【実施例】
【0046】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[A.実施例1〜14、比較例1]
[使用材料]
実施例1〜14及び比較例1における使用材料は、以下に示すとおりである。
(1)セメント:低熱ポルトランドセメント(太平洋セメント社製)
(2)シリカフュームA:BET比表面積20m
2/g
(3)シリカフュームB:BET比表面積17m
2/g
(4)無機粉末A:珪石粉末、50%体積累積粒径2μm、最大粒径12μm、95%体積累積粒径5.8μm
(5)無機粉末B:珪石粉末、50%体積累積粒径7μm、最大粒径67μm、95%体積累積粒径27μm
(6)骨材A1(細骨材):珪砂(最大粒径1.0mm、0.6mm以下の粒径のもの:98質量%、0.3mm以下の粒径のもの:45質量%、0.15mm以下の粒径のもの:3質量%)
(7)ポリカルボン酸系高性能減水剤:固形分量27.4質量%、フローリック社製、商品名「フローリックSF500U」
(8)消泡剤:BASFジャパン社製、商品名「マスターエア404」
(9)水:水道水
(10)金属繊維:鋼繊維(直径:0.2mm、長さ:15mm)
(11)骨材B(粗骨材):硬質砂岩砕石1005(粒径:5〜10mm)
【0047】
[実施例1]
セメント、シリカフュームA及び無機粉末Aを、粉体原料(セメント、シリカフューム及び無機粉末)の合計量100体積%中、セメント等の各割合が表2に示す割合となるように混合した。得られた混合物と、セメント組成物中の骨材A1の割合が表2に示す割合となる量の骨材A1を、オムニミキサに投入して、15秒間空練りを行った。
次いで、水、ポリカルボン酸系高性能減水剤、及び消泡剤を、表2に示す量でオムニミキサに投入して、2分間混練した。
混練後、オムニミキサ内の側壁に付着した混練物を掻き落とし、さらに4分間混練を行った。
混練後のセメント組成物のフロー値を、「JIS R 5201(セメントの物理試験方法)11.フロー試験」に記載される方法において、15回の落下運動を行わないで測定した。なお、本明細書中、該フロー値を「0打ちフロー値」という。
【0048】
得られた混練物を、φ50×100mmの円筒形の型枠に打設して、未硬化の成形体を得た。打設後、未硬化の成形体について、20℃で48時間、封緘養生を行い、次いで、脱型して、硬化した成形体を得た。脱型時の圧縮強度は50N/mm
2であった。
この成形体を、表3に示す時間、減圧したデシケーター内で水に浸漬した(表3中、「減圧下」と示す。)。なお、減圧は、アズワン社製の「アスピレーター(AS−01)」を使用して行った。浸漬前後の成形体の質量を測定し、得られた測定値から、吸水率を算出した。
浸漬後、この成形体を90℃で48時間蒸気養生を行い、次いで、20℃まで降温した後、180℃で48時間加熱を行った。
加熱後の成形体(セメント質硬化体)の圧縮強度を、「JIS A 1108(コンクリートの圧縮強度試験方法)」に準じて測定した。
また、上記セメント質硬化体(加熱後の成形体)と同様にして、30×30×6cmの供試体を製造し、「ASTM C779」に準拠して、60分経過後のすりへり深さを測定した。
0打ちフロー値、吸水率、圧縮強度、およびすりへり深さの各値を表3に示す。なお、後述の実施例、比較例における0打ちフロー値、吸水率、圧縮強度、およびすりへり深さの各値も表3に示す。
【0049】
[実施例2]
粉体原料100質量部当たりの水の配合量を、13質量部から15質量部に変更した以外は、実施例1と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例1と同様にして、セメント組成物の0打ちフロー値の測定等を行った。なお、脱型時の圧縮強度は45N/mm
2であった。
【0050】
[実施例3]
脱型後の成形体を、減圧したデシケーター内で水に浸漬する代わりに、沸騰している水(沸騰水)に、表3に示す時間浸漬した後、該成形体を水に浸漬させたまま、水温が25℃となるまで冷却した以外は、実施例1と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例1と同様にして、吸水率の算出、及び、セメント質硬化体の圧縮強度の測定を行った。
