【実施例】
【0046】
本発明を実施例に基づき、更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0047】
[培養細胞の調製]
以下のとおり、ヒト培養細胞を用いて、各種培養細胞を調製した。
【0048】
(HeLa/GFP細胞)
GFPをコードするプラスミドDNAを理研セルバンクから入手したHeLa細胞に導入してGFPを発現させHeLa/GFP細胞を調製した。発現については、プラスミドDNAとしては市販のpEGFPベクター(Clontech社)を使用し、プラスミドDNAの細胞への導入はEffectene transfection reagent kit(QIAGEN社、301425)を使用した。HeLa/GFP細胞は、10%(vol/vol)のウシ胎仔血清(FBS)と200μg/mlのGeneticin(登録商標)(Life Technologies社、11811−031)を含むDMEM培地で培養した。
【0049】
(HeLa/GFP−BAF細胞)
HeLa/GFP細胞における発現と同様の手順で、GFP−BAFをコードするプラスミドDNAを理研セルバンクから入手したHeLa細胞に導入してGFP−BAFを発現させHeLa/GFP−BAF細胞を調製した。HeLa/GFP−BAF細胞は、10%(vol/vol)のウシ胎仔血清(FBS)を含むDMEM培地で培養した。ここで、GFP−BAFとは、緑色蛍光タンパク質(GFP)とタンパク質BAFとの融合タンパク質である。
【0050】
(HeLa/GFP−Ran細胞)
HeLa/GFP細胞における発現と同様の手順で、GFP−RanをコードするプラスミドDNAを理研セルバンクから入手したHeLa細胞に導入してGFP−Ranを発現させHeLa/GFP−Ran細胞を調製した。HeLa/GFP−Ran細胞は、10%(vol/vol)のウシ胎仔血清(FBS)を含むDMEM培地で培養した。ここで、GFP−Ranとは、緑色蛍光タンパク質(GFP)とタンパク質Ranとの融合タンパク質である。
【0051】
(HeLa/GFP−Importin−β細胞)
GFP−Importin−βをコードするプラスミドDNAを理研セルバンクから入手したHeLa細胞に導入してGFP−Importin−βを発現させHeLa/GFP−Importin−β細胞を調製した。HeLa/GFP−Importin−β細胞は、10%(vol/vol)のウシ胎仔血清(FBS)を含むDMEM培地で培養した。ここで、GFP−Importin−βとは、緑色蛍光タンパク質(GFP)とタンパク質Importin−βとの融合タンパク質である。
【0052】
[粒子]
<抗GFP抗体結合ビーズの調製>
(抗GFP抗体が表面に直接結合した磁気ビーズ)
抗GFP抗体が表面に直接結合した磁気ビーズのビーズ懸濁液Aを以下のようにして調製した。
1)5μlのAnti−GFP−Magnetic beads(直径3μm;MBL社、D153−9)をエッペンチューブに入れ、マグネットを用いて磁気ビーズを回収した。
2)上清を除去し、回収したビーズにPBS(pH7.4)を加えて再懸濁した。
3)前記1)および2)と同様の操作を計3回行い、最終的に50μlのPBS(pH7.4)で再懸濁して、ビーズ懸濁液Aを調製した。
【0053】
(抗GFP抗体がプロテインG−抗体相互作用を利用して表面に結合した磁気ビーズ)
抗GFP抗体がプロテインG−抗体相互作用を利用して表面に結合した磁気ビーズのビーズ懸濁液Bを以下のようにして調製した。
【0054】
Dynabeads Protein G(直径2.8μm;Dynal社、DB10003)について、ビーズ懸濁液Aと同様の処理をして得られたビーズ懸濁液に、抗GFP抗体(MBL社、598)を、ビーズ1mgに対して80μgの比で混合し、1時間室温下でインキュベートした後、PBS(pH7.4)による洗浄を行って、ビーズ懸濁液Bを調製した。
【0055】
[実験1]
(細胞へのビーズ導入)
以下のとおり、Effectene法により細胞へのビーズ導入を行った。
1)ビーズ導入処理の前日に、HeLa/GFP−BAF細胞を2×10
5/dishの濃度になるように調製して、35mm glass bottom dish(MatTek社)へ播種した。
