【実施例】
【0020】
実施例では、ZnO低摩擦コーティングをベアリングボールに施し、ベアリングボール球表面上に作製されたコーティング自体及びこのZnOコーティング付きベアリングボールの評価を行った。なお、ここでは球面上へのコーティングの例を示すが、円柱、円錐台などの球体以外の回転体表面へのコーティングでも本発明は同様に適用できる。
【0021】
本願発明者が先に見出した低摩擦のZnOスパッタコーティング膜(非特許文献1〜3)を球体表面などの曲面に施すことにより高性能の低摩擦ベアリングボールを実現するにあたっては、先ず重要なこととして、ZnOコーティングに低摩擦効果を発現させるために、上述したように、その膜の結晶配向性を制御する必要があることが挙げられる。以下ではスパッタ条件を適宜設定することにより、低摩擦をもたらす結晶配向を曲面上に実現できたことを示す。また、他の重要な事項として、本願発明者が見出したZnOコーティングによる高度の低摩擦化が実現されたベアリングボールの部材の性能をどのようにして評価するかということがある。以下で、これらがどのようにして実現できたかを具体的に説明する。
【0022】
本実施例においてZnOコーティングを行うために使用した装置の概念図を
図1に示す。本実施例では金属ワイヤーのメッシュで構成された円筒形の籠2中にZnOコーティング対象のベアリングボール1を収容して回転軸3を駆動して回転させながらスパッタガン4からZnOを供給することにより、ZnOをベアリングボール1上にスパッタした。ZnOコーティング対象としては、市販品のアンギュラベアリングのベアリングボール1を使用し、高性能の低摩擦ベアリングを実現することができた。
【0023】
[ZnOコーティングの成膜]
アンギュラベアリングには、GMN社製HY S6000(ベアリング内径:10mm、外形:26mm;詳細な寸法等の仕様は非特許文献5を参照)を用いた。このベアリングボール1は、高温用のSi
3N
4セラミックス製であり、直径は4.762mmであった。このベアリングボール1を
図1に示すようにメッシュの円筒形の籠2に収容した。籠2を構成するワイヤー直径は0.55mmφ、メッシュサイズ(2本のワイヤー間の距離)は、2.6mmとした。これにより、メッシュサイズ/直径は2.6mm/4.762mm×100=54.59...≒55%となった。ベアリングボール1を収容した籠2をゆっくりと回転させながら、マグネトロンスパッタ法を用いて厚さ300nmのZnO膜をボールの前面にむらなくコーティングすることができた。その成膜条件は、ターゲットとしてZnディスクを使用し、RF100W、スパッタガス:酸素・アルゴン混合(酸素分圧比60%、70%)、バイアスなし、サンプル加熱なしとし、スパッタガン4とサンプルとの距離hを何通りか変化させて成膜を行なった。ここで、距離hは、スパッタガン4のターゲット表面を含む平面上から籠2の外側までの垂直距離とした。また、籠2の中には積み重ならない量のボール1を収容することで、スパッタガン4とサンプルであるベアリングボール1までの距離にベアリングボール1毎の違いが出ないようにした。
【0024】
図2の右側に、このようにしてコーティングを施したベアリングボールの写真を示す。写真から容易に見て取れるように、ベアリングボール表面全体が完全な鏡面となっていて、一様かつ緻密なコーティングが施されている(
図2では隠れて見えないベアリングボール裏面も全く同じく完全な鏡面となっていた)。これに対して、同図左側に示す失敗例では、その表面は鏡面ではなく光を乱反射しており、表面が一様になっていないことがわかる。また、その表面には目視ではっきりとわかる凹凸があり、コーティングが剥離したり裂け目が入っていることもわかる。なお、メッシュサイズと球の直径との比の値やそのほかの成膜条件を変化させてZnO膜のコーティングを行った際、鏡面状コーティング形成に失敗した場合には全て同図左側によく似た外観を呈した。
【0025】
[ZnOコーティング済みベアリングボールの評価(TEMによる観察、ジェットエンジン中での使用試験)]
距離h=55mmとして作製されたZnOコーティングボールの断面TEM像(酸素分圧比60%)を
図3に示す。
図3から、ベアリングボール(Si
3N
