特許第6606967号(P6606967)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ジェイテクトの特許一覧
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6606967
(24)【登録日】2019年11月1日
(45)【発行日】2019年11月20日
(54)【発明の名称】歯車加工装置及び歯車加工方法
(51)【国際特許分類】
   B23F 1/06 20060101AFI20191111BHJP
   B23F 23/12 20060101ALI20191111BHJP
   G05B 19/18 20060101ALI20191111BHJP
【FI】
   B23F1/06
   B23F23/12
   G05B19/18 C
【請求項の数】9
【全頁数】17
(21)【出願番号】特願2015-205566(P2015-205566)
(22)【出願日】2015年10月19日
(65)【公開番号】特開2016-93882(P2016-93882A)
(43)【公開日】2016年5月26日
【審査請求日】2018年9月12日
(31)【優先権主張番号】特願2014-226844(P2014-226844)
(32)【優先日】2014年11月7日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000001247
【氏名又は名称】株式会社ジェイテクト
(74)【代理人】
【識別番号】100130188
【弁理士】
【氏名又は名称】山本 喜一
(74)【代理人】
【識別番号】100089082
【弁理士】
【氏名又は名称】小林 脩
(74)【代理人】
【識別番号】100190333
【弁理士】
【氏名又は名称】木村 群司
(72)【発明者】
【氏名】大谷 尚
(72)【発明者】
【氏名】竹下 吉次
(72)【発明者】
【氏名】中野 浩之
(72)【発明者】
【氏名】張 琳
【審査官】 津田 健嗣
(56)【参考文献】
【文献】 特開2003−170314(JP,A)
【文献】 特開2011−025365(JP,A)
【文献】 特開2002−292562(JP,A)
【文献】 特開平10−094920(JP,A)
【文献】 特開平06−031532(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23F 1/00 − 23/12
G05B 19/18
(57)【特許請求の範囲】
【請求項1】
加工物の回転軸線に対し傾斜した回転軸線を有する加工用工具を用い、前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向に相対的に送り操作して歯車の歯の歯底及び両側面を加工する歯車加工装置であって、
前記歯車の歯の歯底の加工について、前記加工物に対する前記加工用工具の相対的な位置又は姿勢である工具状態を記憶する歯底工具状態記憶部と、
前記歯車の隣り合う歯の対向する第1側面及び第2側面のうち前記第1側面の加工について、前記加工物に対する前記加工用工具の工具状態を記憶する第1側面工具状態記憶部と、
前記第2側面の加工について、前記加工物に対する前記加工用工具の工具状態を記憶する第2側面工具状態記憶部と、
前記歯底加工状態記憶部及び前記第1、第2側面加工状態記憶部に記憶された前記加工用工具の各工具状態で前記加工物の加工をそれぞれ行う加工制御部と、
を備え
前記加工制御部は、
前記加工用工具と前記加工物との歯数比に応じて同一方向に同期回転させて、前記加工物の回転軸線及び前記加工用工具の回転軸線の軸間距離を徐々に縮めて加工を行い、
前記工具状態として前記加工用工具の工具軸線方向位置、工具軸線回り方向位置、及び交差角の少なくとも一つ、又はこれらの組み合わせに対し、前記工具状態を変更して加工を行う、歯車加工装置。
【請求項2】
前記歯底工具状態記憶部及び前記第1、第2側面工具状態記憶部は、前記工具状態として、前記加工物の回転軸線に対する前記加工用工具の工具端面の回転軸線の傾斜を表す交差角を記憶する、請求項1の歯車加工装置。
【請求項3】
前記歯底工具状態記憶部及び前記第1、第2側面工具状態記憶部は、前記工具状態として、前記加工用工具の工具端面の回転軸線の方向位置及び前記工作物の回転軸線周りの方向の前記加工用工具に対する相対位置の少なくとも一方の方向の工具位置を記憶する、請求項1又は2の歯車加工装置。
【請求項4】
前記第1、第2側面工具状態記憶部は、前記工具状態をシミュレーションによって演算した結果に基づいて得られる前記工具状態を記憶する、請求項1〜3の何れか一項の歯車加工装置。
【請求項5】
前記歯底工具状態記憶部は、前記工具状態をシミュレーションによって演算した結果に基づいて得られる前記工具状態を記憶する、請求項4の歯車加工装置。
【請求項6】
研磨前における前記加工用工具の工具端面形状と研磨後における前記加工用工具の工具端面形状は、異なる形状であり、
前記歯底工具状態記憶部は、前記研磨後の加工用工具の工具端面形状に基づいて求めた前記研磨後の加工用工具の歯底工具状態を記憶し、
前記第1、第2側面工具状態記憶部は、研磨後の前記加工用工具の工具端面形状に基づいて求めた前記研磨後の加工用工具の第1、第2側面工具状態をそれぞれ記憶し、
前記加工制御部は、
前記加工用工具の工具刃の研磨後は、前記歯底工具状態記憶部及び前記第1、第2側面工具状態記憶部に記憶された前記研磨後における前記加工用工具の工具状態で前記加工物の加工を行う、請求項1〜4の何れか一項の歯車加工装置。
【請求項7】
