(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0009】
(実施形態)
以下、図面等を参照して、本発明の好適な実施形態について説明する。
実施形態の成形システム1の構成を説明する図である。
図1は、実施形態の成形システム1の全体の構成を説明する縦断面図である。
図2は、実施形態のステム40の先端付近の外観図である。
図3は、実施形態の成形システム1の連結穴35付近の構成を説明する縦断面図である。
図3(A)は、ステム40の先端が連結穴35から退避・後退した状態であり、溶融樹脂を金型内に射出する状態を説明する図である。
図3(B)は、ステム40の左端面が金型10の射出口11aに配置された状態であり、金型10内に充填された溶融樹脂2を密封する状態を説明する図である。
図4は、実施形態のステム40の先端及びその周辺の構成の動作を説明する図である。
図4(A)は、ステム40が連結穴35に進入する直前の縦断面図である。
図4(B)は、ステム40が連結穴35に進入後、閉位置に配置された状態の縦断面図である。
図4(C)は、ステム40が連結穴35から退避・後退直後の縦断面図である。
図5は、実施形態のステム40が閉位置に配置された状態を透視した斜視図であり、ステム40の周囲における溶融樹脂2の流動の説明する図である。
なお、
図3、
図4(A)から
図4(C)には、4つの螺旋溝41(樹脂流動部)のうち1つの外形を破線で図示した。
実施形態を、適宜、XYZ直交座標系を用い、図面で説明する。この座標系は、
図1の状態を基準に、左右方向X(左側X1、右側X2)、奥行方向Y、鉛直方向Z(下側Z1、上側Z2)で表す。ステム40(後述する)の移動方向は左右方向Xになり、また、左側X1方向が、溶融樹脂2の射出方向になる。
【0010】
成形システム1は、主にペットボトルのプリフォーム3の射出成形に利用される。プリフォーム3とは、ペットボトルをブロー成形により製造するために、事前に成形する予備成形品である。
実施形態のプリフォーム3のゲートタイプは、ゲートカットの作業を有さず、ゲート長さが短いタイプである。実施形態では、このようにゲートが短いものを、ショートゲートともいう。
実施形態では、ゲートがない形態を説明する。つまり、左右方向Xにおいて、ステム40の左端面位置と、金型10の射出口11aとが、等しい位置にある(
図3(B)参照)。但し、これに限定されず、実施形態の各構成は、ショートゲートに対応するシステムであれば、適宜適用できる。
【0011】
図1から
図3に示すように、成形システム1は、金型10、射出成形機20を備える。
金型10は、プリフォーム3の形状に対応するキャビティ11、コア12を備える。
キャビティ11は、射出口11aを備える。
射出口11aは、金型10の内部に溶融樹脂2を射出するための開口穴である。
【0012】
射出成形機20は、可塑化装置21によって可塑化した熱可塑性の樹脂(ポリエチレンテレフタレート等)を、金型10の内部に射出する装置である。可塑化され、溶融した溶融樹脂2は、ランナ25(貯留部)に導かれる。ランナ25は、マニホールド22、ノズルハウジング23等によって形成される。実施形態のランナ25は、溶融樹脂2を加熱することにより、溶融樹脂2の溶融状態を維持するホットランナである。
射出成形機20は、ヒータ30(加熱装置)、ノズル31(連結穴形成部)、インシュレータ32(連結穴形成部、断熱部)、ステム40(開閉ピン)、ステム駆動部50(開閉ピン駆動部)から構成されている。
【0013】
ノズル31、インシュレータ32は、それぞれ円筒状の部材である。ノズル31の先端部分、インシュレータ32の左側X1の先端部分は、それぞれ左側X1(つまり射出口11a側)に至る程、径が小さくなるように形成されている。インシュレータ32は、ノズル31を囲うように配置されている。また、左右方向Xにおいて、右側X2から左側X1に向けて、ノズル31、インシュレータ32、キャビティ11が配置されている。