4 ball)においても、その表面上のZnOコーティング膜(ZnO coating)に、低摩擦効果の発現に重要であるZnO(002)面の柱状構造が生成されていることが確認された。このEDX分析結果を
図4に示す。この分析結果からわかるように、Zn:54.4%,O:43.92%であり、ほぼ1:1の組成比であることとからも、ZnOコーティングであることを追証した。
【0026】
上述のようにしてZnOコーティングを施したベアリングボールを元の位置に戻して再組み立てを行ったベアリングを小型のジェットエンジンに入れ、半日程度の断続的な運転を行った。この運転を行う際のベアリングの潤滑のため、灯油にタービン専用オイルを混合比6〜7%で混合したもの(灯油13.5〜14リットルに対して、タービン専用オイル一缶(946mL))を使用した。タービン専用オイルとして具体的には昭和シェル株式会社から提供されている航空機用エンジン、航空機転用型自家発電用・船舶用ガスタービンエンジン用高性能タービンオイルAeroShell Turbine Oil 500(エーロシェルタービンオイル500;ASTO500)を使用した(AeroShellはシェル ブランズ インターナショナル アクチェンゲゼルシャフトの登録商標)。当該タービン専用オイルの詳細は非特許文献6を参照されたい。
【0027】
その後ベアリングボールを取り出して、同様に断面TEM像を得た。その結果を、「After jet engine test (back bearing)」と表示されている
図5に示す。
図4に示したコーティング膜(ZnO coating)はジェットエンジン中で使用した後も残存しており、この厳しい条件の試験に耐えたことが確認された。また、柱状の結晶柱が、部分部分で結晶粒に変化していることが明らかとなった。このように、非常に過酷な耐久試験を行なった後においても、ZnOコーティングは、残存し、そして、その結晶配向性も変化していることが明白となった。これにより、結晶配向が変化するほど過酷な条件で使用したにもかかわらず、コーティング膜は単に摩耗しただけであって、剥離等の、まだコーティング膜が残っている状態での突然の破壊が起こらないことが確認された。つまり本実施例により、コーティングが強固に付着していて、寿命の予測性が非常に高い高信頼性低摩擦コーティングが実現できたことがわかる。ただし、本来の性能が発揮される理想的な結晶配向性が、そうでない配向性のものに変化してしまう事態が起こった。
【0028】
[ZnOコーティングを有するベアリングボールの評価(TEMによる観察、空気中及び油中での摩擦係数)]
上で作製したZnOコーティング付きのベアリングボールを組み込んだベアリングを、ベアリング専用治具を介して摩擦試験装置に取り付けて回転させることでその回転中の摩擦係数の時間変化を測定し、またその後にベアリングボールを取り出して断面TEM像を撮影するという性能評価を行った。この性能評価において、摩擦試験装置として新東科学株式会社製の広域荷重摩擦磨耗試験機TYPE:35を使用し、雰囲気は大気中(26℃、湿度54%)及び油中(灯油に上述のタービンオイル(AeroShell Turbine Oil 500)を6%添加したもの)にて行なった。また、回転数は3000rpmとし、荷重は20kgWとした。なお、当該試験機システムにはベアリングを評価するための冶具類がないため、本願出願人にて作製したベアリング専用冶具を使用した。
【0029】
このベアリング専用治具の概略図を
図9に、また具体的な構造の図面を
図10A〜
図10Eに示す。
図9に概略を示すベアリング専用治具10の上部構成要素であるベアリング軸11が上部回転・荷重ユニット(摩擦試験装置)の主軸14に結合されて、摩擦試験装置からの回転及び荷重を、治具10の下部構成要素であるハウジング12内に収容される試験対象のベアリング13に伝達する。なお、
図9でベアリング13の上面部分だけが実線で描かれ、それより下側が破線となっているのは、ベアリング13はハウジング12中心部に設けられた凹部であるベアリング収容部内に固定されるようになっているために(詳細は後述)、その上面以外は目視できないからである。この治具10を使用するに当たっては、治具10を構成するハウジング12の下部穴にベアリング13を埋没させ、上からつめで固定する。なお、このつめは図中には明示せず、ボルト(