前記加工用工具は前逃げ角を有することにより、研磨前後における前記加工用工具の工具刃の端面形状は、異なる形状となる、請求項6の歯車加工装置。
【請求項8】
前記加工用工具の工具刃は、インボリュート歯形を有する、請求項7の歯車加工装置。
【請求項9】
加工物の回転軸線に対し傾斜した回転軸線を有する加工用工具を用い、前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向に相対的に送り操作して歯車の歯の歯底及び両側面を加工する歯車加工方法であって、
前記歯車の歯の歯底の加工について、前記加工物に対する前記加工用工具の相対的な位置又は姿勢である工具状態を記憶する歯底工具状態記憶工程と、
前記歯車の隣り合う歯の対向する第1側面及び第2側面のうち前記第1側面の加工について、前記加工物に対する前記加工用工具の工具状態を記憶する第1側面工具状態記憶工程と、
前記第2側面の加工について、前記加工物に対する前記加工用工具の工具状態を記憶する第2側面工具状態記憶工程と、
前記歯底加工状態記憶工程及び前記第1、第2側面加工状態記憶工程にて記憶した前記加工用工具の各工具状態で前記加工物の加工をそれぞれ行う加工制御工程と、
を備え
前記加工制御工程は、
前記加工用工具と前記加工物との歯数比に応じて同一方向に同期回転させて、前記加工物の回転軸線及び前記加工用工具の回転軸線の軸間距離を徐々に縮めて加工を行い、
前記工具状態として前記加工用工具の工具軸線方向位置、工具軸線回り方向位置、及び交差角の少なくとも一つ、又はこれらの組み合わせに対し、前記工具状態を変更して加工を行う、歯車加工方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、加工用工具及び加工物を同期回転させて切削加工により歯車を加工する歯車加工装置及び歯車加工方法に関する。
【背景技術】
【0002】
切削加工により内歯及び外歯を加工する有効な手法としては、例えば、特許文献1に記載の加工装置がある。この加工装置は、回転軸線回りに回転可能な加工物と、加工物の回転軸線に対して所定の角度で傾斜した回転軸線回り、すなわち交差角を有する回転軸線回りに回転可能な加工用工具、例えば複数枚の工具刃を有するカッタとを高速で同期回転させ、加工用工具を加工物の回転軸線方向に送って切削加工することにより歯を創成する加工装置である。
【0003】
しかし、この加工装置では、複数枚の工具刃が加工物に同時に接触するため、切削抵抗が大きくなる傾向にある。よって、切削加工時に自励振動が発生し易く、歯車の歯すじ精度(歯すじのうねり)を悪化させるおそれがある。加工用工具の工具径を小さくすれば工具刃の加工物に対する接触枚数は少なくなるが、加工用工具の工具剛性が低下するおそれがある。
【0004】
そこで、特許文献2には、加工用工具を加工物に対し変化する送り速度で歯の表面に沿った送り経路方向に移動する加工方法が記載されている。この加工方法によれば、加工の微細な掻き傷の間隔が歯の表面に沿って不規則になるので、噛み合い雑音、すなわち自励振動を低減することができる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平1−159126号公報
【特許文献2】特開2005−335061号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上述の特許文献2に記載の加工方法では、加工用工具の送り速度を加工物に対し変化させる必要があるため、送り制御が複雑になり、歯車の歯形形状の高精度化が困難である。
【0007】
本発明は、このような事情に鑑みてなされたものであり、加工用工具及び加工物を同期回転させて切削加工により高精度な歯車を加工できる歯車加工装置及び歯車加工方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の歯車加工装置は、加工物の回転軸線に対し傾斜した回転軸線を有する加工用工具を用い、前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向に相対的に送り操作して歯車の歯の歯底及び両側面を加工する歯車加工装置であって、前記歯車の歯の歯底の加工について、前記加工物に対する前記加工用工具の相対的な位置又は姿勢である工具状態を記憶する歯底工具状態記憶部と、前記歯車の隣り合う歯の対向する第1側面及び第2側面のうち前記第1側面の加工について、前記加工物に対する前記加工用工具の工具状態を記憶する第1側面工具状態記憶部と、前記第2側面の加工について、前記加工物に対する前記加工用工具の工具状態を記憶する第2側面工具状態記憶部と、前記歯底加工状態記憶部及び前記第1、第2側面加工状態記憶部に記憶された前記加工用工具の各工具状態で前記加工物の加工をそれぞれ行う加工制御部と、を備え、前記加工制御部は、前記加工用工具と前記加工物との歯数比に応じて同一方向に同期回転させて、前記加工物の回転軸線及び前記加工用工具の回転軸線の軸間距離を徐々に縮めて加工を行い、前記工具状態として前記加工用工具の工具軸線方向位置、工具軸線回り方向位置、及び交差角の少なくとも一つ、又はこれらの組み合わせに対し、前記工具状態を変更して加工を行う
【0009】
これにより、歯車の歯の加工は、歯底、一方の側面、他方の側面に分けて順に行うので、加工工具の工具刃は、歯の一部を切削することになり、切削抵抗を低減でき、切削加工時の自励振動の発生を抑え、歯車の歯すじ精度(歯すじのうねり)を向上できる。
【0010】
