(58)【調査した分野】(Int.Cl.,DB名)
励起光によって励起される蛍光体が含有された蛍光基板の表面、若しくは当該蛍光基板上に設けられた機能材料層の表面にフォトニック構造を有する蛍光光源用発光素子の製造方法であって、
前記蛍光基板の表面若しくは前記機能材料層の表面に感光性材料層を形成するステップと、
コヒーレント光源の出力光を2以上に分岐した光を、角度調整手段により、所定の干渉角度に調整し交差させて干渉パターンのピッチを可変とし、第一の干渉パターンおよび当該第一の干渉パターンに対して干渉縞の長手方向が所定の角度で交差する第二の干渉パターンを、それぞれ前記蛍光基板よりも小さい照射面積を有するように形成し、前記第一の干渉パターンと前記第二の干渉パターンとを重畳させて前記感光性材料層を複数回に分けて干渉露光するステップと、
前記干渉露光後の感光性材料層における前記干渉露光の照射エリア若しくは非照射エリアを除去して、前記感光性材料層に微細パターンを形成するステップと、
前記感光性材料層の微細パターンを用いて、前記蛍光基板若しくは前記機能材料層をエッチングして前記フォトニック構造を得るステップと、を含み、
前記フォトニック構造が、励起光受光面とされていると共に、蛍光出射面とされていることを特徴とする蛍光光源用発光素子の製造方法。
前記エッチングを行う前に、前記感光性材料層に形成された微細パターンに対して熱処理を行い、当該微細パターンを整形するステップをさらに含むことを特徴とする請求項1〜5のいずれか1項に記載の蛍光光源用発光素子の製造方法。
励起光によって励起される蛍光体が含有された蛍光基板の表面、若しくは当該蛍光基板上に設けられた機能材料層の表面にフォトニック構造を有する蛍光光源用発光素子の製造方法であって、
コヒーレント光源の出力光を2以上に分岐した光を、角度調整手段により、所定の干渉角度に調整し交差させて干渉パターンのピッチを可変とし、第一の干渉パターンおよび当該第一の干渉パターンに対して干渉縞の長手方向が所定の角度で交差する第二の干渉パターンを、それぞれ前記蛍光基板よりも小さい照射面積を有するように形成し、前記第一の干渉パターンに対して前記第二の干渉パターンが重畳するように前記蛍光基板若しくは前記機能材料層を複数回に分けて干渉露光するステップと、
前記蛍光基板若しくは前記機能材料層の一部を除去して前記フォトニック構造を得るステップと、を含み、
前記フォトニック構造が、励起光受光面とされていると共に、蛍光出射面とされていることを特徴とする蛍光光源用発光素子の製造方法。
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記のような蛍光光源装置においては、蛍光出射面からの蛍光の出射効率を改善するために、波長変換部材における蛍光出射面とされる表面に、凸部が周期的に配列されてなるフォトニック構造を設けることが望ましい。
従来の表面微細加工方法としては、NIL(ナノインプリントリソグラフィ)によるパターニング、ステッパによるパターニング、アルカリエッチングによる表面粗さの増大などの方法がある。
【0005】
NILは研究が盛んであり、マスターモールドを用意すれば容易に微細加工の量産化が実現できるという利点がある。しかしながら、実際には、ワークとマスターモールドとの都度接触が必要な方法であるため、適用には様々な課題がある。具体的には、マスターモールドの形状の劣化、フォトレジスト充填時の気泡混入によるパターン形成不良、パーティクルの混入による転写不良などである。また原理的に、反りの大きいワークには適用が困難である。これらの理由から、NILは量産時の歩留まりが低く、高精度なパターニングには不向きである。
【0006】
さらに、NILはコスト面でも課題がある。NILではワークとマスターモールドとの都度接触により、マスターモールドの劣化が生じ、定期的な交換が必要となる。マスターモールドは、広い面積に微細な形状が精度よく形成されたものであり、比較的高価な加工法である電子ビーム加工やKrFステッパによるリソパターニングが不可欠である。そのため、量産時にはランニングコストの増加が課題となる。また、設計変更のたびに新しいマスターモールドが必要となるため、開発用途や少量多品種の生産にも不向きである。
また、ステッパによるパターニングは、焦点深度が浅く、ワークには高い平坦度が要求される。そのため、固体光源の表面加工といった用途には不向きである。
【0007】
さらに、アルカリエッチングによる加工は、エピタキシャル成長法等により成長され、結晶軸のそろった結晶性の高い層に対しては有効であり、自発的にモスアイ構造を形成することが可能である。しかしながら、上記のような高い結晶性を持たないYAG焼結体などの単結晶又は多結晶で構成される蛍光基板に対しては、アルカリエッチングで自発的にモスアイ構造を形成することはできない。
そこで、本発明は、低コストで、蛍光出射面とされる表面に高精度なフォトニック構造を形成することができる蛍光光源用発光素子の製造方