[実施例4]
脱型後の成形体を、減圧したデシケーター内で水に浸漬する代わりに、実施例3と同様に沸騰水への浸漬等を行った以外は、実施例2と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例1と同様にして、吸水率の算出、及び、セメント質硬化体の圧縮強度の測定を行った。
【0051】
[実施例5]
シリカフュームAの配合割合を10体積%から20体積%に変更し、かつ、無機粉末Aの配合割合を30体積%から20体積%に変更した以外は、実施例1と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例1と同様にして、0打ちフロー値の測定等を行った。なお、脱型時の圧縮強度は50N/mm
2であった。
【0052】
また、上記セメント質硬化体と同様にして、40×40×160mmの供試体を製造し、「JIS A 1129−2:2010 モルタル及びコンクリートの長さ変化測定方法−第2部:コンタクトゲージ方法」に準拠して、6か月保存した場合における収縮ひずみを測定した。
また、得られたセメント質硬化体の透水係数を、「地盤工学会基準 JGS 0311−2009(土の透水試験方法)」の変水位透水試験方法に準じて測定した。その結果、水の浸透は認められず、透水係数は「0」であった。
また、得られたセメント質硬化体を人工海水に6カ月間浸漬した。なお、人工海水は表1に示す各試薬を、表1に示す量で蒸留水に溶解することで調製した。浸漬後、セメント質硬化体中の塩化物イオンの濃度を、EPMA(日本電子社製、商品名「JXA8621」)を用いて測定し、塩化物イオンの拡散係数(表3中、「拡散係数」と示す。)を算出した。
さらに、得られたセメント質硬化体に対して、「JIS A 1148(コンクリートの凍結溶解試験方法)」に準拠して測定した値を用いて、「ASTM C666 75」の耐久性指数(300サイクル)を算出した。
なお、耐久性指数は、最大値が100であり、最大値に近いほど凍結融解抵抗性に優れていることを示す。
以上の結果を表3に示す。なお、後述の実施例における収縮ひずみ、透水係数、拡散係数および耐久性指数も表3に示す。
【0053】
【表1】
【0054】
[実施例6]
脱型後の成形体を、減圧したデシケーター内で水に浸漬する代わりに、実施例3と同様に沸騰水への浸漬等を行った以外は、実施例5と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例1と同様にして、吸水率の算出、及び、セメント質硬化体の圧縮強度の測定を行った。
【0055】
[実施例7]
シリカフュームAの配合割合を10体積%から20体積%に変更し、かつ、無機粉末Aの配合割合を30体積%から20体積%に変更した以外は、実施例2と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例1と同様にして、0打ちフロー値の測定等を行った。なお、脱型時の圧縮強度は45N/mm
2であった。
[実施例8]
脱型後の成形体を、減圧したデシケーター内で水に浸漬する代わりに、実施例3と同様にして沸騰水への浸漬等を行った以外は、実施例7と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例1と同様にして、吸水率の算出、及び、セメント質硬化体の圧縮強度及びすりへり深さの測定を行った。
また、実施例5と同様にして、収縮ひずみ及び透水係数の測定、並びに、塩化物イオンの拡散係数及び耐久性指数の算出を行った。
【0056】
[実施例9]
セメント、シリカフュームA及び無機粉末Aを、粉体原料(セメント、シリカフューム及び無機粉末)の合計量100体積%中、セメント等の各割合が表2に示す割合となるように混合した。得られた混合物と、セメント組成物中の骨材A1の割合が表2に示す割合となる量の骨材A1を、オムニミキサに投入して、15秒間空練りを行った。
