(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0027】
<構成例:
図1>
図1に示すように、本実施形態に係る車両1には、ロール角推定装置10と横転危険度判定装置20と車高調整装置30と発進補助判定部31とが搭載され、ロール角推定装置10は、変位検出部11L及び11R(以下、符号11で総称することがある)と、圧力測定部12L及び12R(以下、符号12で総称することがある)と、処理部13とを備える。また、横転危険度判定装置20は、ロール角・ロール角速度検出部(ロール角検出部)21と、横転危険度判定部22と、ブレーキコントローラ23と、判定マップ記憶部24と、発進補助フラグ記憶部25とを備える。
【0028】
変位検出部11L及び11Rは、車両1の左後輪2L及び右後輪2R付近にそれぞれ設けたサスペンション(以下、符号3で総称することがあり、またエアバネと称することがある)3L及び3Rの変位Z
L及びZ
R(車軸に対するフレームの高さ)を検出する。圧力測定部12L及び12Rは、サスペンション3L及び3Rの内圧P
L及びP
Rを測定する。
【0029】
ロール角推定装置10の処理部13と、横転危険度判定装置20の横転危険度判定部22と、発進補助判定部31とは、所定のプログラムが予め記憶されると共に取得及び算出したデータを記憶可能なROM(Read Only Memory)やRAM(Random Access Memory)などの記憶部や、記憶部から読み出したプログラムに従って処理を実行するCPU(Central Processing Unit)等を備えたECU(Electronic Central Unit)によって構成される。また、ECUの記憶部には、後述の2値データである発進補助モードフラグの記憶領域として、発進補助フラグ記憶部25が備えられている。
【0030】
図3に示すように、ロール角推定装置10の処理部13は、補正ロール角演算記憶部14、補正後ロール角演算部15、ロール角出力部16、モード記憶部17、調整判定部18、及び判定記憶部19として機能する。なお、発進補助モードフラグ以外の各フラグ(2値データ)は、処理部13、あるいは横転危険度判定装置20の所定の記憶領域に記憶される。
【0031】
補正ロール角演算記憶部14は、圧力測定部12L及び12Rで測定した内圧P
L,P
R(内圧の測定値)と、変位検出部11L及び11Rで検出した変位Z
L,Z
R(変位の測定値)とに基づき、自動車高調整が行われなかった場合(以下、車高調整非実行時と称することがある)のロール角φ
2esを推定し、車両1の走行中にロール角・ロール角速度検出部21で検出されるロール角φを車高調整時非実行時のロール角に補正するための補正ロール角φ
2offを、上記推定した車高調整非実行時のロール角φ
2esを用いて演算し、演算した補正ロール角φ
2offを記憶部に記憶する。補正後ロール角演算部15は、ロール角・ロール角速度検出部21で検出されたロール角φを、上記記憶した補正ロール角φ
2offを用いて補正することによって補正後のロール角(補正後ロール角)φ
AMDを演算する。ロール角出力部16は、横転危険度判定装置20の横転危険度判定部22に対して有効なロール角を出力する。
【0032】
ロール角推定装置10は、補正有効モードと補正無効モードとのうち一方のモードに選択的に設定され、モードの変更に応じて、モード記憶部17(処理部13の記憶部)に設定された補正無効モードフラグの状態が切替わる。すなわち、モード記憶部17は、ロール角推定装置10が補正有効モード及び補正無効モードのうち何れのモードであるかを記憶する。ロール角推定装置10は、初期状態では補正有効モード(補正無効モードフラグ:「0」)に設定されており、補正無効モードへの設定指示を受けることによって、補正無効モード(補正無効モードフラグ:「1」)に切替わり、補正有効モードへの設定指示を受けることによって、補正有効モード(補正無効モードフラグ:「0」)に再度切替わる。ロール角推定装置10には、処理部13内のプログラムを変更して設定する機能を有する外部設定装置40が必要に応じて接続され、モードの設定指示(補正無効モードフラグのデータの書き換え)は、ロール角推定装置10に接続された外部設定装置40によるプログラム設定機能を用いて行われる。
【0033】
車高調整装置30は、ユーザ(運転者等)からの入力指示に応じて、自動車高調整モード又はマニュアルモードに設定される。変位検出部11L及び11Rで検出した変位Z
L及びZ
Rは、車高調整装置30にも入力されており、自動車高調整モードが設定されている場合、車高調整装置30は、車両1のエンジン駆動状態において車高が所定の標準車高となるように(変位Z
L及びZ
Rが何れも基準変位Z
STとなるように)、サスペンション3L及び3Rに対する加圧エアの給排気を制御する。一方、マニュアルモードが設定されている場合、車高調整装置30は、ユーザからの入力指示に応じた車高になるように、サスペンション3L及び3Rに対する加圧エアの給排気を制御する。サスペンション3L及び3Rに対する加圧エアの給排気は、サスペンション3L及び3Rへの各エア管路(図示省略)に設けられた制御弁(図示省略)の開閉によって制御される。
【0034】
自動車高調整モードが設定されている場合、車高調整装置30は、例えば旋回時、標準車高からの変動を抑制するために、変位Z
L及びZ
Rに基づきサスペンション3L及び3Rの一方の内圧を加圧(エアAPを注入)すると共に他方の内圧を減圧(エアAPを排出)することにより、サスペンション3L及び3Rの荷重−変位特性をそれぞれ強制的に変化させて車両1の左右車高差(Z
L−Z
R)を調整(補正)する。
【0035】