法を提供することを課題としている。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明に係る蛍光光源用発光素子の製造方法の一態様は、励起光によって励起される蛍光体が含有された蛍光基板の表面、若しくは当該蛍光基板上に設けられた機能材料層の表面にフォトニック構造を有する蛍光光源用発光素子の製造方法であって、前記蛍光基板の表面若しくは前記機能材料層の表面に感光性材料層を形成するステップと、コヒーレント光源の出力光を2以上に分岐した光を所定の干渉角度で交差させて、
第一の干渉パターンおよび当該第一の干渉パターンに対して干渉縞の長手方向が所定の角度で交差する
第二の干渉パターンを、それぞれ前記蛍光基板よりも小さい照射面積を有するように形成し、前記第一の干渉パターンと前記第二の干渉パターンとを重畳させて前記感光性材料層
を複数回に分けて干渉露光
するステップと、前記干渉露光後の感光性材料層における前記干渉光の照射エリア若しくは非照射エリアを除去して、前記感光性材料層に微細パターンを形成するステップと、前記感光性材料層の微細パターンを用いて、前記蛍光基板若しくは前記機能材料層をエッチングして前記フォトニック構造を得るステップと、を含む。
【0009】
このように、干渉露光により微細パターンを形成する。干渉露光は微細フォトマスクを用いずに微細パターン露光が可能であり、ワークに対して接触する要素がない。そのため、従来のナノインプリント法等と比較して、量産時の歩留まりを高めることができる。また、ナノインプリント法のように高価なマスターモールドを必要としないため、低コストで高精度なパターニングが可能となる。さらに、干渉露光を採用することで、YAG焼結体などの単結晶又は多結晶で構成される蛍光基板に対しても高精度パターニングが可能となる。したがって、蛍光基板の表面若しくは蛍光基板上に形成された機能材料層の表面に二次元周期的な微細パターンが形成された蛍光光源用発光素子を容易且つ精度良く製造することができる。
【0010】
また、上記の蛍光光源用発光素子の製造方法において、前記干渉露光を行うステップでは、前記感光性材料層に形成される微細パターンが正方配列となるよう干渉露光を行ってもよい。すなわち、干渉縞の長手方向が90°交差するように干渉露光すれば、正方配列のモスアイ構造を得ることができる。
さらに、上記の蛍光光源用発光素子の製造方法において、前記干渉露光を行うステップでは、前記感光性材料層に形成される微細パターンが三方配列となるよう干渉露光を行ってもよい。すなわち、干渉縞の長手方向が60°交差するように干渉露光すれば、三方配列のモスアイ構造を得ることができる。この場合、正方配列のモスアイ構造と比較して細密構造とすることができる。
【0011】
また、上記の蛍光光源用発光素子の製造方法において、前記干渉露光を行うステップは、前記感光性材料層に対して複数回の干渉露光を行うステップであって、第2回目以降の干渉露光における干渉縞の長手方向を、第1回目の干渉露光における干渉縞の長手方向と所定角度で交差させてもよい。このように、干渉露光を複数回実施することで、容易に所望の微細パターンを形成することができる。
さらにまた、上記の蛍光光源用発光素子の製造方法において、前記干渉露光を行うステップでは、前記第1回目の干渉露光を行った後に、前記
蛍光基板を前記所定角度回転させ、前記第2回目以降の干渉露光を行ってもよい。このように、基板を回転させることで、容易に複数回露光を実現することができる。
【0013】
また、上記の蛍光光源用発光素子の製造方法において、前記エッチングを行う前に、前記感光性材料層に形成された微細パターンに対して熱処理を行い、当該微細パターンを整形するステップをさらに含んでもよい。
このように、熱処理工程により微細パターンを整形するので、形成後の微細パターンの精度をより向上させることができる。また、この熱処理工程により、微細パターンの幅を広げ、互いに隣接する凸部の間隔を狭くすることもできる。すなわち、より密に配列されたモスアイ形状のフォトニック構造を形成することができる。
【0014】
さらに、上記の蛍光光源用発光素子の製造方法において、前記感光性材料層は、ガラス転移点を有する材料から構成されており、前記微細パターンを整形するステップでは、前記熱処理として、ガラス転移温度を上回る温度で前記感光性材料層に形成された微細パターンを加熱する処理を行ってもよい。
このように、ガラス転移温度を上回る温度で加熱する処理を施すことで、異方性を有する形状(例えば、楕円形状)の微細パターンを、表面張力により正円形状に自然に整形することができる。また、これにより、感光性材料層に形成された微細パターンをマスクとして用い、基板若しくは基板上に設けられた機能材料層をエッチングして除去した際に、真円形状の底面を持つ精度の良いモスアイ構造を形成することができる。
【0015】
また、本発明に係る蛍光光源用発光素子の製造方法の一態様は、励起光によって励起される蛍光体が含有された蛍光基板の表面、若しくは当該蛍光基板上に設けられた機能材料層の表面にフォトニック構造を有する蛍光光源用発光素子の製造方法であって、コヒーレント光源の出力光を2以上に分岐した光を所定の干渉角度で交差させて、