本発明の歯車加工方法は、加工物の回転軸線に対し傾斜した回転軸線を有する加工用工具を用い、前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向に相対的に送り操作して歯車の歯の歯底及び両側面を加工する歯車加工方法であって、前記歯車の歯の歯底の加工について、前記加工物に対する前記加工用工具の相対的な位置又は姿勢である工具状態を記憶する歯底工具状態記憶工程と、前記歯車の隣り合う歯の対向する第1側面及び第2側面のうち前記第1側面の加工について、前記加工物に対する前記加工用工具の工具状態を記憶する第1側面工具状態記憶工程と、前記第2側面の加工について、前記加工物に対する前記加工用工具の工具状態を記憶する第2側面工具状態記憶工程と、前記歯底加工状態記憶工程及び前記第1、第2側面加工状態記憶工程にて記憶した前記加工用工具の各工具状態で前記加工物の加工をそれぞれ行う加工制御工程と、を備え、前記加工制御工程は、前記加工用工具と前記加工物との歯数比に応じて同一方向に同期回転させて、前記加工物の回転軸線及び前記加工用工具の回転軸線の軸間距離を徐々に縮めて加工を行い、前記工具状態として前記加工用工具の工具軸線方向位置、工具軸線回り方向位置、及び交差角の少なくとも一つ、又はこれらの組み合わせに対し、前記工具状態を変更して加工を行う
【図面の簡単な説明】
【0011】
図1A】本発明の実施の形態に係る歯車加工装置の全体構成を示す斜視図である。
図1B図1Aの歯車加工装置の概略構成及び制御装置を示す図である。
図2図1Bの制御装置の処理を説明するためのフローチャートである。
図3A】加工用工具の概略構成を工具端面側から回転軸線方向に見た図である。
図3B図3Aの加工用工具の概略構成を径方向に見た一部断面図である。
図3C図3Bの加工用工具の工具刃の拡大図である。
図3D図3Cの工具刃のA−A線矢視図及びB−B線矢視断面図である。
図4A】(a),(b),(c)は図1Aの歯車加工装置で歯車の歯底、左側面、右側面を加工するときの加工用工具の工具刃の加工状態をそれぞれ示す図である。
図4B】(a),(b),(c)は図1Aの歯車加工装置で歯車の歯底、左側面、右側面を加工するときの加工用工具と加工物との位置関係をそれぞれ示す図である。
図5A】加工用工具の回転軸線の方向の工具位置を変更するときの加工用工具と加工物との位置関係を示す図である。
図5B】軸線方向位置を変更したときの加工状態を示す第一の図である。
図5C】軸線方向位置を変更したときの加工状態を示す第二の図である。
図5D】軸線方向位置を変更したときの加工状態を示す第三の図である。
図6A】加工物の回転軸線に対する加工用工具の回転軸線の傾斜を表す交差角を変更するときの加工用工具と加工物との位置関係を示す図である。
図6B】交差角を変更したときの加工状態を示す第一の図である。
図6C】交差角を変更したときの加工状態を示す第二の図である。
図6D】交差角を変更したときの加工状態を示す第三の図である。
図7A】加工用工具の回転軸線方向位置及び交差角を変更するときの加工用工具と加工物との位置関係を示す図である。
図7B】軸線方向位置及び交差角を変更したときの加工状態を示す第一の図である。
図7C】軸線方向位置及び交差角を変更したときの加工状態を示す第二の図である。
図8図1Bの制御装置の別処理を説明するためのフローチャートである。
図9A】従来の加工用工具の研磨毎の加工状態を示す図である。
図9B】本実施形態の加工用工具の研磨毎の加工状態を示す図である。
図10A】従来使用される加工用工具を工具端面側から回転軸線方向に見た図である。
図10B図10Aの加工用工具を軸方向に直角な方向から見たA−A線断面図である。
図11図10Aの加工用工具の複数の工具刃によって加工物を加工している瞬間に、図10AのX−Y座標系において、複数の工具刃が加工物に接触している位置を示す図である。図11は、5個の工具刃が加工物に接触している図である。
図12図11において加工物に接触している複数の工具刃による切込量を示す図であり、横軸を図11の横軸に一致させ、縦軸を切込量として示す。
図13】歯車の歯形形状の誤差である歯すじ誤差を説明するための図である。
【発明を実施するための形態】
【0012】
(歯車加工装置の機械構成)
本実施形態では、歯車加工装置1の一例として、5軸マシニングセンタを例に挙げ、図1A及び図1Bを参照して説明する。つまり、当該歯車加工装置1は、駆動軸として、相互に直交する3つの直進軸(X,Y,Z軸)及び2つの回転軸(A軸、C軸)を有する装置である。
【0013】
図1A及び図1Bに示すように、歯車加工装置1は、ベッド10と、コラム20と、サドル30と、回転主軸40と、テーブル50と、チルトテーブル60と、ターンテーブル70と、加工物保持具80と、制御装置100等とから構成される。なお、図示省略するが、ベッド10と並んで既知の自動工具交換装置が設けられる。
【0014】
ベッド10は、ほぼ矩形状からなり、床上に配置される。ただし、ベッド10の形状は矩形状に限定されるものではない。このベッド10の上面には、コラム20が摺動可能な一対のX軸ガイドレール11a,11bが、X軸線方向(水平方向)に延びるように、且つ、相互に平行に形成される。さらに、ベッド10には、一対のX軸ガイドレール11a,11bの間に、コラム20をX軸線方向に駆動するための、図略のX軸ボールねじが配置され、このX軸ボールねじを回転駆動するX軸モータ11cが配置される。
【0015】
コラム20の底面には、一対のX軸ガイド溝21a,21bがX軸線方向に延びるように、且つ、相互に平行に形成される。コラム20がベッド10に対してX軸線方向に移動可能となるように、一対のX軸ガイド溝21a,21bが一対のX軸ガイドレール11a,11b上にボールガイド22a,22bを介して嵌め込まれ、コラム20の底面がベッド10の上面に密接される。