すなわち、車両1においては、サスペンション3L及び3Rのみが車高調整の対象となり、サスペンション3L及び3Rに対する加圧エアの給排気によって自動車高調整(以下、単に車高調整と称することがある)が行われ、左前輪4L及び右前輪4R付近にそれぞれ設けたサスペンション5L及び5Rについては何ら車高調整が行われない。従って、以下の説明では、荷重F及び内圧Pはサスペンション3L及び3Rに対する値である。
【0036】
図2に示すように、本実施形態の車両1は、後車軸6として2軸(後前軸6Fと後後軸6B)を有する後2軸車であり、左右の後輪2L,2Rは、後前軸6Fに支持される後前輪2LF,2RFと、後後軸6Bに支持される後後輪2LB,2RBとから構成される。後前軸6Fは駆動軸、後前輪2LF,2RFは駆動輪、後後軸6Bは従動軸、後後輪2LB,2RBは従動輪である。
【0037】
左のサスペンション3Lは、後前軸6Fの前後に配置される1対の後前サスペンション3LFと、後後軸6Bの前後に配置される1対の後後サスペンション3LBとから構成され、右のサスペンション3Rは、後前軸6Fの前後に配置される1対の後前サスペンション3RFと、後後軸6Bの前後に配置される1対の後後サスペンション3RBとから構成され、これら8つのサスペンション3LF,3LB,3RF,3RBは、同じサスペンションである。本実施形態では、左の1対の後前サスペンション3LFの各内圧と、左の1対の後後サスペンション3LBの各内圧と、右の1対の後前サスペンション3RFの各内圧と、右の1対の後後サスペンション3RBの各内圧とは、それぞれ同じ内圧に制御される。左の圧力測定部12Lは、左の後前サスペンション3LFの内圧を測定する圧力測定部12LFと、左の後後サスペンション3LBの内圧を測定する圧力測定部12LBとを有し、右の圧力測定部12Rは、右の後前サスペンション3RFの内圧を測定する圧力測定部12RFと、右の後後サスペンション3RBの内圧を測定する圧力測定部12RBとを有する。
【0038】
左右の後前サスペンション3LF,3RFは、駆動軸6Fを含む後2軸6F,6Bのうち駆動軸6Fに装備されて駆動軸6F(駆動輪2LF,2RF)の接地圧を増大させる流体バネとして機能する。後後サスペンション3LB,3RBに対する加圧エアの給排を停止したまま後前サスペンション3LF,3RFへ加圧エアを注入することにより、駆動輪2LF,2RFの接地圧が増大する。
【0039】
なお、
図1では、簡略化のため、後前輪2LF,2RFと後後輪2LB,2RBとを1つの後輪2L,2Rとして図示し、左の2つの後前サスペンション3LFと2つの後後サスペンション3LBとを左の1つのサスペンション3Lとして図示し、右の2つの後前サスペンション3RFと2つの後後サスペンション3RBとを右の1つのサスペンション3Rとして図示し、左の前後の圧力測定部12LF,12LBを左の1つの圧力測定部12Lとして図示し、右の前後の圧力測定部12RF,12RBを右の1つの圧力測定部12Rとして図示している。
【0040】
後述する発進補助以外の処理(車高調整処理など)では、左の後前サスペンション3LFと後後サスペンション3LBとは同じ内圧に制御され、右の後前サスペンション3RFと後後サスペンション3RBとは同じ内圧に制御される。このため、発進補助以外の処理については、左の4つのサスペンション3LF,3LBを1つのサスペンション3Lと見做し(4つのサスペンション3LF,3LBの全体を1つのサスペンション3Lに置換し)、右の4つのサスペンション3RF,3RBを1つのサスペンション3Rと見做して(4つのサスペンション3RF,3RBの全体を1つのサスペンション3Rに置換して)説明する。
【0041】
発進補助判定部31は、車両1が停止状態から発進する発進時であって、車両1が空積(積載量が所定重量よりも軽い状態)である場合に、発進補助モードへの移行条件が成立したと判定する。また、発進補助モード中に通常走行へ移行した場合に、発進補助モードの解除条件が成立したと判定する。本実施形態では、車速センサ(図示省略)が検出する車速がゼロから増加して所定車速に達するまでの期間を発進時と判定し、発進補助モード中に所定車速に達した場合に通常走行へ移行したと判定する。また、圧力測定部12L,12Rが測定する内圧が所定圧未満である場合に空積であると判定する。
【0042】
発進補助判定部31は、発進補助モードへの移行条件が成立すると、車高調整装置30に対して発進補助開始信号SS
Sを送信するとともに、発進補助フラグ記憶部25の発進補助モードフラグを「1」にセットする。また、発進補助モード中に発進補助モードの解除条件が成立すると、車高調整装置30に対して発進補助完了信号SS
Fを送信するとともに、発進補助フラグ記憶部25の発進補助モードフラグを「0」にセットする。なお、発進補助判定部31から車高調整装置30へ発進補助開始信号SS
S及び発進補助完了信号SS
Fを送信せず、発進補助モードフラグが「1」にセットされることに応じて、横転危険度判定装置20又は処理部13が車高調整装置30へ発進補助開始信号SS
S及び発進補助完了信号SS
Fを送信してもよい。
【0043】
車高調整装置30は、発進補助開始信号SS
Sを受信することにより、自動車高調整モード又はマニュアルモードから発進補助モードに変更され、発進補助完了信号SS
Fを受信することにより、発進補助モードから自動車高調整モード又はマニュアルモードに戻る。横転危険度判定装置20は、発進補助モードフラグが「1」にセットされることにより、発進補助モードに設定され、発進補助モードフラグが「0」にセットされることにより、通常状態(非発進補助モード)に戻る。
【0044】
発進補助モードへ移行すると、車高調整装置30は、後後サスペンション3LB,3RBに対する加圧エアの給排を停止したまま後前サスペンション3LF,3RFへ加圧エアを注入する。これにより、駆動輪2LF,2RFの接地圧が増大する。このように、車高調整装置30は、空積時に駆動軸6Fの軸荷重を増大させる軸重移動装置として機能し、発進補助判定部31と車高調整装置30と後前サスペンション3LF,3RFとは、発進補助装置を構成する。発進補助モードが解除されると、車高調整装置30は、設定された自動車高調整モード又はマニュアルモードに応じた車高の調整動作を開始する。