第一の干渉パターンおよび当該第一の干渉パターンに対して干渉縞の長手方向が所定の角度で交差する
第二の干渉パターンを、それぞれ前記蛍光基板よりも小さい照射面積を有するように形成し、前記第一の干渉パターンに対して前記第二の干渉パターンが重畳するように前記蛍光基板若しくは前記機能材料層を
複数回に分けて干渉露光
するステップと、前記蛍光基板若しくは前記機能材料層の一部を除去して前記フォトニック構造を得るステップ
と、を含む。
【0016】
このように、干渉露光により微細パターンを形成するので、従来のナノインプリント法等と比較して、量産時の歩留まりを高めることができると共に、低コストで高精度なパターニングが可能となる。したがって、蛍光基板の表面若しくは蛍光基板上に形成された機能材料層の表面に微細パターンが形成された蛍光光源用発光素子を容易且つ精度良く製造することができる。
【発明の効果】
【0019】
本発明によれば、露光工程において干渉露光を行うので、感光性材料層からなる微細パターンを低コストで高精度に形成することが可能となる。したがって、蛍光基板の表面若しくは当該蛍光基板上に設けられた機能材料層の表面に高精度なフォトニック構造が形成された蛍光光源用発光素子を、低コストで製造することができる。
【発明を実施するための形態】
【0021】
以下、本発明の実施の形態を図面に基づいて説明する。
(第1の実施形態)
図1は、本実施形態の露光装置を示す概略構成図である。
図中、符号1は露光装置である。露光装置1は、光源2と、ビームエキスパンダ3と、打ち下ろしミラー4と、シャッター5と、ビーム分岐素子6と、折り返しミラー7a,7bと、集光レンズ8a,8bと、ピンホール9a,9bと、コリメートレンズ10a,10bとを備える。また、露光装置1は、ステージ11と、吸着盤12と、コントローラ20と、ステージ駆動回路21とを備える。
【0022】
光源2は、コヒーレント光を出射するコヒーレント光源であり、例えば、波長λが266nmのレーザー光を出射する半導体励起固体レーザーである。光源2が出射したレーザー光B0は、ビームエキスパンダ3によってビーム径が拡大され、打ち下ろしミラー4によってその光路が偏向される。
シャッター5は、レーザー光出射のON/OFFを切り替えるためのものであり、ミラー4とビーム分岐素子6との間に配置する。このシャッター5の開閉は、コントローラ20が制御する。
【0023】
ビーム分岐素子6は、1本のレーザー光を分岐して2本のレーザー光を生成するものである。このビーム分岐素子6は、例えば、石英等の表面に施した微細な凹凸形状による形状効果を用いてその機能を実現する凹凸型回折素子である。
ビーム分岐素子6により生成された2本のレーザー光B1,B2は、それぞれ折り返しミラー7a,7bによって光路偏向され、集光レンズ8a,8bに入射する。
【0024】
集光レンズ8aによる集光後のレーザー光はピンホール9aに入射され、そのビーム径が拡大された後、コリメートレンズ10aでコリメートされる。このようにして、コリメートされたレーザー光B3を得る。同様に、集光レンズ8bによる集光後のレーザー光はピンホール9bに入射され、そのビーム径が拡大された後、コリメートレンズ10bでコリメートされる。このようにして、コリメートされたレーザー光B4を得る。
ここで、ピンホール9a,9bは、空間フィルタとして機能し、集光レンズ8a,8bまでの光路で生じたビーム波面の乱れを取り除くために用いる。また、コリメートレンズ10a,10bは、レーザー光の波面を理想的な平面波とするために用いる。
【0025】
2本のレーザー光B3,B4は、
図2に示すように、所定の干渉角度2θで交差させる。これにより、ワーク(基板)Wの上部で二つのレーザー光B3,B4の干渉による干渉縞を生成し、これをワークWに露光光として照射する。すなわち、1回の露光でワークW上にストライプ状のラインアンドスペースのパターンを転写する。
このように、ビームエキスパンダ3、打ち下ろしミラー4、シャッター5、ビーム分岐素子6、折り返しミラー7a,7b、集光レンズ8a,8b、ピンホール9a,9b及びコリメートレンズ10a,10bから構成される光学系素子によって、光源2の出力光を2分岐した光を干渉角度2θで交差させ、干渉光を発生する。この光学系素子のうち、ビーム分岐素子6からワークWまでの間の素子一式は対になるように設けられており、ビーム分岐素子6で分岐した2本のレーザー光をそれぞれワークWまで誘導、整形し、ワークW上で干渉させるようになっている。
なお、レーザー光B3,B4のビーム径(1/e
2)は、ビームエキスパンダ3や集光レンズ8a,8b、コリメートレンズ10a,10bでの倍率によって任意に決めることができる。当該ビーム径の大きさは、用途に合わせて適宜設定する。
【0026】
図1に戻って、ワークWは、ステージ11に設けられた吸着盤12上に固定されている。ここで、ワークWとしては、例えば、表面に感光性材料層(例えば、フォトレジスト等)が形成された基板を用いることができる。また、ワークWとして、表面に機能材料層が設けられた基板上に感光性材料層を形成した基板を用いることもできる。ここで、上記基板としては、励起光によって励起される蛍光体が含有されてなる蛍光基板を用いることができる。