【0016】
さらに、コラム20のX軸に平行な側面(摺動面)20aには、サドル30が摺動可能な一対のY軸ガイドレール23a,23bがY軸線方向(鉛直方向)に延びるように、且つ、相互に平行に形成される。さらに、コラム20には、一対のY軸ガイドレール23a,23bの間に、サドル30をY軸線方向に駆動するための、図略のY軸ボールねじが配置され、このY軸ボールねじを回転駆動するY軸モータ23cが配置される。
【0017】
コラム20の摺動面20aに対向するサドル30の側面30aには、一対のY軸ガイド溝31a,31bがY軸線方向に延びるように、且つ、相互に平行に形成される。サドル30がコラム20に対してY軸線方向に移動可能となるように、一対のY軸ガイド溝31a,31bが一対のY軸ガイドレール23a,23bに嵌め込まれ、サドル30の側面30aがコラム20の摺動面20aに密接される。
【0018】
回転主軸40は、サドル30内に収容された主軸モータ41により回転可能に設けられ、加工用工具42を支持する。加工用工具42は、工具ホルダ43に保持されて回転主軸40の先端に固定され、回転主軸40の回転に伴って回転する。また、加工用工具42は、コラム20及びサドル30の移動に伴ってベッド10に対してX軸線方向及びY軸線方向に移動する。なお、加工用工具42の詳細は後述する。
【0019】
さらに、ベッド10の上面には、テーブル50が摺動可能な一対のZ軸ガイドレール12a,12bがX軸線方向と直交するZ軸線方向(水平方向)に延びるように、且つ、相互に平行に形成される。さらに、ベッド10には、一対のZ軸ガイドレール12a,12bの間に、テーブル50をZ軸線方向に駆動するための、図略のZ軸ボールねじが配置され、このZ軸ボールねじを回転駆動するZ軸モータ12cが配置される。
【0020】
テーブル50は、ベッド10に対してZ軸線方向に移動可能なように、一対のZ軸ガイドレール12a,12b上に設けられる。テーブル50の上面には、チルトテーブル60を支持するチルトテーブル支持部63が設けられる。そして、チルトテーブル支持部63には、チルトテーブル60が水平方向のA軸回りで回転(揺動)可能に設けられる。チルトテーブル60は、テーブル50内に収容されたA軸モータ61により回転(揺動)される。
【0021】
チルトテーブル60には、ターンテーブル70がA軸に直角なC軸回りで回転可能に設けられる。ターンテーブル70には、加工物Wを保持する加工物保持具80が装着される。ターンテーブル70は、加工物W及び加工物保持具80とともにC軸モータ62により回転される。
【0022】
制御装置100は、工具状態演算部101と、工具状態記憶部103と、加工制御部102等とを備える。ここで、工具状態演算部101及び加工制御部102は、それぞれ個別のハードウエアにより構成することもできるし、ソフトウエアによりそれぞれ実現する構成とすることもできる。
【0023】
工具状態演算部101は、詳細は後述するが、加工すべき歯車の歯の歯底の加工について、加工物Wに対する加工用工具42の相対的な位置又は姿勢である工具状態を演算する歯底工具状態演算部101aと、加工すべき歯車の歯の両側面の各加工について、加工物Wに対する加工用工具42の相対的な位置又は姿勢である工具状態を演算する側面工具状態演算部101bとを備える。
【0024】
工具状態記憶部103は、工具状態演算部101により演算された工具状態を記憶する。すなわち、工具状態記憶部103は、歯底工具状態演算部101aにより演算された歯底加工についての工具状態を記憶する歯底工具状態記憶部103aと、側面工具状態演算部101bにより演算された側面加工についての工具状態を記憶する側面工具状態記憶部103bとを備える。なお、側面工具状態記憶部103bは、加工すべき歯車の隣り合う歯の対向する側面(以下、第1側面、第2側面という)のうち第1側面の加工について、加工物Wに対する加工用工具42の工具状態を記憶する第1側面工具状態記憶部と、第2側面の加工について、加工物Wに対する加工用工具42の工具状態を記憶する第2側面工具状態記憶部とを有する。
【0025】
加工制御部102は、主軸モータ41を制御して、加工用工具42を回転させ、X軸モータ11c、Z軸モータ12c、Y軸モータ23c、A軸モータ61及びC軸モータ62を制御して、加工物Wと加工用工具42とをX軸線方向、Z軸線方向、Y軸線方向、A軸回り及びC軸回りに相対移動することにより、加工物Wの切削加工を行う。すなわち、加工制御部102は、円筒状の加工物Wの外周面にはすば歯車を加工する場合、歯底加工状態記憶部103a及び側面加工状態記憶部103bに記憶された加工用工具42の各工具状態を保ったまま、加工用工具42と加工物Wとを歯数比に応じて同一方向に同期回転させる。そして、加工用工具42を加工物Wの回転軸線C(図4B等に示すLw)方向に送りつつ、当該回転軸線C方向の送りにつれてはすば歯車のねじれ角に応じて回転させつつ、加工物Wの回転軸線Lw及び加工用工具42の工具端面42Aの回転軸線L(図4B等参照、以下、工具軸線Lという)の軸間距離を徐々に縮めて加工物Wの加工をそれぞれ行う。この加工物Wの切削加工は、先ず歯車の歯の歯底を加工し、次に歯の一方の側面を加工し、最後に歯の他方の側面を加工する。なお、円筒状の加工物Wの内周面にはすば歯車を加工する場合も同様である。
【0026】
(加工用工具)
