐剥離性は向上する。
更には、TiCN層の引張残留応力の値は10〜250MPa、好ましくは、10〜150MPaとすることで、硬質被覆層全体としての耐チッピング性、耐欠損性、耐剥離性は向上する。
【0014】
なお、すくい面のAl
2O
3層の最表面における酸化ジルコニウム層の面積率については、
すくい面についてのSEM観察およびEDS分析を行うことによって測定した面積率をいう。
すくい面の表面粗さRaについては、JIS B0601:2001に準拠し、カットオフ値:0.08mm、基準長さ:0.8mm、走査速度:0.1mm/秒にて触針式表面粗さ測定器を用いて測定した。
また、上部層のAl
2O
3層の残留応力は、sin
2Ψ法を用い、Cuκαを用いたX線回折装置を用いて測定する。測定にはα−Al
2O
3については(13_10)面の回折ピークを用い、ヤング率として384GPa、ポアソン比として0.232を使用して計算を実施する。
同じく、下部層のTiCN層の残留応力は、(422)面の回折ピークを用い、ヤング率として480GPa、ポアソン比として0.2を使用して計算を実施する。
【0015】
逃げ面の硬質被覆層:
逃げ面に形成される硬質被覆層は、Ti化合物層からなる下部層と、Al
2O
3層からなる上部層と、必要に応じて、Al
2O
3層の最表面に形成されるTiN層、TiC層、TiCN層、又は、TiNO層からなる摩耗識別層からなる。
【0016】
硬質被覆層の作製法:
本発明の硬質被覆層は、例えば、以下の方法によって作製することができる。
まず、工具基体表面に、通常の化学蒸着法によって、下部層としてのTi化合物層および上部層としてのAl
2O
3層を所定の平均層厚で形成し、
次いで、上部層のAl
2O
3層の最表面に、通常の化学蒸着法によって、TiN層、TiC層、TiCN層、又は、TiNO層の平均層厚を0.1〜1μm程度の層厚になるように形成する。
次いで、すくい面に対し、ウエットブラスト処理を施し、すくい面にTiN層、TiC層、TiCN層、TiNO層を形成した場合には、形成されたTiN層、TiC層、TiCN層、TiNO層を除去するとともに、Al
2O
3層の最表面に対し、面積率30〜70%にて覆う酸化ジルコニウム層を形成するように処理を行うことにより、作製することができる。
【0017】
ブラスト処理:
ブラスト処理について、より具体的な条件を述べれば、例えば、
ブラスト処理液:砥粒+水、
砥粒:ZrO
2粒、
砥粒形状:球形および/または多角形、
砥粒サイズ(粒径):125−425μm(球形)/<125μm(多角形)
砥粒割合:70−90質量%(球形)/10−30質量%(多角形)
砥粒濃度:20体積%以下、
ブラスト圧力:0.10−0.35MPa
すくい面の法線に対する投射角度:0−20度
投射時間: 5−30秒
という条件で、すくい面にブラスト処理を施し、特に、砥粒形状及び砥粒サイズ、ブラスト圧力、投射角度等を調整することにより、上部層のAl
2O
3層の残留応力、及び、Al
2O
3層の表面層の酸化ジルコニウム層の面積率を調整することができる。