【0027】
このようなワークWを干渉光で露光し現像することにより、感光性材料層(フォトレジスト等)に、複数の凸部が配列されてなる微細パターンを形成することができる。このとき、基板に塗布されたレジストが、光照射部分が現像液に溶解するポジ型である場合、上記の露光方法を用いて露光し現像することにより、光照射されていない箇所が残存したレジストパターンを得ることができる。一方、レジストが、光照射部分が架橋して現像液に溶解しなくなるネガ型である場合には、上記の露光方法を用いて露光し現像することにより、光照射された箇所が現像後に残存したレジストパターンを得ることができる。
【0028】
ステージ11は、ワークW面に対してXY方向に移動する自由度を有しており、コントローラ20は、ステージ駆動回路21を駆動制御することで、ステージ11をXY方向に移動することが可能となっている。すなわち、ワークWは、ステージ11をXY方向に移動することでXY方向に移動する。ここで、X方向とは
図1の左右方向であり、Y方向とは
図1の紙面垂直方向である。
【0029】
本実施形態では、ワークWに対して複数回露光を行う。その際、1回目の露光では、例えば
図3に示すように、Y方向に伸びるストライプ状の干渉パターンをワークWに照射する。そして、2回目以降の露光では、1回目の干渉パターン(第一の干渉パターン)に対してストライプ状の干渉パターンを所定角度回転させ、これを第二の干渉パターンとしてワークWに照射する。
【0030】
すなわち、2回目の回転角度(配向角度)を例えば90°とした場合、
図4に示すように、第二の干渉パターンとして、X方向に伸びるストライプ状の干渉パターンをワークWに照射することになる。これにより、ワークWには、第一の干渉パターンと第二の干渉パターンとを重畳したパターンが照射される。
ここで、上記配向角度δは90°に限定されず、0°<δ≦90°の範囲内で任意に設定可能である。当該配向角度を変化させることで、ワークWに照射するパターンの形状を変化させることができる。
なお、2回目以降の露光を行う際には、干渉パターンを回転させてもよいし、ワークWを保持するステージ11を回転させてもよい。ステージ11を回転させる方法の方が、容易に複数回干渉露光を実現することができ好ましい。
【0031】
図5は、配向角度を90°とした場合の露光強度分布を机上計算した結果を示す図である。
図5において、上段は3次元強度分布、下段は2次元強度分布を模式的に示しており、1回目の露光、2回目の露光、1回目と2回目の合計の露光強度分布についてそれぞれ示している。このように、1回目の露光と2回目の露光とで干渉縞の長手方向が90°交差する場合、合計2回の露光により照射パターンは格子状となり、非照射部分P1の形状(ドットパターン)はXY平面図において略正円となる。
したがって、レジストがポジ型である場合、現像後は円柱が残存したレジストパターンを得ることができる。この場合、
図6に示すように、円柱状の微細パターン(ドット)P1は正方配列で配列される。
【0032】
図7は、配向角度を60°とした場合の露光強度分布を机上計算した結果を示す図である。この
図6も
図5と同様に、上段は3次元強度分布、下段は2次元強度分布を模式的に示している。このように、1回目の露光と2回目の露光とで干渉縞の長手方向が60°交差する場合、非照射部分P1の形状(ドットパターン)はXY平面図において略楕円となる。
したがって、レジストがポジ型である場合、現像後は楕円柱が残存したレジストパターンを得ることができる。この場合、
図8に示すように、楕円柱状の微細パターン(ドット)P1は三方配列で配列される。
このように、配向角度が60°の場合は、配向角度が90°の場合と比較してドットのピッチが狭くなる。すなわち、配向角度を変更することで、任意の面内密度を有するレジストパターンを作製することができる。
【0033】
また、本実施形態では、得られたレジストパターンに対して熱処理を加え、パターン形状を整形する処理を実施してもよい。
本発明者らは、上記の露光及び現像により得られたレジストパターンに熱処理を加えることで、パターン形状を真円状に整形することができることを見出した。そこで、本実施形態では、レジストパターンを、レジストのガラス転移温度を上回る温度で加熱し、レジストパターンを真円状に整形する。
【0034】
図9は、
図8に示すレジストパターンに対して、ガラス転移温度以下で熱処理を実施した結果を示す図である。ここでは、ガラス転移温度がおよそ140℃〜150℃のレジストに対し、加熱温度を150℃、加熱時間を10分として熱処理を施した。
図9に示すように、ガラス転移温度以下での熱処理では、熱処理後のパターンP2は熱処理前のパターンP1から変化せず、整形は行われなかった。
【0035】
これに対して、
図8に示すレジストパターンに対して、ガラス転移温度を超える温度で熱処理を実施すると、レジストパターンが整形されることが確認できた。この結果を