2)DNA溶液の代わりにビーズ懸濁液Aを使用した以外は、Effectene transfection reagent kit(QIAGEN社、301425)の説明書に従って、ビーズ懸濁液Aとキット中の各種溶液とを混合し、室温で15分静置した。これをビーズ懸濁液A−2とした。
3)前記1)で用意したdishの培地をビーズ懸濁液A−2と交換した。
4)CO
2インキュベータ内で37℃、1時間静置した。
5)dish上の細胞を10%(vol/vol)FBSを含むDMEM培地で2回洗浄した。
【0056】
(蛍光顕微鏡による観察(ライブセルイメージング))
1)細胞へのビーズ導入の処理後、培地を観察用培地(20mM HEPES(pH7.3)、フェノールレッド不含DMEM、10%FBS、80μg/mlカナマイシン硫酸塩)で置換した後、CO
2インキュベータ内で観察開始まで静置した。
2)観察用培地の上にミネラルオイルを重層した。
3)ミネラルオイル重層したdishを蛍光顕微鏡のステージ上に置いた。
4)37℃下で観察した。蛍光顕微鏡観察には、DeltaVision Core microscope system(Applied Precision社)を用い、レンズは、Olympus oil immersion objective lens UApo/340(倍率40倍、NA=1.35)、光学フィルターは、DeltaVision(登録商標)のGFPを観察するための標準的な仕様のフィルターセットを用いた。
【0057】
<実験1−1>タイムラプス観察
前記細胞へのビーズ導入の後、前記蛍光顕微鏡による観察を行い、観察開始から1分間隔で蛍光像を撮像した(タイムラプス観察)。結果は、
図1に示す。図中のバーの長さは、10μmである。時間「0min」は、細胞へのビーズ導入の前記5)の洗浄操作を行ってから約1時間の時点を示す。各撮像図「1」「2」および「3」は、順に経時変化であり、各撮像図「1」「2」および「3」は、特定の時間帯(ビーズ周囲で顕著なシグナル変化が見られた時間帯)の像のみを示している。
【0058】
白抜き矢印で示すように、時間「0min」では、ビーズ周囲にシグナル(GFP−BAF由来の蛍光)が見られなかったのに対し、時間の経過と共に、ビーズ周囲へのシグナルの集積が見られた。時間の経過と共に、細胞に取り込まれたビーズ表面にGFP−BAFが集積したことが分かる。なお、ビーズの右側にある大きな楕円形の領域は細胞核に相当する。
【0059】
<実験1−2>GFP−BAF陽性なビーズの割合
前記細胞へのビーズ導入の処理後、細胞に導入された複数のビーズについて前記蛍光顕微鏡による観察を行った。様々な時点で、後述する「ビーズ位置判定法」による染色を行い、細胞を4%(wt/vol)ホルムアルデヒド固定して、蛍光顕微鏡によりGFP−BAF陽性なビーズの数を調べた。結果は、
図2に示す。横軸は、前記細胞へのビーズ導入の前記5)の洗浄操作を行った時点を時間0として、そこからの経過時間(単位は時間(h))、縦軸は、細胞内に取り込まれたビーズ(incorporated beads)の個数における、GFP−BAFの集積が確認されたビーズ(GFP−BAF−positive anti−GFP−beads)の個数の割合(%)を示す。なお、「細胞内に取り込まれたビーズ(incorporated beads)」は、ビーズの位置判定法のRhodamineで染まらなかったものである。
【0060】
(ビーズ位置判定法)
本ビーズ位置判定法は、細胞への物質取り込みを阻害した条件下(4℃)で、細胞表面のみをRhodamineで染色することにより、細胞外に接着しているビーズ(Rhodamineで染まる)と、細胞内に取り込まれたビーズ(Rhodamineで染まらない)とを染め分けることができる方法である。
1)前記細胞へのビーズ導入の処理を行った後、細胞を氷冷PBS(pH7.4)で2回(各2ml)洗浄した。
2)液を完全に吸い取り、100μlの100μg/ml Sulfo NHS−LC−Biotin/PBS(pH8.0)を加え、4℃で10分静置した。
3)細胞を氷冷PBS(pH7.4)で2回(各2ml)洗浄した。
4)液を完全に吸い取り、10μg/ml Streptavidin−Rhodamineを加え、4℃で10分静置した。
5)細胞を氷冷PBS(pH7.4)で1回(2ml)洗浄した。
6)4%(wt/vol)ホルムアルデヒド/PBS(pH7.4)で、室温で15分固定した。
7)PBS(pH7.4)で3回洗浄し、観察までPBS中4℃で保存した。
【0061】