上述の歯車加工装置1では、加工用工具42と加工物Wとを高速で同期回転させ、加工用工具42を加工物Wの回転軸線方向に送って切削加工することにより歯を創成する。ここで、図10Aに示すように、歯車加工装置1での従来の切削加工時においては、加工すべき歯車Gの歯g(図13参照)と同形状の工具刃420aが等ピッチで配列された加工用工具420が使用される。図11に示すように、各工具刃420aは、加工物Wとの接触位置に関して、加工物Wの位置によって工具刃420aの略全体で接触する工具刃420a(図示一点鎖線で囲まれたA部)と、工具刃420aの先端付近で接触する工具刃420a(図示二点鎖線で囲まれたB部)に分類される。
【0027】
そして、図12に示すように、加工用工具420の各工具刃420aによる加工物Wの切込量は、工具刃420aの略全体で接触する工具刃420a(図示一点鎖線で囲まれたA部)よりも工具刃420aの先端付近で接触する工具刃420a(図示二点鎖線で囲まれたB部)の方が大きい。すなわち、先端付近で接触する工具刃420aの切削抵抗は、略全体で接触する工具刃420aの切削抵抗より大きくなる。よって、切削加工時に自励振動が発生し易く、歯車の歯すじ精度(歯すじのうねり)、すなわち図13に示すように、歯車Gの歯gの周方向d1の両側面sr,slにおける軸線方向d2の表面粗さの平均値(歯すじ誤差)は、悪化するおそれがある。
【0028】
また、図10Bに示すように、加工用工具420の各工具刃420aの刃先面の外径は、加工用工具420の基端側ほど小さい。つまり、各工具刃420aの刃先面は、前逃げ角βを有する。さらに、加工用工具420の各工具刃420aの側面420b間の刃幅は、加工用工具420の基端側ほど小さい。つまり、各工具刃420aの側面420bは、側逃げ角(図示せず)を有する。ただし、前逃げ角βに比べて、側逃げ角は非常に小さい。つまり、工具刃420aの側面420bは、工具軸線Lに対する傾斜角が小さい形状、すなわち切削加工時における加工物Wとのクリアランスが小さい形状であるため、切削抵抗により工具刃420aが変形したときは加工物Wと干渉し易い。よって、歯車の歯すじ精度は、さらに悪化するおそれがある。
【0029】
そこで、歯車加工装置1での本実施形態の切削加工時においては、図3Aに示すように、加工すべき歯車の歯幅よりも小さい幅の工具刃42aが等ピッチで配列された加工用工具42が使用される。この加工用工具42の工具軸線L方向から見た形状は、加工される歯車と噛み合う歯の形状、本例ではインボリュート曲線形状と同一形状に形成される。そして、図3Bに示すように、加工用工具42の工具刃42aには、工具端面42A側に工具軸線Lと直角な平面に対し角度α傾斜したすくい角が設けられ、工具周面42B側に工具軸線Lと平行な直線に対し角度β傾斜した前逃げ角が設けられる。さらに、図3Cに示すように、工具刃42aの側面側に工具軸線Lと平行な直線に対し角度γ傾斜した側逃げ角が設けられる。つまり、工具刃42aの歯幅は、加工用工具42の基端側ほど小さい。
【0030】
すなわち、図3Dに示すように、加工用工具42の工具刃42aを工具端面42A側から工具軸線L方向に見た図示実線で示す工具端面形状(図3CのA−A線矢視形状)は、加工用工具42の工具刃42aを例えば工具端面42Aから工具軸線L方向にhの位置での工具軸線L方向に直角な方向の図示一点鎖線で示す断面形状(図3CのB−B線矢視形状)と比較すると、インボリュート曲線形状及び歯丈Hは一定となるように形成され、刃先幅Wea,Web及び刃底幅Wba,Wbbは変化するように形成される。以上の形状は、上述した従来の切削加工時において使用する加工用工具420も同様であるが、本実施形態の切削加工時において使用する加工用工具42の工具刃42aの刃先幅Wea,Web及び刃底幅Wba,Wbbは、加工すべき歯車の歯幅よりも小さい幅に形成される点で、従来とは相違する。
【0031】
そして、図4Aに示すように、制御装置100は、歯車Gの歯gの異なる部位を順に加工する。すなわち、制御装置100は、図4A(a)に示すように、先ず歯車Gの歯gの歯底gbを加工し、次に、図4A(b)に示すように、歯gの一方の側面(図では左側面sl(第1側面))を加工し、最後に、図4A(c)に示すように、歯gの他方の側面(図では右側面sr(第2側面))を加工する。なお、歯gの右側面srを加工してから左側面slを加工するようにしてもよい。これにより、工具刃42aは、歯車Gの歯gの一部を切削することになるので、切削抵抗を低減でき、切削加工時の自励振動の発生を抑え、歯車Gの歯すじ精度(歯すじのうねり)を向上できる。
【0032】
制御装置100は、歯gの歯底加工、左側面加工及び右側面加工を行うとき、予め設定記憶している各加工での工具状態、すなわち加工用工具42の工具軸線Lの方向の工具位置(以下、加工用工具42の軸線方向位置という)、及び加工される歯車Gの歯gの捩れ角と加工用工具42の工具刃42aの捩れ角との差で表される交差角(以下、加工用工具42の交差角という)に加工用工具42の位置などを変更する。なお、工具状態としては、工作物Wの回転軸線Lw回りの方向の加工用工具42に対する相対位置の工具位置も対象となる。制御装置100は、歯車加工を行うとき、上述の加工用工具42の軸線方向位置、及び工作物Wの回転軸線Lw回りの方向の加工用工具42に対する相対位置の工具位置の少なくとも一方の工具位置を変更する。
【0033】
すなわち、歯底加工においては、制御装置100は、図4B(a)に示すように、加工用工具42の軸線方向位置、すなわち加工用工具42の工具端面42Aと工具軸線Lとの交点Pが、加工物Wの回転軸線Lw上に位置するように(オフセット量0)、且つ加工用工具42の交差角が、角度θpとなるように加工用工具42の位置などを変更する。