図10に示す。
ここでは、ガラス転移温度がおよそ140℃〜150℃のレジストに対し、加熱温度を200℃、加熱時間を10分として熱処理を施した。このように、ガラス転移温度を超える温度での熱処理では、レジストパターンが整形され、熱処理後のパターンP2は正円形状となった。すなわち、熱処理により楕円形状のレジストパターンを正円形状に整形することができ、三方配列で正円形状のドットパターンが得られる。
【0036】
上述したように、配向角度を任意の角度に設定することで、任意の面内密度を有するレジストパターンを作製することができる。したがって、任意の配向角度での露光と、現像後の熱処理とを実施することで、任意の面内密度で正円形状を有するレジストパターンを作製することができる。
そして、このようにして得られた熱処理後のレジストをマスクとして用い、レジストに直下に位置する基板若しくは基板上に設けられた機能材料層をエッチングして除去することで、基板表面若しくは機能材料層の表面に凸状の構造体が二次元周期的に配置されたモスアイ構造を有する基板上構造体を作製することができる。上述したように、熱処理後のレジストパターンは正円に整形されているため、真円形状の底面を有する高精度なモスアイ構造を作製することが可能となる。
【0037】
さらに、上記熱処理においては、加熱温度や加熱時間などの加熱条件を調整し、レジストパターンのドットの大きさを調整するようにしてもよい。
図11は、熱処理前のレジストパターンの一例を示す断面図である。例えば、配向角度が60°である場合、
図12に示すように、レジストパターンはXY平面において三方配列で楕円形状を有する。このように、配向角度が60°である場合、熱処理前のドット(微細構造体)P1の形状は楕円柱状であり、その断面形状は
図11に示すように略四角形である。
この状態から上記の熱処理を施すと、微細構造体P1は、
図13に示すように、頂点から基板に近づくにつれて半径方向の幅が広がった半球形状の微細構造体P2に整形される。ここで、熱処理の加熱条件は、加熱温度を185℃、加熱時間を10分とした。このときのXY平面における微細構造体P2の形状は、
図14に示すように正円となる。
【0038】
また、熱処理の加熱条件を調整し、加熱温度を215℃、加熱時間を10分とした場合の熱処理後のレジストパターンの断面図を
図15に示す。
図15に示す熱処理後の微細構造体P2は、
図13に示す熱処理後の微細構造体P2と比較して高さの低い潰れた半球形状となっている。また、XY平面における微細構造体P2の形状は、
図16に示すように、
図14に示す微細構造体P2と比較して半径の大きい正円となっている。
このように、加熱温度を高くすると、加熱時間が同じであっても、ドット径は大きくなり、隣接する微細構造体との間隔が狭くなる。すなわち、レジストパターンにおいて隣接する微細構造体との間隔を狭くし、より密接した配置とすることができる。
このように、加熱条件を調整することで、熱処理後のドット径を調整し、微細構造体の面内密度を調整することができる。
なお、ここでは加熱温度を変化させる場合について説明したが、加熱時間を変化させることでも、同様に熱処理後のドット径を調整することができる。また、所望のドット径(面内密度)を得るための加熱条件は、レジストの材料やレジストの下にある基板の材料等に応じて適宜設定することができる。
【0039】
上記の基板上構造体の製造方法は、蛍光光源用発光素子の製造方法に適用することができる。以下、蛍光光源用発光素子について具体的に説明する。
図17は、蛍光光源用発光素子の構成例を示す図である。
蛍光光源用発光素子100は、励起光によって励起されて蛍光を出射する波長変換部材110を有する。
励起光としては、例えばレーザダイオードによる光を用いることができる。なお、励起光は蛍光体を励起することができるものであれば、LEDによる光を集光したものでもよく、更には、水銀、キセノン等が封入されたランプからの光であってもよい。ランプやLEDのように放射波長に幅を持つ光源を利用した場合には、励起光の波長は主たる放射波長となる。
【0040】
波長変換部材110は、例えば円板状の蛍光部材(蛍光基板)111と、この蛍光部材111の表面(
図11における上面)に形成された、略円板状のフォトニック構造部112とを有する。波長変換部材110においては、フォトニック構造部112の表面(
図11における上面)が、励起光受光面とされていると共に、蛍光出射面とされている。
ここで、フォトニック構造とは、複数の凸部が二次元的かつ周期的に配列されてなる凹凸構造(二次元周期構造)を示すものである。
【0041】
また、波長変換部材110の裏面、すなわち蛍光部材111の裏面(
図11における下面)には、多層膜よりなる光反射膜113が設けられている。さらに、波長変換部材110の側面には、環状の拡散反射部材114が、当該側面に密着した状態で設けられている。拡散反射部材114としては、例えばシリコーンと、アルミナおよびチタニア等の拡散粒子との混合物よりなるもの、またはアルカリ金属元素を含むセラミックのペースト等を乾燥させたものなどを用いることができる。このように、波長変換部材110は、光反射膜113および拡散反射部材114が設けられることにより、裏面および側面に反射機能を有するものとされている。