図10C中のベアリング固定ネジ20)のみでベアリング13を固定するように図示してあるが、実際にはボルトとの共締めでつめを固定し、そのつめでベアリング13の外側のリングを固定するように構成されている。なお、ベアリング13の固定はベアリング固定ネジ20だけを使用して行うようにしてもよい。ベアリング13と装置上部の回転ロッド(ベアリング軸11)とは中心軸を合わせて固定可能な構造になっている。試験時の温度変化は熱電対にて測定できる。熱電対を設置するには、例えば上記つめによってベアリング13のアウターリング上に熱電対を固定すればよい。また、ベアリング取り付けブロック(ハウジング12)のうちのベアリング13の上面よりも上にある高さ40mmの薄壁の円筒部分12aは透明プラスチック円筒ケースで構成されており、透明プラスチックでできた円筒状部材と円筒状部材下端部のリング状パッキンとを、ハウジング12の部分にねじ込むことでハウジング12の基部に固定される。このようにハウジング12の上部が円筒状で、ハウジング12との接合部はリング状パッキンでシールされているので、その中に液体を収容可能であり、油で満たした中でベアリング13を回転させる実験が可能である。更に、この円筒ケースは透明であるため、試験中の様子も目視により観察できる。
【0030】
試験終了後にベアリング専用治具10からベアリング13を取り外す必要がある。上述したように、ベアリング専用治具10側のベアリング軸11とベアリング13の回転部の中心とがずれないようにするため、治具10中のベアリング収容部23とベアリング13との間のクリアランスは小さくなっている。更に、試験中に強い圧力を上から印加するため、試験終了後にはベアリング13は、収容部23に強く嵌まり込むことになる。従って、試験終了後にベアリング13を手で引き抜くことは、通常は極めて困難である。そこで、このベアリング専用治具10においては、
図10Bに示す構造を設けることで、ベアリング13を容易に引き抜くことができるようにしている。
【0031】
図10Bにおいて、ベアリング13の中心孔からベアリング抜きネジ21を差し込んで、ベアリング抜き治具22の中央部にねじ込むと、ベアリング抜き治具22が、その上に載っているベアリング13と共にせり上がる。これにより、強固に嵌まり込んだベアリング13を簡単に引き抜くことができる。
【0032】
ベアリング専用治具10へのベアリング13の装着から、ベアリング試験、最後にベアリング専用治具10からのベアリング13の取り外しまでの手順をより具体的に説明すれば、以下の通りである。試験ベアリング13をベアリング専用治具10中のベアリング収容部23に装着する際、ベアリング抜き治具22に形成した切欠き凹部とベアリング収容部23に形成した凸部との位置を合わせて、
図10Aに示すようにハウジング12中心にあるベアリング収容部23の底に装着する。このように、両者の凹部と凸部とを位置合わせしてこれらが互いにはまり合うように装着することにより、ベアリング13の取り外し時に生じることがあるベアリング抜き治具22の回転を抑制することが出来る。もちろん、これら凹凸は上に説明したものとは互いに逆の部材に設置してもよい。次いで、前もって、上端を摩擦試験装置本体の主軸14に係合させて主軸に仮止めしてあったベアリング軸側治具(ベアリング軸11)(
図10E)の下端をベアリング13に差し込んで係合させる。また、この間に、ベアリング固定ネジ20やつめを使用した試験ベアリング13の固定を上述した通りに行う。更に、ここにおいて、必要に応じて熱電対等の取り付けも行うことができる。
【0033】
仮止めしてあったベアリング軸11の上端と摩擦試験装置本体の主軸14とを、この段階で
図10Eに示すようにボルト(治具固定ネジ24)で固定することにより、両者は完全に結合され、また芯出しも完了する。これにより、摩擦試装置本体からの回転力を、ベアリング軸11を介してベアリング13に確実に伝達できるようになる。ここで、
図10A及び