次いで、水、ポリカルボン酸系高性能減水剤、及び消泡剤を、表2に示す量でオムニミキサに投入して、2分間混練を行った後、オムニミキサ内の側壁に付着した混練物を掻き落とし、さらに4分間混練を行った。その後、セメント組成物中の金属繊維の割合が表2に示す割合となる量の金属繊維を、オムニミキサに投入して、さらに2分間混練を行った。
得られたセメント組成物について、実施例1と同様にして、0打ちフロー値を測定した。
また、得られたセメント組成物を材料として用いて、実施例1と同様の方法で、セメント質硬化体(成形体)を得た。
得られたセメント質硬化体(成形体)について、実施例1と同様にして、吸水率及び圧縮強度を測定した。
さらに、得られたセメント質硬化体の曲げ強度を、「土木学会基準 JSCE−G 552−2010(鋼繊維補強コンクリートの曲げ強度および曲げタフネス試験方法)」に準じて測定した。
【0057】
[実施例10]
脱型後の成形体を、減圧したデシケーター内で水に浸漬する代わりに、実施例3と同様に沸騰水への浸漬等を行った以外は、実施例9と同様にして、セメント組成物及びその硬化体を得た。
セメント組成物及びその硬化体について、実施例9と同様にして、各種物性を測定した。
また、実施例5と同様にして、透水係数の測定、塩化物イオンの拡散係数及び耐久性指数の算出を行った。
【0058】
[実施例11]
粉体原料100質量部当たりの水の配合量を、13質量部から11質量部に変更し、骨材A1の配合量を35.5体積%から30.0体積%に変更し、高性能減水剤の配合量を0.69質量部から0.76質量部に変更し、かつ、成形体を水に浸漬しなかった以外は、実施例1と同様にして、セメント組成物及びセメント質硬化体を得た。
実施例1と同様にして、セメント組成物の0打ちフロー値の測定等を行った。なお、脱型時の圧縮強度は54N/mm
2であった。
【0059】
[実施例12]
脱型後の成形体を、沸騰している水(沸騰水)に、表3に示す時間浸漬した後、該成形体を水に浸漬させたまま、水温が25℃となるまで冷却した以外は、実施例11と同様にして、セメント組成物及びセメント質硬化体を得た。
実施例1と同様にして、吸水率の算出、及び、セメント質硬化体の圧縮強度等の測定を行った。
また、実施例5と同様にして、透水係数の測定、塩化物イオンの拡散係数及び耐久性指数の算出を行った。
【0060】
[実施例13]
骨材A1の配合量を、30.0体積%から24.0体積%に変更し、セメント組成物中の骨材Bの割合が6.0体積%となる量の骨材Bを使用した以外は実施例11のセメント組成物と同様の配合で、セメント組成物を製造した。
セメント組成物の製造は、実施例1と同様にして、各材料(粉体原料、骨材A1、水、ポリカルボン酸系高性能減水剤、及び消泡剤)を混練した後、さらに骨材Bをオムニミキサに投入して、1分間混練することで行った。
得られたセメント組成物(混練物)を、φ100×200mmの円筒形の型枠に打設し、かつ、成形体を水に浸漬しなかった以外は実施例1と同様にして、セメント質硬化体を得た。
実施例1と同様にして、セメント質硬化体の圧縮強度を測定した。なお、脱型時の圧縮強度は43N/mm
2であった。
【0061】
[実施例14]
骨材A1の配合量を、35.5体積%から28.5体積%に変更し、セメント組成物中の骨材Bの割合が7.0体積%となる量の骨材Bを使用した以外は実施例8のセメント組成物と同様の配合で、セメント組成物を製造した。
セメント組成物の製造は、実施例1と同様にして、各材料(粉体原料、骨材A1、水、ポリカルボン酸系高性能減水剤、及び消泡剤)を混練した後、さらに、骨材Bをオムニミキサに投入して、1分間混練することで行った。
得られたセメント組成物(混練物)を、φ100×200mmの円筒形の型枠に打設する以外は実施例8と同様にして、セメント質硬化体を得た。
実施例1と同様にして、吸水率の算出およびセメント質硬化体の圧縮強度の測定を行った。なお、脱型時の圧縮強度は37N/mm
2であった。
また、実施例5と同様にして、透水係数の測定、塩化物イオンの拡散係数及び耐久性指数の算出を行った。
【0062】
[比較例1]
セメント、シリカフュームB及び無機粉末Bを、粉体原料(セメント、シリカフューム及び無機粉末)の合計量100体積%中、セメント等の各割合が表2に示す割合となるように混合した。得られた混合物と、セメント組成物中の骨材A1の割合が表2に示す割合となる量の細骨材を、オムニミキサに投入して、15秒間空練りを行った。