【0042】
さらに、波長変換部材110の裏面、すなわち光反射膜113の裏面は、接合部材(不図示)によって基板120上に接合されている。接合部材としては、排熱性の観点から、半田、銀焼結材などを用いることが好ましい。また、基板120の裏面には、例えば銅などの金属よりなる放熱部材130が配置されている。この放熱部材130には、放熱用フィン131が設けられている。
ここで、蛍光部材111は、蛍光体が含有されてなるものであり、具体的には、単結晶または多結晶の蛍光体よりなるもの、または単結晶または多結晶の蛍光体とセラミックバインダーとの混合物の焼結体よりなるものである。すなわち、蛍光部材111は、単結晶または多結晶の蛍光体によって構成されたものである。
蛍光部材111を構成する蛍光体の具体例としては、YAG(Y
3Al
5O
12)、LuAG(Lu
3Al
5O
12)、CASN(CaAlSiN
3:Eu)およびSCASN((Sr,Ca)AlSiN
3:Eu)などが挙げられる。
【0043】
また、フォトニック構造部112を構成する特定無機化合物層の材質の具体例としては、アルミナ(Al
2O
3)、酸化ハフニウム(HfO
2)、酸化マグネシウム(MgO)、酸化スズ(SnO
2)、酸化タングステン(WO
3)、酸化イットリウム(Y
2O
3)、酸化インジウムスズ(ITO)、ジルコニア(ZrO
2)、酸化タンタル(Ta
2O
5)、酸化チタン(TiO
2)、酸化ニオブ(Nb
2O
5)などの金属酸化物、およびジルコニア(ZrO
2)と酸化チタン(TiO
2)との混合物などが挙げられる。
【0044】
蛍光光源装置では、上述した励起光を蛍光光源用発光素子100における波長変換部材110の励起光受光面、すなわちフォトニック構造部112の表面に対して略垂直に照射し、フォトニック構造部112を介して当該励起光を蛍光部材111に入射する。これにより、蛍光部材111を構成する蛍光体が励起され、蛍光部材111から蛍光が放射される。この蛍光は、蛍光出射面、すなわちフォトニック構造部112の表面から出射され、ダイクロイックミラー等によって反射されて蛍光光源装置の外部に出射される。
【0045】
図18は、蛍光光源用発光素子の製造方法の流れを示す図である。
先ず、
図18(a)に示すように、表面に機能材料層40が設けられた蛍光基板30を準備する。ここで、蛍光基板30は、例えばYAG焼結体等であり、機能材料層40は、例えばジルコニア(ZrO
2)等である。機能材料層40は、例えばスパッタ成膜法により基板30上に形成されている。なお、蛍光基板30及び機能材料層40の材質は適宜設定可能である。
【0046】
そして、第一工程として、
図18(b)に示すように、機能材料層40の表面に感光性材料層(例えば、フォトレジスト等)50を形成し、第二工程として、上述した二光束干渉露光を複数回行い、フォトレジスト50を露光する。
次に、第三工程として、露光後のフォトレジスト50を現像する。これにより、例えばフォトレジスト50における干渉光の照射エリアが除去され、
図18(c)に示す微細パターン51が形成される。この微細パターン51はドットパターンを有する。
【0047】
次に、第四工程として、第三工程で得られたフォトレジスト50の微細パターン51に対して熱処理(楕円補正)を施し、微細パターン51を整形する。その際、例えばホットプレート等を用いて熱処理を行う。これにより、
図18(d)に示す断面半球形状の微細パターン52を得る。
次に、第五工程として、第四工程で得られた微細パターン52をマスクとして用いて、機能材料層40をエッチングする。その後、フォトレジスト50の微細パターン52を除去し、
図18(e)に示す微細パターン41を得る。
【0048】
次に、最終工程として、第五工程で得られた機能材料層40の微細パターン41に対してスパッタリングを行い、
図18(f)に示すモスアイ形状のフォトニック構造42を有する蛍光光源用発光素子を得る。
なお、
図18に示す例では、蛍光基板30上に設けられた機能材料層40の表面にフォトニック構造42を形成する場合について説明したが、蛍光基板30の表面にフォトレジスト50の微細パターン52を形成し、当該微細パターン52をマスクとして用いて蛍光基板30をエッチングすれば、蛍光基板30の表面にフォトニック構造42を形成することもできる。
【0049】
また、
図18に示す例では、機能材料層40の表面に感光性材料層(例えば、フォトレジスト等)50を形成し、この感光性材料層に対して露光及び現像して得た微細なレジストパターンに対して熱処理を行うことで、レジストパターンの整形を行っているが、これに限定されるものではない。他の例としては、基板30上に設けられた機能材料層40または、基板30の表面に、微細パターン構成層(例えば、ガラス転移点を有する樹脂層等)50を形成し、この表面に、露光及び現像以外の例えばNILや熱エンボス加工法などにより微細パターン51を形成し、該微細パターン51に対して熱処理を行って整形することで得られた微細パターン52をマスクとして用いて、機能材料層40または基板30をエッチングすることもできる。