[実験2]
<実験2−1>細胞内膜タンパク質(emerin)の局在の観察
ビーズを導入したHeLa/GFP−BAF細胞およびHeLa/GFP細胞を対象に、細胞内膜タンパク質(emerin)の局在を観察した。
【0062】
HeLa/GFP−BAF細胞およびHeLa/GFP細胞(control)のそれぞれについて、[実験1]細胞へのビーズ導入の処理と同様に前記5)の洗浄操作を行い、それから2時間後に細胞を4%(wt/vol)ホルムアルデヒド固定して、後述するanti−emerin−antibody(ED1)を用いた細胞の免疫染色、およびDNAについてはDNA特異的染色試薬であるDAPIを用いた染色を行った。[実験1]蛍光顕微鏡による観察と同様の手順により、蛍光像を撮像した。免疫染色サンプル(固定後のサンプル)の観察には、Olympus oil−immersion objective lens PLAPON60XO SC(倍率60倍、NA=1.40)を使用した。光学フィルターは、DeltaVision(登録商標)のGFPを観察するための標準的な仕様のフィルターセットを用いた。結果は、
図3に示す。図中のバーの長さは、10μmである。白抜き矢印で示すように、HeLa/GFP−BAF細胞においては、GFP由来のシグナル(GFP−BAF陽性)およびemerin陽性であることが確認できたが((2)および(3)上段)、三角矢印で示すように、HeLa/GFP細胞においては、GFP由来のシグナル(GFP陽性)は確認できたが、emerin陰性であった((2)および(3)下段)。
【0063】
(細胞の免疫染色)
1)細胞が生育しているdishに、ホルムアルデヒドの終濃度が4%(wt/vol)になるようにホルムアルデヒド水溶液を添加することで細胞を化学固定し(ホルムアルデヒド固定)、室温で15minインキュベートした。
2)溶液を2mlのPBS(pH7.4)と置換し、室温で5分間洗浄した後、同様の洗浄操作を計3回行った。その後、0.1%Triton X−100/PBS(pH7.4)で室温5分インキュベートした。
3)PBS(pH7.4)で5分×3回洗浄後、1%BSA/PBS(pH7.4)で室温で1時間インキュベートした。
4)Anti−emerin antibody等の抗体を1%BSA/PBS(pH7.4)で100〜500倍程度希釈して得た抗体溶液を、3)の細胞が生育しているdishに入れ、4℃で一晩静置し、dish上の細胞を染色した。
5)一晩静置後、PBS(pH7.4)で5分×3回洗浄後、室温で3時間二次抗体反応を行った後、PBS(pH7.4)で5分×3回洗浄した。二次抗体溶液としては、Alexa594で標識された抗ラビットIgG抗体(Invitrogen社)を1%BSA/PBS(pH7.4)で1000倍希釈した溶液を用いた。
【0064】
<実験2−2>emerin陽性なビーズの割合
<実験2−1>の手順と同様にして、GFP−BAFあるいはGFP陽性となったビーズにおけるemerin陽性となったビーズの割合を調べた。結果は
図4に示す。データは、独立した三回の実験を行った平均±標準偏差の形で示しており、各実験においてGFP−BAFあるいはGFP陽性となった50個のビーズについて調べた。
【0065】
[実験3]ビーズを導入したHeLa/GFP−BAF細胞およびHeLa/GFP細胞のビーズ周囲の観察
【0066】
HeLa/GFP−BAF細胞およびHeLa/GFP細胞(control)のそれぞれについて、[実験1]の細胞へのビーズ導入と同様の処理を行った後、[実験1]蛍光顕微鏡による観察と同様の手順により、GFP−BAF陽性またはGFP陽性なビーズを確認してから1時間が経過した時点で細胞を2.5(wt/vol)グルタルアルデヒドで固定し、後述するLive CLEM法により、蛍光像および電子顕微鏡像を撮像した。結果は、
図5に示す。図中のバーの長さは、蛍光像は2μm、全体像は1μm、ならびに拡大図は100nmである。
【0067】
図5中、「蛍光像」は、GFP−BAF(上段の蛍光像)あるいはGFP(下段の蛍光像)のビーズ周囲への集積を示し、「電子顕微鏡像」は、蛍光像で示したのと同一のビーズについて、電子顕微鏡法により細胞内構造を(特に、膜構造に注目して)観察した結果を示す。また、電子顕微鏡像については、「ビーズの全体像」および一部分の「拡大像」を示し、拡大像のうち、注目している部分を模式図として示している。拡大図および模式図中、矢印または三角矢印が注目している膜構造(脂質二重層が二枚ある、二重膜構造)を示す。上段の模式図は、BAFに依存的に形成される膜構造、下段の模式図は、オートファジーに典型的な膜構造、白抜き矢印はビーズ表面に集積させた目的分子(GFP−BAF等)と思われる電子密度の物体が存在する領域を示す。