【0045】
また、処理部13と車高調整装置30とが相互接続されており、処理部13は、車高調整装置30から車高調整(自動車高調整モード及びマニュアルモードの双方の車高調整)の開始タイミング及び終了タイミングをそれぞれ示す信号SG
S及びSG
Fを受信する一方、車高調整装置30に対して車高調整中断指示信号INS1及び再開指示信号INS2を与えて車高調整を中断できるようにしている。
【0046】
調整判定部18は、自動車高調整モードにおいて車高調整装置30が自動車高調整を適正に実行しているか否かを判定し、自動車高調整を適正に実行していると判定した場合、判定記憶部19(処理部13の記憶部)に設定された補正有効判定フラグを「1」に設定する。補正有効判定フラグは、自動車高調整モードにおいて自動車高調整を適正に実行している場合に限り「1」に設定され、自動車高調整モードにおいて自動車高調整を適正に実行していない場合やマニュアルモードの場合には「0」に設定される。自動車高調整を適正に実行していない場合とは、例えば、圧力測定部12L又は12Rが故障している場合や、エア管路の制御弁が故障している場合や、サスペンション3L又は3Rに供給する加圧エアの量や圧力が不足している場合などである。何れの場合であっても車高が標準車高から乖離した状態となるため、本実施形態では、自動車高調整モードにおいて、変位検出部11L及び11Rで検出した変位Z
L及びZ
Rの双方が基準変位Z
STを含む所定の基準範囲に含まれている場合(Z
ST−α≦Z
L≦Z
ST+β、及びZ
ST−α≦Z
R≦Z
ST+β)に、自動車高調整を適正に実行していると判定し、変位Z
L又はZ
Rの少なくとも一方が基準範囲に含まれていない場合(Z
L<Z
ST−α、Z
ST+β<Z
L、Z
R<Z
ST−α、又はZ
ST+β<Z
R)に、自動車高調整を適正に実行していないと判定する。基準範囲を規定するαとβとは同一の値であってもよく、異なる値であってもよい。なお、変位検出部11L又は11Rが故障している場合を想定し、変位検出部11L及び11Rの故障判定を実行し、変位検出部11L又は11Rが故障していると判定した場合にも自動車高調整が適正に実行されていないと判定してもよい。また、制御弁の開閉制御に対する内圧や変位の変動に基づいて、自動車高調整が適正に実行されているか否かを判定してもよい。すなわち、自動車高調整を適正に実行しているか否かをどのように判定するかは任意である。
【0047】
補正有効モードが設定され(補正無効モードフラグが「0」)、且つ自動車高調整を適正に実行していると判定した(補正有効判定フラグが「1」)場合、処理部13は、補正後のロール角φ
AMDを有効なロール角として横転危険度判定部22へ出力する。一方、補正無効モードが設定されている(補正無効モードフラグが「1」)場合、又は自動車高調整を適正に実行していないと判定した(補正有効判定フラグが「0」)場合、処理部13は、ロール角・ロール角速度検出部21で検出されたロール角φと等しい値のロール角を有効なロール角として横転危険度判定部22へ出力する。本実施形態では、補正無効モードフラグが「1」の場合又は補正有効判定フラグが「0」の場合、補正後ロール角演算部15は、補正ロール角φ
2offをゼロとして補正後のロール角φ
AMDを演算し、ロール角出力部16は、補正後ロール角演算部15が演算した補正後のロール角φ
AMDを有効なロール角として横転危険度判定部22へ出力する。
【0048】
<発進補助処理:
図4>
次に、発進補助判定部31が実行する発進補助判定処理の一例を、
図4を参照して説明する。
【0049】
図4に示すように、発進補助判定部31は、発進補助フラグ記憶部25の発進補助モードフラグが「1」であるか否か(発進補助モード中であるか否か)を判定する(ステップS151)。
【0050】
発進補助モードフラグが「0」である(発進補助モード中ではない)と判定すると(ステップS151:NO)、発進補助モードへの移行条件が成立したか否かを判定する(ステップS152)。具体的には、車両1が発進時であり且つ空積である場合に、移行条件が成立したと判定する。
【0051】
発進補助モードへの移行条件が成立したと判定すると(ステップS152:YES)、車高調整装置30に対して発進補助開始信号SS
Sを送信するとともに、発進補助フラグ記憶部25の発進補助モードフラグを「1」にセットして(ステップS153)、本処理を終了する。
【0052】
発進補助モードフラグが「0」であって(ステップS151:NO)、発進補助モードへの移行条件が成立していないと判定すると(ステップS152:NO)、ステップS153の処理を実行せずに本処理を終了する。
【0053】
発進補助モードフラグが「1」である(発進補助モード中である)と判定すると(ステップS151:YES)、車両1が通常走行へ移行したか否かを判定する(ステップ154)。具体的には、車速が所定車速以上である場合に、通常走行へ移行したと判定する。
【0054】
車両1が通常走行へ移行したと判定すると(ステップ154:YES)、車高調整装置30に対して発進補助完了信号SS
Fを送信するとともに、発進補助フラグ記憶部25の発進補助モードフラグを「0」にセットして(ステップS155)、本処理を終了する。
【0055】
発進補助モードフラグが「1」であって(ステップS151:YES)、車両1が通常走行へ移行していないと判定すると(ステップ154:NO)、ステップS155の処理を実行せず、発進補助モードを維持したまま、本処理を終了する。
【0056】
発進補助開始信号SS