次いで、水、ポリカルボン酸系高性能減水剤、及び消泡剤を、表2に示す量でオムニミキサに投入して、2分間混練した。
混練後、オムニミキサ内の側壁に付着した混練物を掻き落とし、さらに4分間混練を行った。
得られた混練物を材料として用いて、実施例1と同様にして、セメント質硬化体を得た。
得られた混練物(セメント組成物)及びその硬化体について、実施例1と同様にして、各種物性を測定した。
【0063】
【表2】
【0064】
【表3】
【0065】
[プレストレスを導入したセメント組成物の硬化体の作製および評価]
実施例10、12、14で用いたセメント組成物およびセメント質硬化体の製造方法に従って、ポストテンション方式の供試体(本発明のプレストレスト水硬性硬化体)を作製し、各供試体について、以下の載荷試験を行った。なお、シース管の充填材としては、実施例10におけるセメント組成物を使用した。
【0066】
(i)3等分点載荷による曲げ試験
図1〜2に示すはり部材1を作製して、ひび割れが発生した際の荷重値を測定した。
はり部材1は、長さ400mm、幅100mm、高さ100mmの寸法のセメント質硬化体の中に、直径36mmの鋼棒3(引張強度:1,230MPa)が、所定のプレストレス(プレストレス導入直後の引張応力度=861MPa)を導入された状態で、はり部材1の断面の中心(
図2参照)の位置にて、はり部材1の長さ方向にセメント質硬化体を貫通するようにして構成されている。また、鋼棒3は反力台4によって固定されている。
曲げ試験は、「JIS A 1106:2006(コンクリートの曲げ強度試験方法)」に準拠して、以下のように行なった。まず、はり部材1を、支点2,2間の距離が300mmであり、支点2,2の各々から、はり部材1の両端が水平に50mm突出するようにして、支点2,2上に載置した。そして、支点2,2間を3等分した地点にて、上方から2つの等しい荷重W,Wを加え、この荷重の大きさを増大させていった。ひび割れが発生した際の荷重値(表4中、「ひび割れ荷重」と示す。)と、該荷重値から算出されるひび割れ発生強度(表4中、「ひび割れ強度」と示す。)を、表4の「3等分点載荷による曲げ試験」の欄に示す。
【0067】
(ii)等分2点載荷による曲げひび割れ試験
図3〜4に示すはり部材5を作製して、ひび割れが発生した際の荷重値を測定した。
はり部材5は、長さ2,400mm、幅150mm、高さ300mmの寸法のセメント質硬化体の中に、直径36mmの鋼棒7,7(引張強度:1,230MPa)が、所定のプレストレス(プレストレス導入直後の引張応力度=861MPa)を導入された状態で、はり部材5の断面の所定の位置(
図4参照:はり部材5の下端から100mm、左右の端部から各々37.5mmの位置)にて、はり部材5の長さ方向にセメント質硬化体を貫通するようにして構成されている。また、鋼棒7は反力台8によって固定されている。
曲げひび割れ試験は、「JIS A 1106:2006(コンクリートの曲げ強度試験方法)」に準拠して、以下のようにして行った。まず、はり部材5を、支点6,6間の距離が2,200mmであり、支点6,6の各々から、はり部材5の両端が水平に100mm突出するようにして、支点6,6上に載置した。そして、支点6,6の各々からはり部材の中央部分に向かって1,000mmである2つの地点(これら2つの地点間の距離は200mmである)にて、上方から2つの等しい荷重W,Wを加え、この荷重Wの大きさを増大させていった。ひび割れが発生した際の荷重値(表4中、「ひび割れ荷重」と示す。)と、該荷重値から算出されるひび割れ発生強度(表4中、「ひび割れ強度」と示す。)を、表4の「等分2点載荷による曲げひび割れ試験」の欄に示す。
なお、上記荷重値およびひび割れ発生強度の数値が大きいほど、プレストレスト水硬性硬化体の引張強度およびせん断強度が優れていることを意味している。
【0068】
【表4】
【0069】
[B.実施例15〜26、比較例2〜4]
[使用材料]
実施例15〜26及び比較例2〜4における使用材料は、以下に示すとおりである。