【0050】
以上のように、本実施形態では、コヒーレント光源の出力光を2分岐した光を所定の干渉角度で交差させて発生した干渉光を用いてフォトレジストの干渉露光を行う。このとき、二光束干渉露光を複数回行い、2回目以降の干渉露光で照射する干渉縞の長手方向を、1回目の干渉露光で照射する干渉縞の長手方向と所定の配向角度で交差させるようにする。そして、露光後に現像工程を実施し、微細なレジストパターンを得る。
二光束干渉露光は微細フォトマスクを用いずに微細パターン露光が可能であり、ワークに対して接触する要素がない。すなわち、NIL(ナノインプリントリソグラフィ)のようにワークとマスターモールドとの都度接触が必要な方法と比較して、歩留まりを高くすることができる。
【0051】
また、二光束干渉露光は非常に深い焦点深度で露光可能であるため、ワークの平坦度が不問である。例えば、ナノインプリント法では、仮にワークが反っていると、当該ワークの破損や転写不良が発生するおそれがある。したがって、二光束干渉露光を採用することで、仮にワークが反っていても精度良く露光することができる。
また、ナノインプリント法では、ワークとマスターモールドとの都度接触によりマスターモールドの劣化が生じるため、マスターモールドの管理が必要となるが、二光束干渉露光では、上記のような管理を必要とすることなく品質安定性を確保することができる。さらに、二光束干渉露光では、ナノインプリント法のように消耗品である高価なマスターモールドを必要としないため、その分のコストを削減することができる。
【0052】
さらに、二光束干渉露光は、アルカリエッチングのような化学的プロセスではなくリソグラフィであるため、ワークの材質も不問である。
アルカリエッチングによる加工方法は、LED(GaNやAlNなどの単結晶)に対しては有効であり、一般に実施されている。これらLEDを構成する半導体材層は、エピタキシャル成長法等により成長された膜であり、結晶軸のそろった結晶性の高い層である。ゆえに、アルカリにさらされると特定の結晶面の表面エネルギーが小さいことに起因して化学的なエッチングレートの低い面が保存されるため、自発的にモスアイ構造を形成することが可能である。
【0053】
しかしながら、YAGのような蛍光体プレートは、上述したエピタキシャル成長された膜のような高い結晶性を持たないため、アルカリエッチングで自発的にモスアイ構造を形成することはできない。これに対して、二光束干渉露光では、YAGのような蛍光体プレートに対しても適切にモスアイ構造を形成することができる。
また、現像工程を行って得られた微細パターンに対して熱処理を行い、当該微細パターンを整形すれば、レジストパターンの精度をより向上させることができる。このとき、熱処理として、ガラス転移温度を上回る温度で加熱する処理を行うことで、異方性を有する微細パターンを、表面張力により等方性を有する微細パターンに自然に整形することができる。
したがって、上記のフォトレジストを用いてエッチング加工を施すことにより、微細な凸部が2次元周期的に配列され、制御されたモスアイ形状を有するフォトニック構造体を得ることができる。
【0054】
図19は、モスアイ構造を表面に作製した発光素子の配光特性を示す図であり、モスアイの形状の違いによって特性に差が生じることを示している。この
図19において、実線は三方配列で正円(熱処理有り)のモスアイ構造、破線は三方配列で楕円(熱処理無し)のモスアイ構造での配光特性をそれぞれ示している。このように、熱処理を行って楕円から正円に整形することで、発光素子のθ=0°近傍の光強度が増加することが確認できる。
また、本実施形態では、上記の干渉露光工程において、配向角度を調整することで、レジストパターンの配列を変更することができる。さらに、上記の熱処理工程において、加熱条件を調整することで、レジストパターンの形状を変更することができる。したがって、任意の配列、任意の面内密度を有するモスアイ構造を作製することができる。
【0055】
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。
この第2の実施形態は、上述した第1の実施形態において、折り返しミラー7a,7bが固定ミラーであったのに対し、角度可変ミラーとしたものである。
図20は、第2の実施形態の露光装置を示す概略構成図である。
この露光装置1は、
図1の露光装置1において折り返しミラー7a,7bを角度可変ミラー17a,17bとしたことを除いては、
図1に示す露光装置1と同様の構成を有する。したがって、ここでは
図1と同一構成を有する部分には同一符号を付し、構成の異なる部分を中心に説明する。
【0056】
角度可変ミラー17a,17bは、光入射面の角度を変更可能に構成されており、当該光入射面の角度を変更することで干渉角度θを所望の角度に変化させる。干渉角度θを変えることにより、基板に形成されるストライプ状の干渉パターンのピッチを自在に変更することができる。