Sを受信した車高調整装置30は、発進補助モードへ移行し、後後サスペンション3LB,3RBに対する加圧エアの給排を停止したまま後前サスペンション3LF,3RFへ加圧エアを注入して、駆動輪2LF,2RFの接地圧を増大させる。また、発進補助完了信号SS
Fを受信した車高調整装置30は、発進補助モードを解除し、事前に設定された自動車高調整モード又はマニュアルモードに応じた車高の調整動作を開始する。
【0057】
<横転危険度判定処理:
図5〜
図7>
次に、横転危険度判定装置20が実行する横転危険度判定・制御処理の一例を、
図5〜
図7を参照して説明する。
【0058】
図1に示す横転危険度判定装置20は、ロール角・ロール角速度検出部(検出手段)21が検出した車両1のロール角φ及びロール角速度ω(横転危険度判定情報)に基づき車両1の横転危険度Hを判定すると共に、この横転危険度Hから目標減速度G
targetを算出する横転危険度判定部(判定手段)22と、この目標減速度G
targetに応じてブレーキ制御を行うブレーキコントローラ23と、通常状態(発進補助モード以外)と発進補助状態(発進補助モード)の各状態において横転危険度判定処理で使用される二次元マップを記憶する判定マップ記憶部(記憶手段)24と、発進補助モードであるか否かを示す発進補助モードフラグを記憶する発進補助フラグ記憶部25とで構成されている。
【0059】
図5は、横転危険度判定装置20とロール角推定装置10の相互動作を示している。この動作は、
図4の発進補助判定処理に基づく車高調整装置30と並行して実行される。
図5に示すように、ロール角・ロール角速度検出部21は、車両1のロール角φ及びロール角速度ωを検出し、ロール角速度ωを横転危険度判定部22に与えるとともに、ロール角φを処理部13に与える(ステップS101)。
【0060】
処理部13は、ロール角φを補正し、補正後のロール角φ
AMDを有効なロール角として横転危険度判定部22に対して与える(ステップS102)。なお、上述のように、補正無効モードが設定されている場合、又は自動車高調整を適正に実行していないと判定した場合には、ロール角・ロール角速度検出部21で検出されたロール角φと等しい値のロール角を有効なロール角として横転危険度判定部22に対して与える。
【0061】
次に、横転危険度判定部22は、発進補助フラグ記憶部25に記憶されている発進補助モードフラグを参照して、判定マップ記憶部24に予め記憶されているすロール角φとロール角速度ωの関係を示す2種類の二次元マップ(
図6及び
図7)のうち、何れのマップを後続の処理で使用するかを選択する(ステップS103)。
【0062】
図6は、通常状態(発進補助モードフラグ=「0」の場合)に選択され使用される二次元マップであり、
図7は、発進補助状態(発進補助モードフラグ=「1」の場合)に選択され使用される二次元マップである。
【0063】
図6及び
図7に示すように、各二次元マップは、ロール角φ及びロール角速度ωをパラメータとして設定されている。通常用の二次元マップ(
図6)には、原点側の被横転領域(安定領域R1)と反原点側の横転領域(左横転危険領域R2L及び右横転危険領域R2R)との境界を規定する第1の閾値ライン(境界線T1及びT2)が、通常用閾値として記憶(設定)されている。また、発進補助用の二次元マップ(
図7)には、原点側の被横転領域(安定領域R1)と反原点側の横転領域(左横転危険領域R2L及び右横転危険領域R2R)との境界を規定する第2の閾値ライン(境界線T3及びT4)が、発進補助用閾値として記憶(設定)されている。
【0064】
図7に示すように、本実施形態の発進補助用の境界線T3,T4は、通常用の境界線T1,T2に対して原点から離れる方向へ略平行に移動した位置に設定されており、発進補助用の安定領域R1βは、左横転危険領域R2L及び右横転危険領域R2Rの双方を狭めるように通常用の安定領域R1α(
図6参照)から拡がっている(拡幅している)。なお、通常用の境界線と発進補助用の境界線とは、何れも上記に限定されず、通常用よりも発進補助用の方が安定領域が拡がるように設定されていればよい。
【0065】
横転危険度判定部22は、ステップS103で選択された二次元マップを用い、この二次元マップ中に設けられた2本の境界線(T1,T2又はT3,T4)の各々からロール角φ及びロール角速度ωによって特定される点Sまでの距離L1及びL2を、下記の式(1)及び(2)に従って算出する(ステップS104)。上述したように、各二次元マップの1対の境界線(T1,T2及びT3,T4)は、車両1に横転する危険性が無いことを示す安定領域R1と、車両1が左に横転する危険性が有ることを示す左横転危険領域R2L及び右に横転する危険性が有ることを示す右横転危険領域R2Rとをそれぞれ区分けするものである。
【0068】
なお、通常状態の場合、
図6に示す如く、上記の式(1)中のA1及びB1は、境界線T1のφ軸切片(A1α)及びω軸切片(B1α)であり、上記の式(2)中のA2及びB2は、境界線T2のφ軸切片(A2α)及びω軸切片(B2α)である。また、発進補助状態の場合、
図7に示す如く、上記の式(1)中のA1及びB1は、境界線T3のφ軸切片(A1β)及びω軸切片(B1β)であり、上記の式(2)中のA2及びB2は、境界線T4のφ軸切片(A2β)及びω軸切片(B2β)である。A1αとA1β、A2αとA2β、B1αとB1β、及びB2αとB2βとは、何れも異なる値に設定されているため、各二次元マップ上の点Sの位置(ロール角φ及びロール角速度ω)が同じであっても、通常状態の場合に算出される距離L1(L1α)及びL2(L2α)と、発進補助状態で算出される距離L1(L1β)及びL2(L2β)とは、相違した値となる。
【0069】