(1)中庸熱ポルトランドセメント:太平洋セメント社製
(2)低熱ポルトランドセメント:太平洋セメント社製
(3)シリカフュームC:BET比表面積14m
2/g
(4)シリカフュームD:BET比表面積20m
2/g
(5)無機粉末:珪石粉末、50%体積累積粒径2μm、最大粒径12μm、95%体積累積粒径5.8μm(実施例1〜14で用いた無機粉末Aと同じもの)
(6)骨材A1(細骨材):珪砂、最大粒径1.0mm、0.6mm以下の粒径のもの:98質量%、0.3mm以下の粒径のもの:45質量%、0.15mm以下の粒径のもの:3質量%(実施例1〜14で用いた骨材A1と同じもの)
(7)骨材A2(細骨材):掛川産山砂
(8)ポリカルボン酸系高性能減水剤:固形分量27.4質量%;フローリック社製、商品名「フローリックSF500U」
(9)消泡剤:BASFジャパン社製、商品名「マスターエア404」
(10)水:上水道水
(11)金属繊維:鋼繊維(直径:0.2mm、長さ:15mm)
(12)骨材B(粗骨材):硬質砂岩砕石1005(粒径:5〜10mm)
【0070】
[中庸熱ポルトランドセメント及び低熱ポルトランドセメントの各研磨処理物の製造]
中庸熱ポルトランドセメント又は低熱ポルトランドセメントを、高速気流撹拌装置(奈良機械製作所社製、商品名「ハイブリタイザーNHS−3型」)を用いて、回転速度4,000rpmの条件で、30分間研磨処理した。なお、研磨処理において、中庸熱ポルトランドセメント又は低熱ポルトランドセメントの仕込み量は、1バッチあたり800gとした。中庸熱ポルトランドセメント又は低熱ポルトランドセメント、及び、中庸熱ポルトランドセメント又は低熱ポルトランドセメントの研磨処理物の、50%体積累積粒径及びブレーン比表面積を測定した。結果を表5に示す。
また、走査型電子顕微鏡を用いて、研磨処理物の二次電子像を観察したところ、研磨処理物の粗粒子(粒径20μm以上の粒子)は、中庸熱ポルトランドセメント又は低熱ポルトランドセメントの粒子(研磨処理前のもの)と比べて、角張った表面部分が少なく、表面部分が丸みを帯びた形状に変形していた。また、粗粒子と粗粒子の間の空隙には、微粒子(粒径20μm未満の粒子)が存在している様子が見られた。
【0071】
【表5】
【0072】
[実施例15]
低熱ポルトランドセメントの研磨処理物、シリカフュームD、無機粉末、及び骨材A1を、低熱ポルトランドセメントの研磨処理物等の各割合が表6に示す割合となるように、オムニミキサに投入して、15秒間空練りを行った。
次いで、水、ポリカルボン酸系高性能減水剤、及び消泡剤を、表6に示す量でオムニミキサに投入して、2分間混練した。なお、消泡剤の添加量は、粉体原料100質量部に対して0.02質量部とした。
混練後、オムニミキサの側面に付着した混練物を掻き落とし、さらに4分間混練を行った。
混練後のセメント組成物のフロー値を、「JIS R 5201(セメントの物理試験方法)11.フロー試験」に記載される方法において、15回の落下運動を行わないで測定した。
また、混練後のセメント組成物を、φ50×100mmの円筒形の型枠に打設して、未硬化の成形体を得た。打設後、未硬化の成形体について、20℃で72時間静置した。次いで、脱型して、硬化した成形体を得た。該成形体の脱型時の圧縮強度は52N/mm
2であった。
さらに、上記成形体を90℃で48時間蒸気養生を行い、次いで、20℃になるまで降温させた後、さらに、乾燥炉を用いて180℃で48時間加熱した。
加熱後の成形体(セメント質硬化体)の圧縮強度を、「JIS A 1108(コンクリートの圧縮強度試験方法)」に準じて測定した。なお、圧縮強度は、島津製作所社製の100t万能試験機(油圧式)を使用して測定した。
【0073】
[実施例16]
低熱ポルトランドセメントの研磨処理物の代わりに中庸熱ポルトランドセメントの研磨処理物を使用した以外は、実施例15と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。該成形体の脱型時の圧縮強度は55N/mm
2であった。
実施例15と同様にして、セメント組成物のフロー値(0打ち)等を測定した。
[実施例17]