インシュレータ32は、ヒータ30の熱が、ノズルハウジング23及びノズル31を介して、金型10のキャビティ11に伝わることを抑制したり、キャビティ11の冷却によりノズル31が冷却されることを抑制したりするために用いる部材である。このため、断熱部としてのインシュレータ32は、金型10との間に、具体的には、ノズル31とキャビティ11との間に配置されている。
ノズル31は、マニホールド22、ノズルハウジング23内を通ってきた溶融樹脂2を、金型10の方向へと導く主要な部材である。
【0014】
ノズル31、インシュレータ32、キャビティ11は、上記構成により、ランナ25と射出口11aとを連結する連結穴35を形成する。また、ノズル31、インシュレータ32は、この連結穴35の少なくとも一部を形成している。
【0015】
図1に示すように、ステム40は、ランナ25内において、左右方向Xに延在する軸体である。ステム40の直径は、成形システム1の構成等に応じて適宜設定することができ、例えば1.00mm以上5.00mm以下であり、好ましくは、2.00mm以上4.00mm以下である。また、ステム40の外周面と、連結穴35の内周面との隙間Sは、例えば0.02mm程度である。つまり、ステム40の直径は、連結穴35の直径よりも、例えば0.04mm程度小さい。
【0016】
ステム40は、ランナ25内において、開位置及び閉位置の間で、左右方向Xに移動可能である。また、ステム40は、中心軸回りに回転可能な状態にセットされ、ステム駆動部50に支持されている。
図3(A)に示すように、ステム40が開位置に配置された状態は、ステム40が閉位置からランナ25側に後退した状態であり、また、ステム40が連結穴35から完全に退避・後退している状態である。つまり、開位置は、ステム40が射出口11aを開く位置である。このため、連結穴35は、開放され、ランナ25内の溶融樹脂2は、金型10内部に射出される。
【0017】
図3(B)に示すように、ステム40が閉位置に配置された状態は、ステム40が連結穴35を射出口11a側に向けて進入した状態である。つまり、閉位置は、ステム40が射出口11aを閉じる位置である。このように、ステム40は、連結穴35内に進入可能な状態で、射出成形機20に取り付けられている。
ステム40が閉位置に配置されることにより、連結穴35は、閉じられる。このため、ランナ25内の溶融樹脂2は、ランナ25内に貯留された状態で維持される。
【0018】
図2に示したステム40には、樹脂流動部として螺旋溝41を備えている。
螺旋溝41(樹脂流動部)は、ステム40の左端付近の外周面に設けられた溝である。螺旋溝41は、2条の螺旋状に形成されている。
なお、螺旋溝41は、1又は2条以上とすることができ、条数に限定されない。
実施形態では、
図3(B)、
図4(B)に示すように、ステム40が閉位置に配置された状態において(左右方向Xの位置関係で示す)、連結穴35における螺旋溝41(樹脂流動部)の左側X1(射出口11a側)の端部である溝先端41a(樹脂流動部先端)は、射出口11aを形成する金型10のキャビティ11よりもランナ25(貯留部)側の位置であって、金型10との間に配置されたインシュレータ32(断熱部)の設置範囲に対応した範囲に位置するようにしてある。
また、螺旋溝41の右側X2(ランナ25側)の端部である溝後端41bは、ランナ25内に位置するようにしてある。
このため、ステム40が閉位置に配置された状態において、螺旋溝41(樹脂流動部)は、連結穴35とステム40との間の隙間Sと、貯留部であるランナ25との間を結ぶことにより、これらの間を連通させることになる。
一方、
図3(A)に示すように、ステム40が開位置にされた状態では、螺旋溝41(樹脂流動部)の全体がランナ25内に収容される。
【0019】
図1に示すように、ステム駆動部50は、エアシリンダ51と、エアシリンダ51内を左右方向Xに往復移動するピストン52とを備える。ピストン52には、ステム40が取り付けられている。これによって、ステム駆動部50は、ステム40を左右方向Xに駆動する。
【0020】
(成形システム1の動作)
図4等を参照して、ステム40の先端及びその周辺の構成の動作について、詳細に説明する。
成形時において、ステム40の先端及びその周辺の構成は、以下のように動作する。
(1)ステム40が連結穴35に進入後、閉位置に移動するまでの状態