ここで、境界線T1及びT2を基準に左横転危険領域R2L側及び右横転危険領域R2R側をそれぞれ正とし、いずれの場合も、安定領域R1側を負と定めるものとすると、距離L1及びL2の組み合わせは以下の通りである。
【0070】
(A)L1≦0且つL2≦0の場合、横転の危険性無し。
【0071】
(B)L1>0且つL2≦0の場合、左横転の危険性有り。
【0072】
(C)L1≦0且つL2>0の場合、右横転の危険性有り。
【0073】
(D)L1>0且つL2>0の場合、システム・エラー。
【0074】
従って、上記(A)が成立する場合(ステップS105:YES)、横転危険度判定部22は、横転の危険性無し(安定領域R1内)と判定し、何ら制御を行わない(ステップS108)。上述したように、発進補助用の安定領域R1βは通常用の安定領域R1αよりも拡がっているので、発進補助状態の方が通常状態よりも危険性無しと判定され易い。
【0075】
一方、上記(B)が成立する場合(ステップS106:YES)、横転危険度判定部22は、左横転の危険性有り(左横転危険領域R2L内)と判定し、距離L1を横転危険度Hとする(ステップS109)。
【0076】
また、上記(C)が成立する場合(ステップS107:YES)、横転危険度判定部22は、右横転の危険性有り(右横転危険領域R2R内)と判定し、距離L2を横転危険度Hとする(ステップS110)。
【0077】
このように、左横転の危険がある場合には距離L1を、右横転の危険がある場合には距離L2を横転危険度Hの値として採用する。
【0078】
そして、横転危険度判定部22は、横転危険度Hから車両1の横転を防止するために必要な目標減速度G
targetを算出してブレーキコントローラ23に与える(ステップS111)。目標減速度G
targetは、図示のような横転危険度Hに係数Kを乗じて算出するものに限らず、横転危険度Hの増減に応じて変化するものであればよい。
【0079】
ブレーキコントローラ23は、目標減速度G
targetとなるように各車輪に必要なブレーキ圧を演算してブレーキ制御を行う(ステップS113)。
【0080】
また、上記(D)が成立する場合、横転危険度判定部22は、システム・エラーと判定し、横転危険度判定装置20の内部にエラーフラグを記録する(ステップS112)。
【0081】
なお、この横転危険度判定装置20は、横転危険度判定部22が横転危険度Hを外部に出力し、上記のブレーキコントローラ23に代えて、横転危険度Hに応じて警報制御を行う警報装置(図示せず)とすることもできる。この場合も上記の説明は同様に適用される。
【0082】
このように、車両1の走行状態に応じて連続的に変化するロール角及びロール角速度に基づいて横転危険度を判定すると共に、横転危険度に応じたブレーキ制御や警報制御等を行うことができ、以て車両1の横転を防止することが可能となる。
【0083】
また、横転危険度判定装置20が、ロール角補正処理により得られた補正後ロール角φ
AMDを利用して距離L1及びL2を算出するので、車高調整が行われた場合であっても、横転危険度判定装置20は、車両1の横転危険度Hを正確に判定することができる。
【0084】
さらに、発進補助が実行されない通常状態では通常用の二次元マップを用いて横転危険度を判定し、発進補助状態では通常用とは異なる発進補助用の二次元マップを用いて横転危険度を判定するので、発進補助状態の横転危険度を適正に判定することができる。
【0085】
<横転危険度判定処理の他の例>
上記例では、判定マップ記憶部24が2種類(通常用と発進補助用)の二次元マップを予め記憶し、横転危険度判定部22が、通常状態では通常用の二次元マップを用いて横転危険度を判定し、発進補助状態では発進補助用の二次元マップを用いて横転危険度を判定したが、判定マップ記憶部24が通常用の二次元マップのみを予め記憶し、横転危険度判定部22が、発進補助状態では横転危険度を判定せず、通常状態でのみ通常用の二次元マップを用いて横転危険度を判定してもよい。
【0086】
本例では、横転の可能性が通常状態に比べて顕著に低い発進補助状態において、横転危険度が高いと誤判定されてしまうことを未然に防止することができる。
【0087】
<ロール剛性係数K
φ13の説明>
次に、ロール剛性係数K
φ13の定義を、
図8を参照して以下に説明する。ロール剛性係数の算出、及びそれによるロール角の補正は、横転危険度判定装置20が的確な動作を行うためには必要な処理であるので、以下に詳述する。また、これ以後に説明する動作で、キーONモードフラグ、コントロールフラグ、補正無効フラグ、補正有効判定フラグなどのようにいくつかのフラグ(2値データ)が使用されるが、それらは全て処理部13内部で記憶及び使用されるものであり、前述の発進補助フラグ記憶部25に記憶される発進補助モードフラグとは独立したものである。
【0088】
図8に示す如く車両1に荷物偏積(或いは一定の遠心加速度)によるロールモーメントM
xが生じているとすると、車両1の前輪側(車高調整の対象とならないサスペンション5L及び5R側)におけるロールモーメントの釣り合いの式は、下記の式(3)で表すことができる。
【0090】
上記の式(3)中のK
φ1、φ
1、K
φ12、及びφ
2は、それぞれ、設計条件等によって決定されるサスペンション5L及び5Rに共通の既知の固定ロール剛性係数、サスペンション5L及び5Rの変位差によって生じた未知の(測定しない)ロール角、荷物の材質やその固定状況によって変化する車両フレーム(図示せず)の未知の捩じり剛性係数、及び車高調整の対象となる後輪側のサスペンション3L及び3Rの変位差によって生じた測定可能なロール角である。
【0091】
また、サスペンション3L及び3R側におけるロールモーメントの釣り合いの式は、下記の式(4)で表すことができる。
【0093】
上記の式(4)中のM
x2及びK
φ2は、それぞれ、車高調整に伴ってサスペンション3L及び3Rにより生じた未知のロールモーメント、及び設計条件等によって決定されるサスペンション3L及び3Rに共通の既知の固定ロール剛性係数である。