また、左側面加工においては、制御装置100は、図4B(b)に示すように、加工用工具42の軸線方向位置が、加工用工具42の工具軸線L方向に距離+cだけオフセットし(オフセット量+c)、且つ加工用工具42の交差角が、角度θqとなるように加工用工具42の位置などを変更する。
【0034】
また、右側面加工においては、制御装置100は、図4B(c)に示すように、加工用工具42の軸線方向位置が、加工用工具42の工具軸線L方向に距離−cだけオフセットし(オフセット量−c)、且つ加工用工具42の交差角が、角度θrとなるように加工用工具42の位置などを変更する。
しかし、加工用工具42の工具刃42aの形状は、設計値に対し誤差を含むため、予め設定記憶している工具状態に加工用工具42を変更しても、加工状態が悪化、すなわち形状誤差が大きくなる場合がある。そこで、加工状態は、工具状態を変更したときどのように変化するかについて検討した。
【0035】
例えば、図5Aに示すように、加工用工具42の軸線方向位置が、加工物Wの回転軸線Lw上に位置する場合(オフセット量0)、加工用工具42の工具軸線L方向に距離+dだけオフセットした場合(オフセット量+d)、及び加工用工具42の工具軸線L方向に距離−dだけオフセットした場合(オフセット量−d)で加工物Wを加工した。その結果、加工物Wの加工状態は、図5B図5C図5Dに示すようになった。なお、図中、太い実線Eは、設計上の歯車の歯gのインボリュート曲線を直線に変換して表したもので、ドット部分Dは、加工物Wの切削除去部分を表す。
【0036】
図5Bに示すように、オフセット量0では、加工された歯車の歯は、設計上のインボリュート曲線に近い形状で加工される。一方、図5Cに示すように、オフセット量+dでは、加工された歯車の歯は、設計上のインボリュート曲線に対し、図示右方向(点線矢印方向)、すなわち時計回りのピッチ円方向にずれた形状で加工され、図5Dに示すように、オフセット量−dでは、加工された歯車の歯は、設計上のインボリュート曲線に対し、図示左方向(点線矢印方向)、すなわち反時計回りのピッチ円方向にずれた形状で加工される。よって、歯車の歯の形状は、加工用工具42の工具軸線L方向位置を変更することにより、ピッチ円方向にずらすことができる。
【0037】
また、例えば、図6Aに示すように、加工用工具42の交差角が、角度θa、θb、θcの各場合で加工物Wを加工した。なお、各角度の大小関係は、θa>θb>θcである。その結果、加工物Wの加工状態は、図6B図6C図6Dに示すようになった。
図6Bに示すように、交差角θaでは、加工された歯車の歯は、設計上のインボリュート曲線に近い形状で加工される。一方、図6Cに示すように、交差角θbでは、加工された歯車の歯は、設計上のインボリュート曲線に対し、歯先の幅がピッチ円方向(実線矢印方向)に狭まり、歯元の幅がピッチ円方向(実線矢印方向)に拡がった形状で加工され、図6Dに示すように、交差角θcでは、加工された歯車の歯は、設計上のインボリュート曲線に対し、歯先の幅がピッチ円方向(実線矢印方向)にさらに狭まり、歯元の幅がピッチ円方向(実線矢印方向)にさらに拡がった形状で加工される。よって、歯車の歯の形状は、加工用工具42の交差角を変更することにより、歯先のピッチ円方向の幅及び歯元のピッチ円方向の幅を変更できる。
【0038】
また、例えば、図7Aに示すように、加工用工具42の軸線方向位置、すなわち加工用工具42の工具端面42Aと工具軸線Lとの交点Pが、加工物Wの回転軸線Lw上に位置し(オフセット量0)、且つ加工用工具42の交差角が、θaの場合、及び加工用工具42の工具軸線L方向に距離+dだけオフセットし(オフセット量+d)、且つ交差角θbの場合で加工物Wを加工した。その結果、加工物Wの加工状態は、図7B図7Cに示すようになった。
【0039】
図7Bに示すように、オフセット量0且つ交差角θaでは、加工された歯車の歯は、設計上のインボリュート曲線に近い形状で加工される。一方、図7Cに示すように、オフセット量+d且つ交差角θbでは、加工された歯車の歯は、設計上のインボリュート曲線に対し、図示右方向(点線矢印方向)、すなわち時計回りのピッチ円方向にずれ、且つ歯先の幅がピッチ円方向(実線矢印方向)に狭まり、歯元の幅がピッチ円方向(実線矢印方向)に拡がった形状で加工される。よって、歯車の歯の形状は、加工用工具42の軸線方向位置、及び加工用工具42の交差角を変更することにより、ピッチ円方向にずらし、歯先の周方向の幅及び歯元のピッチ円方向の幅を変更できる。
以上の結果から、制御装置100は、歯gの歯底加工、左側面加工及び右側面加工での良好な加工状態を得るために最適な加工用工具42の工具状態を求める処理を行っており、その処理について以下説明する。
【0040】
(制御装置の工具状態演算部による処理)
次に、歯gの歯底加工、左側面加工及び右側面加工において最適な加工用工具42の工具状態を求めるときの制御装置100のシミュレーション処理について、図2を参照して説明する。このシミュレーションは、公知の歯車の創成理論に基づいて、工具刃42aの軌跡を演算している。すなわち、このシミュレーションは、加工物Wの回転軸線Lwに対し傾斜した回転軸線Lを有する加工用工具42を用い、加工用工具42を加工物Wと同期回転させながら加工物Wの回転軸線Lw方向に相対的に送り操作して歯車の歯を加工する動作に相当する。
【0041】