図4(A)、
図4(B)に示すように、ステム40がランナ25位置から連結穴35内に進入すると、ステム40の外周面と連結穴35の内周面とが当接する。これにより、ステム40は、径方向のブレが抑制される。
この場合、螺旋溝41(樹脂流動部)は、螺旋状に形成されており、ステム40の外周面に部分的な偏りがなく、全体が均一に連結穴35の内周面に当接している。このため、ステム40は、連結穴35内において、一方向に偏らずに配置されることになり、これにより、ステム40の外周面の偏摩耗も有効に回避できている。
【0021】
ステム40が連結穴35内を左側X1に移動することにより、ステム40の左端面よりも射出口11a側に存在する溶融樹脂2には、ステム40の左端面によって圧力が加わる。また、螺旋溝41(樹脂流動部)の溝後端41bは、ランナ25内に位置している。
このため、ステム40の左端面よりも射出口11a側に存在する溶融樹脂2の一部は、隙間S内の螺旋溝41(樹脂流動部)を通ってランナ25に戻ることができる。このように、螺旋溝41(樹脂流動部)は、ステム40が閉位置に移動するまでの間、連結穴35内の溶融樹脂2を、ランナ25に戻すことができる。
【0022】
射出成形品を繰り返し製造する過程において、隙間S内に溶融樹脂2が滞留し、例えば、ノズル31が温度低下した場合などに、溶融樹脂2が硬化する。その結果、樹脂皮膜2a(
図6(C)参照)が形成され、樹脂皮膜2aは、連結穴35の内周面に固着する。この樹脂皮膜2aが、後に続く射出成形ショットで、連結穴35から剥がれると、金型10内部に混入してしまうことがあり、これが、射出成形品の外観不良になる要因となっている。
ここで、隙間Sは、螺旋溝41(樹脂流動部)に対応した領域で拡大する。このため、単位時間内において、隙間S内を通過可能な溶融樹脂2の容積は、螺旋溝41(樹脂流動部)の領域で、大きくなる。
図5に示すように、溶融樹脂2は、螺旋溝41に対応する隙間Sの領域では、圧力が開放された状態となり、その流速が大きくなり、また、流量も大きくなっている。
なお、
図5は、溶融樹脂2の流量を線の本数の度合(密度)で示し、溶融樹脂2の流速を線の太さで示している。
このため、成形システム1は、射出成形品を繰り返し製造する過程において、隙間S内の溶融樹脂2を、螺旋溝41(樹脂流動部)を通して、ランナ25(貯留部)に有効に迂回させることができる。
本発明の実施形態では、隙間S内の溶融樹脂2の流速及び流量を大きくすることにより、樹脂皮膜2aが形成されにくく、仮に樹脂皮膜2aが形成されたとしても、形成された樹脂皮膜2aは、溶融樹脂2の流れに乗ってランナ25内に戻ることにより、再度溶融される。
また、前述したように、ステム40は、中心軸回りに回転できる状態で、ステム駆動部50に支持されている。これにより、ステム40の往復移動に際し、中心軸回りに自在に回転し(
図1参照)、連結穴35の内周の全体に渡って、上記作用、効果を期待できる。
【0023】
さらに、成形システム1は、仮に、樹脂皮膜2aが形成されても、これが成長することを抑制できる。
【0024】
図5に示すように、螺旋溝41(樹脂流動部)は、隙間S内に流入する樹脂流量を大きくできることにより、隙間Sのうちステム40の左端面付近においても、溶融樹脂2の流量を大きくでき、かつ、ランナ25側に向かう溶融樹脂2の流速を大きくできる。また、これにともない、ステム40の左端面近傍に存在する溶融樹脂2は、隙間S内に移動しやすい状態となり、樹脂皮膜2aが左側X1に成長すること、また、これにともなう成形不良を抑制できる。
【0025】
(2)ステム40が閉位置に配置された状態
図4(B)に示すように、この状態は、ステム40が閉位置に配置された状態で待機し、金型10内部の溶融樹脂2が硬化するまで、ステム40の左端面は、キャビティ11の射出口11aを塞ぐように配置される。これにより、ステム40は、溶融樹脂2を、金型10内部に密閉できる。
【0026】
また、ステム40の左端部は、ランナ25内に位置する状態で(
図4(A)等参照)、溶融樹脂2等によって加熱される。さらに、ステム40の左端部が、連結穴35のうちノズル31の内部及びインシュレータ32の内部を通過する過程でも、ほとんど冷却されない。