【0094】
上記の式(3)をロール角φ
1について整理すると、下記の式(5)が得られる。
【0096】
この式(5)を上記の式(4)に更新し、荷物偏積によるロールモーメントM
xについて整理すると、下記の式(6)が得られる。
【0098】
ここで、下記の式(7)に示す如く、ロール剛性係数K
φ1,K
φ2及びフレーム捩じり剛性係数K
φ12による車両固有のロール剛性係数K
φ13を定義し、上記の式(6)で表されるロールモーメントM
xが荷物の積載条件が変化しない限り一定であることに着目すると、車高調整(調整開始時から終了時までの少なくとも一部)が間に介在する任意の2つの時点において、第1の時点(例えば車高調整開始時)におけるサスペンション3L及び3RによるロールモーメントM
x2a及びその変位差によって生じるロール角φ
2aと、第2の時点(例えば車高調整終了時)におけるロールモーメントM
x2b及びロール角φ
2bとには下記の式(8)に示す等号関係が成立する。
【0101】
上記の式(8)をロール剛性係数K
φ13について整理すると、下記の式(9)が得られる。
【0103】
すなわち、フレーム捩じり剛性係数K
φ12が如何なる値であっても、ロールモーメントM
x2a及びM
x2bとロール角φ
2a及びφ
2bとが分かればロール剛性係数K
φ13を求めることができる。
【0104】
ここで、サスペンション3L及び3Rに対する荷重F
La及びF
Raは、第1の時点における内圧P
La及びP
Raから、下記の式(10)に従って算出される。
【0106】
上記の式(10)は、サスペンション3L及び3R自体が共通に呈する荷重−内圧特性を示す線形近似式(k及びmは設計条件等で決定される係数)であり、
図9に示す如く、内圧P
L及びP
Rから荷重F
L及びF
Rがそれぞれ一意に特定される。
【0107】
また、サスペンション3L及び3Rに対する荷重F
Lb及びF
Rbは、第2の時点における内圧P
Lb及びP
Rbから、下記の式(11)に従って算出される。
【0109】
第1の時点におけるサスペンション3L及び3RによるロールモーメントM
x2aは、下記の式(12)に従い、上記の式(10)で算出した荷重F
La及びF
Raを用いて算出される。同様に、第2の時点におけるサスペンション3L及び3RによるロールモーメントM
x2bは、下記の式(12)に従い、上記の式(11)で算出した荷重F
Lb及びF
Rbを用いて算出される。
【0111】
上記の式(12)中のtrdは、各サスペンション3L及び3R−ロールセンタ(図示せず)間の距離(トレッド長)である。
【0112】
第1の時点におけるロール角φ
2aは、下記の式(13)に従い、第1の時点での変位Z
La及びZ
Raを用いて算出される。同様に、第2の時点におけるロール角φ
2bは、下記の式(13)に従い、第2の時点での変位Z
Lb及びZ
Rbを用いて算出される。
【0114】
ロール剛性係数K
φ13は、上記の式(12)で算出したロールモーメントM
x2a及びM
x2bと、上記の式(13)で算出したロール角φ
2a及びφ
2bとを用い、上記の式(9)に従って算出される。
【0115】
<車高調整非実行時のロール角φ
2esの第1の推定方法>
次に、ロール剛性係数K
φ13を用いて車高調整非実行時のロール角φ
2esを推定する第1の方法について説明する。
【0116】
図8に示した荷物偏積によるロールモーメントM
xは車高調整の前後を問わず一定であるため、車高調整終了時のロールモーメントM
x2b及びロール角φ
2bと、車高調整非実行時のロールモーメント(trd(F
Les−F
Res))及びロール角φ
2esとには下記の式(14)に示す等号関係が成立する。
【0118】
上記の式(14)中のF
Les及びF
Resは、それぞれ、サスペンション3L及び3Rに対する車高調整非実行時の荷重である。
【0119】
上記の式(14)は、下記の式(15)に示すサスペンション3L及び3Rに共通の荷重−変位特性の線形近似式を用い、下記の式(16)で表すことができる。
【0122】
上記の式(16)中のZ
Les及びZ
Resは、それぞれ、車高調整非実行時のサスペンション3L及び3Rの変位である。定数bは変位Z
Les及びZ
Resの差分を取った時に消去されている。
【0123】
また、上記の式(15)中の1次係数a及び定数bは、例えば
図10に示すようにして実験等により予め複数個求めておく。すなわち、実験段階において、基準長のときの内圧PをP
1,P
2,・・・P
7(P
1<P
2<・・・<P
7)にそれぞれ固定して空気を封じ込めた状態でサスペンション3L又は3Rに対する荷重Fを順次変化させ、その時々の変位Zを計測する。これにより同図(1)に点線で示す実際の荷重−変位特性CF1〜CF7がプロットされる。
【0124】
この後、同図(1)に示すように変位特性CF1〜CF7をそれぞれ線形近似して、線形近似式EXP1(荷重F=1次係数a1・変位Z+定数b1)、EXP2(F=a2・Z+b2)、EXP3(F=a3・Z+b3)、EXP4(F=a4・Z+b4)、EXP5(F=a5・Z+b5)、EXP6(F=a6・Z+b6)、及びEXP7(F=a7・Z+b7)を得る。
【0125】
同図(2)に示す表は、内圧Pと、上記の各線形近似式EXP1〜EXP7中の1次係数a1〜a7及び定数b1〜b7の値とをそれぞれ対応付けて記載したものである。図示の如く1次係数a及び定数bは内圧Pにそれぞれ比例する。これをグラフ上に示したものが
図11(1)及び(2)であり、1次係数a及び定数bは、下記の式(17)で表される。
【0127】
上述した通り、車高調整装置30はサスペンション3L及び3Rの一方の内圧を加圧し、その加圧分だけ他方の内圧を減圧する。このため、内圧P