図10Eに示すように、ベアリング軸11の上部はテーパ状になっており、ベアリング軸11と摩擦試験装置本体の主軸14の中心軸を合わせやすい構造となっているため、本治具10を使用することで、ベアリング13との中心軸を合わせてからベアリング軸11を完全に固定できるので、特別な注意や熟練を要することなく、摩擦試験装置の主軸14−ベアリング軸11−ベアリング13の心出しが確実に行われるという効果も得られる。
【0034】
このようにしてベアリング13を摩擦試験装置本体に確実に、かつ両者の回転の中心が正確に一致するように取り付けた後、ベアリング13の試験が開始される。
【0035】
ベアリング13の試験が終了したら、先ず、治具固定ネジ24を取り外してからベアリング軸11と主軸との係合を解除する。また、ベアリング軸11とベアリング13との係合を解除するとともにベアリング13の周囲をハウジング12に固定しているベアリング固定ネジ20及び熱電対固定ネジを外す。その後、ベアリング抜き治具22の中心内壁に切られている雌ネジに係合するベアリング抜き雄ネジ21を、ベアリング13の上から挿入して回転させる。これによってベアリング抜き雄ネジ21が下向きに進行し、更にその先端がベアリング主要部の底に突き当たって下向きの力をそこに印加する。ベアリング抜き雄ネジ21を回転し続けることによって、前記ベアリング抜き治具22は先に説明した凹部と凸部とのかみ合いによって回転せずに、ベアリング13がベアリング抜き治具22とともにベアリング収容部23からせり上がる。このようにして、ベアリング13を簡単にベアリング専用治具10から取り外すことができる。
【0036】
上述のようにして測定した、油中におけるベアリングの摩擦係数の時間変化例を
図6A及び
図6Bに示す。未コーティングの場合に比べて、ZnOコーティングを施したもの(
図6Aに示すところの酸素分圧比60%、h=55mm、60mm及び65mm)は、摩擦係数が低減し、また摩擦係数の時間変動が小さいという意味で安定することがわかった(なお、やや見づらいが、
図6A中で一番下に位置する細線で縁取りされたグラフがh=65mmの場合を示す)。実験後のコーティングの断面TEM像を「After bearing test」と表記されている
図7に示す。ジェットエンジンに導入した試験後の断面TEM像と比べて結晶配向の乱れは少ない。コーティング厚さは減少した。その他、酸素分圧比70%においても
図6Bからわかるように、コーティングなしの場合に比べて摩擦係数の低下やその時間変化の減少(安定化)など、ZnOコーティングの効果が現れた。
【0037】
図8A〜
図8Cに示すように、大気中でも同様に摩擦低減効果が発現した。このように、ZnOコーティングを有する本実施例のベアリングボールは、油中、大気中共に、未コーティングのベアリングボールと比べて摩擦性能が飛躍的に向上している。さらには、長時間の使用後、このコーティング膜が摩耗にて消失したとしても、そこからは本来のSi
3N
4セラミックス製ボールでの使用が開始されることとなり、安全性は極めて高く、さらに寿命も飛躍的に向上させることが可能である。
【0038】
以下の表に、本実施例で得られたZnOコーティングが施されたベアリングボールを使用した場合の空気中及び油中での摩擦係数を、コーティングなしの場合の比較例とともに示す。なお、表中に示した摩擦係数は、ベアリングを回転させて摩擦係数の測定を開始してから100〜200秒経過後に摩擦係数の減少が落ち着いた(なじんだ)平坦な領域(つまり、グラフ上で摩擦係数の時間変化が少なくなる部分)における平均値である。
【0039】
【表1】
【0040】
上の表からわかるように、酸素分圧比及び距離hはZnOコーティングの摩擦係数に影響を与えることがわかる。しかし、これらのパラメーターを変化させても
図2の右側に示す非常に一様な鏡面の表面を持つZnOコーティングを与えるメッシュサイズ/回転体直径の比の値の範囲にはあまり影響を与えることはなく、この比の値が40〜95%の範囲内では良好な鏡面状のZnOコーティングが形成された。つまり、酸素分圧比及び距離hはZnOコーティングの一様性や緻密さよりは、出来上がった鏡面状コーティングを形成するZnOの結晶配向性に影響するので、結局その摩擦係数にも影響を与える。ただし、これらのパラメーターはZnOコーティングの曲面への密着性に僅かに影響を与える場合がある。