ステム40が閉位置に配置された状態では、左右方向Xにおいて、螺旋溝41(樹脂流動部)の射出口11a側の溝先端41a(樹脂流動部先端)は、キャビティ11よりもランナ25側に位置している。このため、ステム40の先端部42(ステム40のうち溝先端41aよりも射出口11a側の部分)の外周面の全体が、金型10の射出口11a近傍の内周面に当接するが、先端部42の長さは、ステム40が閉位置に配置された状態において、射出口11aを形成するキャビティ11が先端部42を十分に冷却可能な程度の長さに設定されている。
【0027】
このため、ステム40の先端部42は、キャビティ11からの熱伝達の作用によって、冷却される。そのため、この冷却において、ステム40の左端面は、溶融樹脂2を十分に冷却できる。これにより、ステム40は、ゲート周辺の冷却不足に起因する成形不良(ゲートの過剰な伸び、ゲートの一部が毛羽立った状態なること等)を抑制できる。
【0028】
また、実施形態では、ステム40が閉位置に配置された状態において、連結穴35に関する位置関係において、螺旋溝41(樹脂流動部)の溝先端41aは、キャビティ11よりもランナ25側に位置し、かつ、断熱部であるインシュレータ32の設置範囲に位置しており、溶融樹脂2を溶融状態に維持することができる。
【0029】
(3)閉位置に配置されたステム40が連結穴35から退避・後退するまでの状態
図4(B)、
図4(C)に示すように、成形品であるプリフォーム3を離型後、次のプリフォーム3の射出成形を行う準備に応じて、ステム40は、連結穴35から退避・後退する。
図4(C)に示すように、ステム40の先端が連結穴35から退避・後退した状態では、螺旋溝41(樹脂流動部)の全体がランナ25内に収容される。
このため、射出成形機20は、螺旋溝41(樹脂流動部)内に滞留していた溶融樹脂2を、ランナ25内に戻すことができ(
図4(C)に示す矢印A参照)、成形に適した温度に再度加熱することができる。
【0030】
このように、成形システム1は、ステム40に螺旋溝41(樹脂流動部)を設けることにより、隙間S内に形成される樹脂皮膜2aに起因する成形不良を抑制できる。かつ、成形システム1は、ステム40の左端面が従来と同様に溶融樹脂2を冷却するので、溶融樹脂2の冷却不足に起因する成形不良も抑制できる。
【0031】
(比較例)
図6は、比較例の成形システム101のステム140の先端及びその周辺の構成の動作を説明する図である。
図6(A)から
図6(C)は、それぞれ
図4(A)から
図4(C)に対応した状態を示す。
図7は、比較例において、樹脂皮膜2aの剥離片2bに起因する成型不良を説明する図である。
比較例のステム140は、螺旋溝41(樹脂流動部)を備えない軸体である。
図6(A)、
図6(B)に示すように、比較例のステム140は、螺旋溝41(樹脂流動部)を備えていないので、ステム140の外周面と、連結穴35の内周面との隙間Sの大きさは、一定であり、また、流入可能な樹脂流量が実施形態よりも少ない。このため、溶融樹脂2は、隙間S内をランナ25へと戻る過程において、圧力が開放されることがなく、隙間S内を流れる溶融樹脂2の流速及び流量は、実施形態の流速及び流量よりも小さい。
【0032】
このため、比較例は、溶融樹脂2は、隙間S内に、実施形態よりも滞留しやすく。実施形態よりも樹脂皮膜2aが、形成されやすい。また、ステム140の左端面の近傍に存在する溶融樹脂2は、隙間S内に移動しにくい状態となる。すなわち、比較例は、溶融樹脂2が、連結穴35内に滞留しやすい。
図6(C)に示すように、これらが要因となり、プリフォーム103のショット数が進むに従って、樹脂皮膜2aは、射出口11a側に向けて、徐々に成長する。
樹脂皮膜2aが成長すると、その一部が剥離する場合がある。
図7に示すように、その剥離片2bは、成形品であるプリフォーム103に付着して残存したり、プリフォーム103に付着後に脱落すること等がある。これらのことは、成形不良の要因となる。
【0033】
(ステム40の螺旋溝41(樹脂流動部)による隙間Sを通る樹脂流量を増加効果)
図8は、実施形態のステム40の位置に応じた樹脂流動のシミュレーション結果を説明する図である。