Lb及びP
Rb間の平均値(図示せず)は、第2の時点のサスペンション3L及び3Rの内圧平均値に等しく、内圧P
Lb及びP
Rb間の平均値から第2の時点での1次係数aを
図10(2)のデータ表又は
図10(1)のグラフから一意に特定することができる。
【0128】
なお、第1の時点での内圧P
La及びP
Raを用いて1次係数aを選択してもよい。
【0129】
一方、ロール角φ
2esは、下記の式(18)で表すことができる。
【0131】
この式(18)を上記の式(16)に更新すると、下記の式(19)が得られる。
【0133】
上記の式(19)をロール角φ
2esについて整理すると、下記の式(20)が得られる。
【0135】
上記の式(20)のロール剛性係数K
φ13は、上記の式(9)で算出されるため、車高調整非実行時のロール角φ
2esは、下記の式(21)によって表される。
【0137】
このように、車高調整非実行時のロール角φ
2esは、第1の時点及び第2の時点におけるサスペンション3L及び3RによるロールモーメントM
x2a,M
x2bと、第1の時点及び第2の時点でのロール角φ
2a,φ
2bと、トレッド長trdと、上記の式(17)中の1次係数aとを用いて、上記の式(21)に従って算出される。
【0138】
<車高調整非実行時のロール角φ
2esの第2の推定方法>
次に、ロール剛性係数K
φ13を用いて車高調整非実行時のロール角φ
2esを推定する第2方法について説明する。
【0139】
上記第1の推定方法では、上記の式(9)に従って算出したロール剛性係数K
φ13を用いて車高調整非実行時のロール角φ
2esを推定したが、車両の始動から車高調整が開始されるまでの間(始動直後の期間)は、サスペンション3の状態が異なる2つの時点での内圧P及び変位Zを検出することができず、上記の式(9)に従ってロール剛性係数K
φ13を算出し、上記の式(21)に従って車高調整非実行時のロール角φ
2esを推定することができない。また、積荷重量が軽い空車状態や、積荷重心が左右のほぼ中央である中荷状態や、車高調整中の積荷の荷重状態の変化(荷重変化や積荷崩れなど)によってモーメン
トMxが変化する積荷移動状態では、上記の式(9)に従って算出されるロール剛性係数K
φ13の精度が低下し、上記の式(21)に従って算出される車高調整非実行時のロール角φ
2esの精度も低下する。さらに、異なる2つの時点でのサスペンション3の状態変化が小さい場合(上記の式(21)の分母((M
x2a−M
x2b)+2×trd
2×a(φ
2b−φ
2a))の絶対値が小さい場合)も、上記の式(21)に従って算出される車高調整非実行時のロール角φ
2esの精度が低下する。
【0140】
第2の推定方法は、第1の推定方法の不都合が生じる上述の各場合においても比較的精度の高いロール角φ
2esを算出するための方法であり、上記の式(9)に従ってロール剛性係数K
φ13を算出せず、これに代えて、予め設定され記憶されたデフォルトのロール剛性係数K
φ13def、或いはデフォルトから更新して記憶されたロール剛性係数K
φ13newを用いて、上記の式(20)に従って車高調整非実行時のロール角φ
2esを算出する。すなわち、上記第1の推定方法では、異なる2つの時点(第1及び第2の時点)でのロールモーメントM
x2a,M
x2b及びロール角φ
2a,φ
2bを用いてロール角φ
2esを算出するのに対し、第2の推定方法では、任意の1つの時点でのロールモーメントM
x2及びロール角φ
2と、これらの検出値を取得する前に記憶されたロール剛性係数K
φ13def或いはK
φ13newとを用いてロール角φ
2esを算出する。なお、第2の推定方法の場合、上記の式(20)における第2の時点のロール角φ
2bは任意の1つの時点でのロール角φ
2である。このように、第2の推定方法の補正ロール角φ
2offは、2つの異なる時点でのロールモーメントM
x2a,M
x2b及びロール角φ
2a,φ
2bではなく、1つの時点でのロールモーメントM
x2及びロール角φ
2と所定のロール剛性係数K
φ13def(又はK
φ13new)と用いて、上記の式(20)に従って算出される。デフォルトのロール剛性係数K
φ13defは、実験やシミュレーションなどによって予め求められ車両毎に記憶される。
【0141】
第1の推定方法では、算出されるロール角φ
2esの信頼性の差がエアサスペンション3の変動状態や積荷の状態変化などの検出環境に起因して生じ易く、好適な検出環境であれば、信頼性の高い高精度なロール角φ
2esを得ることができる。一方、第2の推定方法では、好適な検出環境下での信頼性は第1の推定方法よりも低いが、検出環境に起因した信頼性の差は第1の推定方法よりも生じ難く、信頼性において安定したロール角φ
2esを得ることができる。
【0142】
<補正後ロール角φ
AMDの算出方法>
次に、補正後ロール角φ
AMDの算出方法について説明する。
【0143】
補正ロール角φ
2offは、下記の式(22)に従い、ロール角φ
2es及び第2の時点でのロール角φ
2b(第2の推定方法の場合は任意の1つの時点でのロール角φ
2であるためφ
2b=φ
2)から算出される。なお、補正ロール角φ
2offの初期値には「0」が設定されている。
【0145】
補正後ロール角φ
AMDは、下記の式(23)に従い、検出ロール角φに補正ロール角φ
2offを加算することによって算出される。
【0147】
<ロール角補正処理例[1]:
図12〜
図19>
次に、ロール角推定装置10が実行するロール角補正処理の一例を、
図12〜
図19を参照して説明する。なお、この処理例[1]では、第2の推定方法のみによって車高調整非実行時のロール角φ
2esを推定する。
【0148】