粉体原料100質量部当たりの水の量を、12質量部から15質量部に変更した以外は、実施例16と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。該成形体の脱型時の圧縮強度は50N/mm
2であった。
実施例15と同様にして、セメント組成物のフロー値(0打ち)等を測定した。
【0074】
[実施例18]
脱型後の成形体を、沸騰している水(沸騰水)に30分間浸漬した後、該成形体を水に浸漬させたまま水温が25℃となるまで冷却した(表7中「沸騰水」と示す。)後に蒸気養生を行った以外は、実施例15と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例15と同様にして、セメント組成物のフロー値(0打ち)等を測定した。なお、硬化体の圧縮強度は、測定装置の測定限界(511N/mm
2)を超えていた。
また、浸漬前後の成形体の質量を測定し、得られた測定値から、吸水率を算出した。
さらに、実施例5と同様にして、すりへり深さ及び透水係数の測定、並びに、塩化物イオンの拡散係数及び耐久性指数の算出を行った。
【0075】
[実施例19]
脱型後の成形体を、減圧したデシケーター内で30分間水に浸漬した(表7中、「減圧下」と示す。)後に蒸気養生を行った以外は、実施例15と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例15と同様にして、セメント組成物のフロー値(0打ち)等を測定した。なお、硬化体の圧縮強度は、測定装置の測定限界(511N/mm
2)を超えていた。
【0076】
[実施例20]
シリカフュームDの配合割合を10体積%から20体積%に変更し、かつ、無機粉末の配合割合を30体積%から20体積%に変更した以外は、実施例15と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。該成形体の脱型時の圧縮強度は51N/mm
2であった。
実施例15と同様にして、セメント組成物のフロー値(0打ち)等を測定した。
[実施例21]
脱型後の成形体を、減圧したデシケーター内で30分間水に浸漬した後に蒸気養生を行った以外は、実施例20と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例15と同様にして、セメント組成物のフロー値(0打ち)等を測定した。なお、硬化体の圧縮強度は、測定装置の測定限界(511N/mm
2)を超えていた。
また、上記セメント質硬化体と同様にして40×40×160mmの供試体を製造し、「JIS A 1129−2:2010 モルタル及びコンクリートの長さ変化測定方法−第2部:コンタクトゲージ方法」に準拠して、6か月保存した場合における収縮ひずみを測定した。
【0077】
[実施例22]
脱型後の成形体を、減圧したデシケーター内で30分間水に浸漬した後に蒸気養生を行った以外は、実施例17と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例15と同様にして、セメント組成物のフロー値(0打ち)等を測定した。
【0078】
[実施例23]
低熱ポルトランドセメントの研磨処理物、シリカフュームD、無機粉末、及び骨材A1を、低熱ポルトランドセメントの研磨処理物等の各割合が表6に示す割合となるように、オムニミキサに投入して、15秒間空練りを行った。
次いで、水、ポリカルボン酸系高性能減水剤、及び消泡剤を、表6に示す量でオムニミキサに投入して、2分間混練した。なお、消泡剤の添加量は、粉体原料100質量部に対して0.02質量部とした。
混練後、オムニミキサの側面に付着した混練物を掻き落とし、さらに4分間混練を行った。その後、セメント組成物中の金属繊維の割合が表6に示す割合となる量の金属繊維を、オムニミキサに投入して、さらに2分間混練を行った。
得られたセメント組成物について、実施例15と同様にして0打ちフロー値を測定した。
また、得られたセメント組成物を材料として用いて、実施例18と同様の方法で、セメント質硬化体(成形体)を得た。