図21は、角度可変ミラー17a及び17bの機構を示す図である。角度可変ミラー17aと17bとは同一構成を有するため、ここでは角度可変見ミラー17aの機構についてのみ図示している。
【0057】
角度可変ミラー17a(以下、単に「ミラー」という)は、干渉角度θを任意の角度に調整するための素子で、ビーム分岐素子6で分岐されたビーム(分岐ビーム)B1がなす直線上を移動し、且つ紙面垂直軸周りに角度を変えることができる。当該ミラー17aで反射されたビーム(ミラー反射ビーム)B5は、ワークW上の所定の位置に向けられ、もう片方のミラーからのミラー反射ビームとワークW上で結合し、干渉縞を形成する。すなわち、ミラー17aの法線は、分岐ビームB1とミラー反射ビームB5とがなす角の二等分線となる。
【0058】
ミラー17aの法線を所定の方向に保ったまま干渉角度θを調整する方法として、例えば、
図21(a)及び(b)に示すようなT字型のフレームTを持つリンク機構を用いる方法がある。T字フレームTには3つのスライダSが設けられ、そのうちの2つは分岐ビームB1及びミラー反射ビームB5がなす直線上をそれぞれ移動し、残りの1つにはミラー17aが取り付けられ、T字フレームT上を移動する。
【0059】
また、ミラー17aの回転軸は分岐ビームB1及びミラー反射ビームB5の交点位置で拘束されている。干渉角度θを調整する際には、
図21(a)から
図21(b)のように、ミラー17aの法線方向が、分岐ビームB1とミラー反射ビームB5とがなす角の二等分線を維持したまま、所定の方向へ変化する。
この干渉角度θは、駆動部(アクチュエータ)22を用いて調整する。駆動部22は、ミラー反射ビームB5のなす直線上に配置されたフレームに作用し、干渉角度θを調整する。なお、駆動部22は、T字フレームTに作用して干渉角度θを調整する構成であってもよい。
このように、本実施形態の露光装置は、ビーム分岐素子6で2以上に分岐した光が所望の角度で交差するように、分岐したそれぞれの光を基板へ向けて偏向する角度可変ミラー17a,17bを備えるので、基板に形成されるストライプ状の干渉パターンのピッチを自在に変更することができる。すなわち、複数回露光によって得られるレジストパターンのピッチ(面内密度)を自在に変更することができる。
【0060】
(変形例)
なお、上記実施形態においては、二光束干渉露光について説明したが、ビームを2以上に分岐させ、それらを一度に基板へと照射する、所謂多光束干渉露光を採用してもよい。ビームの分岐手段には、例えば、レーザーを複数のビームに分岐させる回折光学素子を用いてもよい。多光束干渉露光で、例えば、2つのビームの干渉パターンを90°回転させて重畳させる方法と同様の結果を得るためには、
図22に示すように、ビームを4分岐させて、分岐ビームと基板の法線がなす4つの面が90°ずつ配向し、かつ、基板に入射する際に向かい合う2つの分岐ビームがなす角度が所定の干渉角度となるように、光学部品を配置すればよい。
【0061】
また、上記実施形態においては、干渉露光工程、現像工程、及びエッチング工程を経て蛍光基板若しくは蛍光基板上に設けられた機能材料層にフォトニック構造を形成する場合について説明したが、例えば高出力パルスレーザーによるレーザーアブレーションを利用し、干渉光のパターンを直接、蛍光基板若しくは蛍光基板上に設けられた機能材料層に加工してもよい。
【0062】
(応用例)
上記実施形態においては、二光束干渉露光を用いた表面微細加工方法により蛍光光源用発光素子を作製する場合について説明したが、蛍光基板上に機能材料層を設けた場合には、露光方法は二光束干渉露光に限定されない。すなわち、蛍光基板上に、機能材料層として加工容易性を有するジルコニア(ZrO
2)等からなる層を設けることで、二光束干渉露光以外の露光方法であっても、適切に所期のフォトニック構造を形成することができる。
【0063】
上記実施形態においては、二光束干渉露光により得られたレジストパターンを熱処理により整形する場合について説明したが、別の露光方法(例えば、ナノインプリント法やステッパ等)により得られた微細パターンを上述した熱処理により整形することもできる。例えば、ナノインプリント法により得られた微細パターンに対して上記の熱処理を施すことにより、互いに隣接する微細な凸部の間の隙間を小さくし、解像度を上げることができる。すなわち、当該熱処理により微細パターンを整形可能となることで、微細パターンの解像度の限界を超えることができる。
【0064】
従来、レジストパターンの表面に対してプラズマで膜をデポジションし、当該レジストパターンの幅を広げる技術が知られており、当該技術を用いることにより、互いに隣接する微細な凸部の間の隙間を小さくすることも考えられる。しかしながら、この場合、プラズマの分布によっては精度良く膜を形成することができない場合がある。これに対して、本実施形態の熱処理を適用すれば、精度良くレジストパターンを整形することができ、適切に解像度を上げることができる。