制御装置100の歯底工具状態演算部101aは、予め記憶している歯底加工を行うときの加工用工具42の工具状態を読み出し(図2のステップS1)、シミュレーション回数nとして1回目であることを記憶し(図2のステップS2)、当該工具状態に加工用工具42の工具状態を設定する(図2のステップS3)。そして、歯底工具状態演算部101aは、予め記憶している加工用工具42の形状に基づいて、加工物Wを加工するときの工具軌跡を算出し(図2のステップS4)、加工後の歯車の歯の形状を算出する(図2のステップS5)。そして、歯底工具状態演算部101aは、算出した加工後の歯車の歯の形状と、設計上の歯車の歯の形状とを比較し、形状誤差を算出して記憶し(図2のステップS6)、シミュレーション回数nに1を加算する(図2のステップS7)。
【0042】
そして、歯底工具状態演算部101aは、シミュレーション回数nが予め設定した回数nnに達したか否かを判断し(図2のステップS8)、シミュレーション回数nが設定回数nnに達していないときは、加工用工具42の工具状態のうち加工用工具42の交差角を変更し(図2のステップS9)、ステップS4に戻って上述の処理を繰り返す。一方、シミュレーション回数nが設定回数nnに達したときは、歯底工具状態演算部101aは、記憶した形状誤差のうち最小の誤差となる交差角を選択する(図2のステップS10)。以上の処理により、歯底加工を行うときの最適な加工用工具42の交差角を含む工具状態を決定できる。そして、歯底工具状態演算部101aは、歯底加工を行うときの加工用工具42の工具状態を歯底工具状態記憶部103aに記憶する。
【0043】
そして、側面工具状態演算部101bは、左側面加工を行うときの最適な加工用工具42の交差角を決定したか否かを判断する(図2のステップS11)。側面工具状態演算部101bは、左側面加工の工具状態を決定していないと判断したときは、予め記憶している左側面加工を行うときの加工用工具42の工具状態を読み出し(図2のステップS12)、ステップS2に戻って上述の処理を繰り返す。そして、側面工具状態演算部101bは、左側面加工を行うときの加工用工具42の工具状態を側面工具状態記憶部103bに記憶する。
【0044】
一方、ステップS11において、側面工具状態演算部101bは、左側面加工の工具状態を決定したと判断したときは、右側面加工を行うときの最適な加工用工具42の工具状態を決定したか否かを判断する(図2のステップS13)。側面工具状態演算部101bは、右側面加工の工具状態を決定していないと判断したときは、予め記憶している右側面加工を行うときの加工用工具42の工具状態を読み出し(図2のステップS14)、ステップS2に戻って上述の処理を繰り返す。そして、側面工具状態演算部101bは、右側面加工を行うときの加工用工具42の工具状態を側面工具状態記憶部103bに記憶する。一方、ステップS13において、側面工具状態演算部101bは、右側面加工の工具状態を決定したと判断したときは、全ての処理を終了する。
【0045】
なお、ステップS9においては、加工用工具42の交差角を変更する代わりに、加工用工具42の軸線方向位置を変更し、もしくは加工用工具42の軸線回り方向位置を変更し、又は、交差角、軸線方向位置、軸線回り方向位置の任意の組み合わせを変更するようにしてもよい。また、上述の処理では、複数回のシミュレーションを行って最小の誤差となる交差角を選択するようにしたが、予め許容形状誤差を設定しておき、ステップS6において算出した形状誤差が許容形状誤差以下となったときの交差角を選択してもよい。
【0046】
本実施形態の歯車加工装置1によれば、歯車Gの歯gの加工は、歯底、一方の側面、他方の側面に分けて順に行うので、加工工具42の工具刃42aは、歯gの一部を切削することになり、切削抵抗を低減でき、切削加工時の自励振動の発生を抑え、歯車Gの歯すじ精度(歯すじのうねり)を向上できる。
【0047】
また、歯底工具状態演算部101a及び側面工具状態演算部101bは、工具状態として、加工用工具42の工具軸線L方向位置、加工用工具42の工具軸線L回り方向位置、及び加工用工具42の交差角の少なくとも一つ、又はこれらの組み合わせに対して加工物Wの加工状態を演算するので、高精度な歯車を得ることができる。また、歯底工具状態演算部101a及び側面工具状態演算部101bは、加工状態をシミュレーションによって演算するので、実加工は不要であり、低コストな歯車を得ることができる。
【0048】
(制御装置の工具状態演算部による別処理)
加工用工具42の工具刃42aの刃先が摩耗した場合は、摩耗した加工用工具42の刃先42aを研磨して再利用する。しかし、加工用工具42は前逃げ角βを有することにより、研磨前における加工用工具42の工具刃42aの端面形状は、研磨後における加工用工具42の工具刃42aの端面形状と異なる形状となる。すなわち、加工用工具42の工具刃42aは、図3Dに示すように、加工用工具42の工具刃42aの研磨量が所定量hに達すると、加工用工具42の工具刃42aの刃先幅Webが研磨前の刃先幅Weaと比べて大きくなり、加工物Wの加工精度が低下する。このような場合でも、制御装置100は、加工用工具42の工具刃42aの研磨状態に基づいて、本実施形態の処理を行って最適な加工用工具42の工具状態を決定することにより、高精度な加工が可能となる。
【0049】
つまり、工具状態演算部101は、摩耗した加工用工具42の工具刃42aの研磨状態に基づいて、加工用工具42の工具状態を演算する。すなわち、工具状態演算部101は、工具刃42aの研磨前の工具状態、研磨の都度に研磨後の工具状態をそれぞれ演算する。工具刃42aの研磨前の工具状態は、上述したシミュレーション処理により演算する。
【0050】