得られたセメント質硬化体(成形体)について、実施例18と同様にして、吸水率及び圧縮強度を測定した。なお、硬化体の圧縮強度は、測定装置の測定限界(511N/mm
2)を超えていた。
また、得られたセメント質硬化体の曲げ強度を、「土木学会基準 JSCE−G 552−2010(鋼繊維補強コンクリートの曲げ強度および曲げタフネス試験方法)」に準じて測定した。
【0079】
[実施例24]
脱型後の成形体を、沸騰している水に30分間浸漬する代わりに、減圧したデシケーター内で30分間水に浸漬した後に蒸気養生を行った以外は、実施例23と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
セメント組成物及びセメント質硬化体(加熱後の成形体)について、実施例23と同様にして、各種物性を測定した。なお、硬化体の圧縮強度は、測定装置の測定限界(511N/mm
2)を超えていた。
【0080】
[実施例25]
低熱ポルトランドセメントの研磨処理物、シリカフュームD、無機粉末、及び骨材A1を、低熱ポルトランドセメントの研磨処理物等の各割合が表6に示す割合となるように、オムニミキサに投入して、15秒間空練りを行った。
次いで、水、ポリカルボン酸系高性能減水剤、及び消泡剤を、表6に示す量でオムニミキサに投入して、2分間混練した。なお、消泡剤の添加量は、粉体原料100質量部に対して0.02質量部とした。
混練後、オムニミキサの側面に付着した混練物を掻き落とし、さらに4分間混練を行った。その後、骨材Bを、その割合が表6に示す割合となるように、オムニミキサに投入して、さらに1分間混練を行った。
混練後のセメント組成物を、φ100×200mmの円筒形の型枠に打設して、未硬化の成形体を得た。打設後、未硬化の成形体について、20℃で72時間静置した。次いで、脱型して、硬化した成形体を得た。該成形体の脱型時の圧縮強度は41N/mm
2であった。
さらに、上記成形体を90℃で48時間蒸気養生を行い、次いで、20℃になるまで降温させた後、さらに、乾燥炉を用いて180℃で48時間加熱した。
得られたセメント質硬化体(加熱後の成形体)について、実施例15と同様にして圧縮強度を測定した。
【0081】
[実施例26]
低熱ポルトランドセメントの研磨処理物の代わりに、中庸熱ポルトランドセメントの研磨処理物を使用し、脱型後の成形体を、減圧したデシケーター内で30分間水に浸漬した後に蒸気養生を行った以外は、実施例25と同様にして、セメント質硬化体(加熱後の成形体)を得た。
セメント質硬化体について、実施例18と同様にして、吸水率及び圧縮強度を測定した。
【0082】
[比較例2]
中庸熱ポルトランドセメントの研磨処理物、シリカフュームC、骨材A2、高性能減水剤、水を、表6に示す割合となるように、一括してホバートミキサに投入した後、低速で12分間混練して、セメント組成物を調製した以外は、実施例15と同様にして、セメント組成物の硬化体を得た。実施例15と同様にして、セメント組成物のフロー値(0打ち)等を測定した。
[比較例3]
中庸熱ポルトランドセメントの研磨処理物と、骨材A2と、高性能減水剤と、水を、表6に示す割合となるように、一括してホバートミキサに投入して、セメント組成物を調製しようとしたが、混練することができなかった。
[比較例4]
中庸熱ポルトランドセメントと、シリカフュームCと、骨材A2と、高性能減水剤と、水を、表6に示す配合で一括してホバートミキサに投入して、セメント組成物を調製しようとしたが、混練することができなかった。
以上の結果を表7に示す。
【0083】
【表6】
【0084】
【表7】
【0085】
表4から、実施例10、12、14で用いたセメント組成物およびセメント質硬化体の製造方法に従って得られたプレストレスト水硬性硬化体は、3等分点載荷による曲げ試験におけるひび割れ荷重が262kN以上、等分2点載荷による曲げひび割れ試験におけるひび割れ荷重が162kN以上であり、高いものである。3等分点載荷による曲げ試験におけるひび割れ強度が78.6MPa以上、等分2点載荷による曲げひび割れ試験におけるひび割れ強度が70.3MPaであり、高いものである。
このことから、本発明のプレストレスト水硬性硬化体は、高い引張強度およびせん断強度を有することがわかる。