図8(A)から
図8(D)は、ステム40が連結穴35内に進入する過程において、ステム40の位置に応じた樹脂流動を模式的に示す図である。
図8のシミュレーションでは、ステム40の移動ストロークが10.0mmであり、最右端に配置された状態を基準位置(移動量0mm)として、
図8(D)に示すように最左端に配置された状態の移動量を10.0mmとした。また、
図8(A)に示すように、移動量7.5mmの状態は、螺旋溝41(樹脂流動部)の溝先端41aが連結穴35に進入する直前の状態である。
図8(E)は、実施形態のステム40を用いた形態の樹脂流量と、比較例のステム140を用いた形態の樹脂流量を示す折れ線グラフである。比較例のステム140は、
図6のステム140と同じ形状である。溶融樹脂2の流量は、隙間Sの任意の縦断面を通過する流量である。
【0034】
図8(A)に示すように、螺旋溝41(樹脂流動部)の溝先端41aが連結穴35に進入する直前の状態では、螺旋溝41(樹脂流動部)は、溶融樹脂2の流動に対して、大きく影響しない。
図8(E)に示すように、溶融樹脂2の流量は、実施形態と、比較例とで同等である。
図8(B)、
図8(C)に示すように、ステム40の移動量が8.5mm、9.0mmと増えるに従って、螺旋溝41(樹脂流動部)と連結穴35との重複範囲が増加する。これに応じて、螺旋溝41(樹脂流動部)に流入する樹脂流量が多くなる。
図8(E)に示すように、隙間Sの任意の縦断面を通過する樹脂流量は、実施形態の方が、比較例よりも多くなる。このシミュレーションでは、実施形態の樹脂流量は、比較例の樹脂流量の1.5倍以上にすることができた。
【0035】
このように、実施形態のステム40が樹脂流量を極端に多くできる理由の1つは、螺旋溝41(樹脂流動部)が螺旋状であるためと考えられる。つまり、螺旋溝41(樹脂流動部)は、ステム40の外周面において軸方向及び円周方向の両方向に変位するので、軸方向に平行であり1方向に変位する直線溝の形態よりも、溝内に流入可能な樹脂容量を多くすることができる。
このため、ステム40の先端側から流れてきた溶融樹脂2は、螺旋溝41(樹脂流動部)に到達することにより、圧力が急激に抜けて、螺旋溝41(樹脂流動部)に流入することになる。
なお、直線溝の形態でも、溝が設けられていない比較例に比べると、樹脂皮膜2aの形成の抑制の効果、及び樹脂皮膜2aの成長の抑制の効果を期待できる。
【0036】
図8(D)、
図8(E)に示すように、ステム40が最左端に近付き(移動量9.5mm)、さらに、最左端(移動量10.0mm)に到達した状態では、樹脂流量は、実施形態と、比較例とで同等である。このため、実施形態のステム40は、金型10内部に充填された溶融樹脂2を、従来と同様に成形できる。
【0037】
以上説明したように、本実施形態の成形システム1は、連結穴35内に形成される樹脂皮膜2aに起因する成形不良を抑制できる。
なお、詳細な説明は省略するが、実際にステム40を試作し、プリフォーム3の成形を行った。その結果、実施形態のステム40を用いた成形は、比較例のステム140を用いたよりも、樹脂皮膜2aに起因する成形不良の発生率が低いことを確認できた。
【0038】
以上、本発明の実施形態について説明したが、本発明は前述した実施形態に限定されるものではなく、例えば、種々の変形や変更が可能であって、それらも本発明の技術的範囲内である。また、実施形態に記載した効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、実施形態に記載したものに限定されない。なお、前述した実施形態の構成は、それらの一部のみ用いること、又は適宜組み合わせて用いることもできるが、詳細な説明は省略する。
【解決手段】ステム40は、射出成形機20のランナ25と金型10内部に溶融樹脂を射出する射出口11aとを連結する連結穴35に取り付けられ、射出口11aを閉じる閉位置と閉位置からランナ25側に後退した位置であり射出口11aを開く開位置との間で移動可能に設けられ、閉位置に配置された状態において、連結穴35とステム40との間の隙間Sと、ランナ25との間を結ぶ螺旋溝41を備える。