つまり、制御装置100は、加工用工具42の工具刃42aの研磨状態に応じた加工用工具42の工具状態で加工物Wの加工を行う。具体的な工具状態の変更方法としては、加工用工具42の軸線方向位置の変更、工作物Wの回転軸線Lw回りの方向の加工用工具42に対する相対位置の工具位置の変更、加工用工具42の交差角の変更、もしくはこれらの組み合わせがある。これにより、加工物Wは、高精度に加工される。
【0051】
以下に、工具刃42aを研磨したとき、最適な加工用工具42の工具状態として交差角を求めるときの制御装置100の工具状態演算部101によるシミュレーション処理について、図8を参照して説明する。なお、図8においては、図2のステップS1の前にステップS01,S02,S03が追加されている点のみが異なるため、同一のステップは同一番号を付して説明を省略する。
【0052】
制御装置100の歯底工具状態演算部101a及び側面工具状態演算部101bは、研磨後であるか否かを判断する(図8のステップS01)。研磨後でなければ、工具状態演算部101a,101bは、予め設計して記憶している研磨前の加工用工具42の形状を読み出す(図8のステップS02)。一方、研磨後であれば、工具状態演算部101a,101bは、研磨後の加工用工具42の形状を研磨設定量に合わせて算出する(図8のステップS03)。
【0053】
そして、工具状態演算部101a,101bは、ステップS1以降の処理を、前述した図2の処理と同様に行う。ただし、図8のステップS1において、歯底工具状態演算部101aは、研磨状態に応じて、歯底加工用の加工用工具42の交差角を含む工具状態を読み出す。また、図8のステップS12,S14において、側面工具状態演算部101bは、研磨状態に応じて、側面加工用の加工用工具42の交差角を含む工具状態を読み出す。ここで読み出される工具状態は、研磨前においては、予め記憶している交差角を含む工具状態とし、研磨後においては、例えば、当該研磨直前に選択されていた交差角を含む工具状態とする。
【0054】
従って、図8のステップS2〜ステップS10においては、研磨前及び研磨後のそれぞれについての処理が行われる。つまり、図8のステップS10において、歯底工具状態演算部101aは、歯底加工において、研磨前における最適な加工用工具42の工具状態を求めると共に、研磨の都度に研磨後における最適な加工用工具42の工具状態を求めることができる。また、側面工具状態演算部101bは、側面加工において、研磨前における最適な加工用工具42の工具状態を求めると共に、研磨の都度に研磨後における最適な加工用工具42の工具状態を求めることができる。
【0055】
なお、ステップS9においては、加工用工具42の交差角を変更する代わりに、加工用工具42の軸線方向位置を変更し、もしくは工作物Wの回転軸線Lw回りの方向の加工用工具42に対する相対位置を変更し、又は、交差角、加工用工具42の軸線方向位置、工作物Wの回転軸線Lw回りの方向の加工用工具42に対する相対位置の任意の組み合わせを変更するようにしてもよい。また、上述の処理では、複数回のシミュレーションを行って最小の誤差となる交差角を選択するようにしたが、予め許容形状誤差を設定しておき、ステップS6において算出した形状誤差が許容形状誤差以下となったときの交差角を選択してもよい。
【0056】
上述のシミュレーション処理は、工具刃42aを研磨する度に行う。これにより、研磨毎の最適な加工用工具42の工具状態を求めることができ、研磨回数が増加しても加工精度を維持できる。例えば、図9A図9Bは、図5と同様に、図中の太い実線Eは、設計上の歯車の歯gのインボリュート曲線を直線に変換して表したもので、ドット部分Dは、加工物Wの切削除去部分を表す。図9Aに示すように、従来は、研磨回数が4回までは、加工後の歯車の歯gの形状は、設計上の歯車の歯の形状に対し形状誤差は許容範囲内であるため、加工用工具42の使用は可能である。そして、研磨回数が5回以上になると、加工後の歯車gの歯の形状は、設計上の歯車の歯の形状に対し形状誤差が許容範囲を超えるので、加工用工具42の使用は不可となる。しかし、図9Bに示すように、本実施形態では、研磨回数が6回になっても、加工後の歯車gの歯の形状は、設計上の歯車の歯の形状に対し形状誤差は許容範囲内であるため、加工用工具42の使用は可能であり、加工用工具42の長寿命化を図ることができる。よって、高精度且つ低コストな歯車を得ることができる。
【0057】
(その他)
上述した実施形態では、シミュレーション処理は、歯車の歯の歯底の加工、歯の一方の側面の加工及び歯の他方の側面の加工についてそれぞれ行う構成としたが、歯の歯底の加工は加工誤差が小さいことから省略し、歯の一方の側面の加工及び歯の他方の側面の加工のシミュレーション処理についてそれぞれ行う構成としてもよい。また、加工用工具42として、捩れ角の無い工具を例に説明したが、捩れ角を有する工具であっても同様に適用可能である。また、5軸マシニングセンタである歯車加工装置1は、加工物WをA軸旋回可能とするものとした。これに対して、5軸マシニングセンタは、縦形マシニングセンタとして、加工用工具42をA軸旋回可能とする構成としてもよい。また、本発明をマシニングセンタに適用する場合を説明したが、歯車加工の専用機に対しても同様に適用可能である。
【符号の説明】
【0058】
1:歯車加工装置、 42:加工用工具、 42a:工具刃、 100:制御装置、 101a:歯底工具状態演算部、 101b:側面工具状態演算部、 102:加工制御部、 103a:歯底工具状態記憶部、 103b:側面工具状態記憶部、 W:加工物
図1A
図1B
図2
図3A
図3B
図3C
図3D
図4A
図4B
図5A
図5B
図5C
図5D
図6A
図6B
図6C
図6D
図7A
図7B
図7C
図8
図9A
図9B
図10A
図10B
図11
図12
図13