【0068】
図5に示されるとおり、GFP−BAFではビーズ表面に集積したGFP−BAFに依存して膜構造が形成されるため、ビーズ表面をぴったりと覆うような膜が形成されているのに対し(上段の全体像)、GFP(Control)ではそのような膜の形成は見られず、オートファジー関連の膜構造がビーズのある領域一帯を覆うように形成されている(下段の全体像)ことが分かる。これは、オートファジー関連の膜構造形成のターゲットとなっているのが、ビーズそのものではなく、ビーズ周囲に残存しているエンドソーム膜の断片だからであると考えられる。
【0069】
(Live CLEM法による観察)
1)蛍光顕微鏡による観察
細胞を2.5(wt/vol)グルタルアルデヒドで固定した後、蛍光顕微鏡として、Olympus oil−immersion objective lens PLAPON60XO SC(倍率60倍、NA=1.40を用いて、三次元画像(0.2μm間隔で40−60の焦点面)を撮像した。この画像について、当該蛍光顕微鏡システムに搭載されたソフトを用いて非焦点面に由来するシグナルを除去した。
【0070】
2)電子顕微鏡による観察
試料は、1%OsO
4(日新EM社、3002)で固定し、2%(wt/vol)酢酸ウラニル(Merk、8473−1M)で染色して、EPON812(TAAB、T024)で包埋した。蛍光顕微鏡によって観察された細胞と同一の細胞をカバーガラス上の番地からから特定した。80nmの切片を作製し、2%酢酸ウラニルとクエン酸鉛(Sigma−Aldrich、18−0875−2)で染色した。電子顕微鏡像は、透過型電子顕微鏡(80kV、JEOL、JEM−1400)を用いた。蛍光像と相間がある電子顕微鏡像が得られた。
【0071】
[実験4]目的分子の違いによる膜構造の観察
HeLa/GFP−BAF細胞に、抗GFP抗体がプロテインG−抗体相互作用を利用して表面に結合した磁気ビーズを導入した。導入は、ビーズ懸濁液Aに代えてビーズ懸濁液Bを用いた以外は、[実験1]の細胞へのビーズ導入の処理と同様に行った。細胞をグルタルアルデヒド固定した後、[実験3]のLive CLEM法の電子顕微鏡による観察と同様に、試料を調製して電子顕微鏡像を撮像した。結果は、
図6(1)に示す。図中のバーの長さは、100nmである。
【0072】
HeLa/GFP−Ran細胞、抗GFP抗体がプロテインG−抗体相互作用を利用して表面に結合した磁気ビーズを導入した。導入は、HeLa/GFP−BAF細胞に代えて、HeLa/GFP−Ran細胞を用い、ビーズ懸濁液Aに代えてビーズ懸濁液Bを用いた以外は、[実験1]の細胞へのビーズ導入の処理と同様に行った。細胞をグルタルアルデヒド固定した後、[実験3]のLive CLEM法の電子顕微鏡による観察と同様に試料を調製し、電子顕微鏡像を撮像した。結果は、
図6(2)に示す。図中のバーの長さは、100nmである。
【0073】
HeLa/GFP−Importin−β細胞、抗GFP抗体が表面に直接結合した磁気ビーズを導入した。導入は、HeLa/GFP−BAF細胞に代えて、HeLa/GFP−Importin−β細胞を用いた以外は、[実験1]の細胞へのビーズ導入の処理と同様に行った。細胞をグルタルアルデヒド固定した後、[実験3]のLive CLEM法の電子顕微鏡による観察と同様に試料を調製し、電子顕微鏡像を撮像した。結果は、
図6(3)に示す。図中のバーの長さは、100nmである。
【0074】
図6から分かるように、発現させた目的分子の種類に応じて、様々な形態の細胞内膜構造がビーズ(粒子)の周囲に形成された。RanやImportin−βは、核内外物質輸送や核膜形成などに関与していると言われているタンパク質であり、
図6に示されるとおり、核膜孔複合体様の構造体(矢印)を含み、発現(集積)させた目的分子に応じてそれぞれ異なる膜構造がビーズ周囲に形成された。GFP−RanおよびGFP−Importin−βを発現させた場合のいずれも、GFP−BAFを発現させた場合と同様に、オートファジー関連とは異なる膜構造が形成されたことが分かる。