図12に示すように、処理部13におけるロール角補正処理は、(1)変位検出部11及び圧力測定部12から取得した出力値(測定値)からノイズを除去した結果(変位Z
L,Z
R及び内圧P
L,P
R)を常時更新するフィルタ処理(ステップS1)と、(2)キーON(車両1の始動)直後のロール角φ
2esを推定するキーONモード処理(ステップS2)と、(3)コントロールフラグを設定するフラグ設定処理(ステップS3)と、(4)車高調整モード時のロール角φ
2esを推定する車高調整モード処理(ステップS4)と、(5)推定したロール角φ
2esに基づき上記の補正後ロール角φ
AMDを算出する補正後ロール角算出処理(ステップS5)とから成る。
【0149】
以下、これらの処理(1)〜(5)を順に説明する。
【0150】
(1)フィルタ処理:
図13
処理部13は、圧力測定部12により測定された内圧P
L及びP
R並びに変位検出部11により検出された変位Z
L及びZ
R(検出データ)が入力する度毎に、
図13に示すバターワースフィルタ処理を実行する。
【0151】
処理部13は、本処理を開始すると(ステップS10)、検出データ(P
L,P
R,Z
L,Z
R)を取得し(ステップS11)、これらの検出データに対してバターワースフィルタ処理を施し、フィルタ処理後の各検出値(P
Lfilter,P
Rfilter,Z
Lfilter,Z
Rfilter)を、キーONモード処理(ステップS2)以降の補正処理で用いる内圧P
L,P
R及び変位Z
L,Z
Rとして更新して記憶する(ステップS12)。
【0152】
なお、フィルタ処理後の各検出値について、所定のサンプル数を蓄積して記憶し、最新の検出データを取得する度にその平均値を算出し、算出した平均値を補正処理で用いる内圧P
L,P
R及び変位Z
L,Z
Rとして記憶してもよい。
【0153】
(2)キーONモード処理:
図14
上記の処理(1)の後、処理部13は、キーONモード処理を実行する。キーONモードとは、車両1の始動から車高調整の開始までのキーONフェーズで設定されるモードである。処理部13は、車両1のエンジンの始動(例えばイグニッションスイッチON)の検出時にキーONモードフラグを「1」に設定し、車高調整開始信号SG
Sの受信時にキーONモードフラグを「0」に設定する。キーONモードでは、車高調整開始前であり、上記第1の推定方法によって車高調整非実行時のロール角φ
2esを推定することができないため、第2の推定方法によって車高調整非実行時のロール角φ
2esを推定する。
【0154】
処理部13は、本処理を開始すると(ステップS20)、キーONフェーズか否かを判定する(ステップS21)。具体的には、キーONモードフラグが「1」のときキーONフェーズであると判定し、「0」のときキーONフェーズではないと判定する。キーONフェーズではないと判定すると(ステップS21:NO)、本処理を終了する。
【0155】
キーONフェーズであると判定すると(ステップS21:YES)、処理部13は、フィルタ処理(ステップS1)で記憶した内圧P
L,P
R及び変位Z
L,Z
Rを読み込み(ステップS22)、読み込んだ内圧P
L,P
R及び変位Z
L,Z
Rとを用いて、上記の式(10)、式(12)及び式(13)に従ってロールモーメントM
x2及びロール角φ
2を算出する。次に、内圧P
L,P
Rを用いて1次係数aを選択し、上記算出したロールモーメントM
x2及びロール角φ
2と、記憶されているロール剛性係数K
φ13と、選択した1次係数aとを用いて、上記の式(20)に従って車高調整非実行時のロール角φ
2esを算出する(ステップS23)。ロール剛性係数K
φ13は、後述するステップS43において更新して記憶された最新のロール剛性係数K
φ13newを使用する。なお、ステップS36〜S44の更新処理を省略する場合には、予め設定され記憶されたデフォルトのロール剛性係数K
φ13defを使用する。
【0156】
ロール角φ
2と車高調整非実行時のロール角φ
2esとを算出した処理部13は、上記の式(22)に従って、補正ロール角φ
2offを算出し、算出した補正ロール角φ
2offを更新して記憶して(ステップS24)、本処理を終了する。なお、本実施形態の処理部13は、ロール剛性係数K
φ13や補正ロール角φ
2offなどのデータを更新して記憶する場合、更新前のデータ(ロール剛性係数K
φ13や補正ロール角φ
2off)を削除せずに、履歴データとして蓄積して記憶する。
【0157】
(3)フラグ設定処理:
図15〜
図17
上記の処理(2)の後、処理部13は、フラグ設定処理を実行する。このフラグ設定処理において、処理部13は、車高調整装置30が車高調整を実行中か否か、及びサスペンション3の荷重−変位特性(バネ特性)が線形近似可能な範囲であるか否か(
図10に示す関係が成立する範囲であるか否か)を判定する。
【0158】
例えば、
図15(1)に示すように、エアサスペンション3のストロークが最大となるフルリバウンドでは、エアサスペンション3のバネ特性が線形近似可能な範囲から外れる。また、
図15(2)に示すように、エアサスペンション3のストロークが最小となるフルバンプでは、バンプラバーBRがアスクルAXLに当接し、バネ上荷重F
Loadは、エアサスペンション3とバンプラバーBRとによって分担して支持される。このため、エアサスペンション3のみによってバネ上荷重F
Loadを支持することを前提として設定された
図10のバネ特性が成立せず、エアサスペンション3のバネ特性が線形近似可能な範囲から外れる。なお、エアサスペンション3がフルリバウンドとなるエアサスペンション3の最大変位Z
Maxとフルバンプとなる最小変位Z
Minとは、車両の設計仕様から予め求めることが可能である。
【0159】
また、例えば、内圧一定の場合のエアサス特性(バネ特性)では、
図16に示すように、サスペンション3の基準長付近では変位Zに対する荷重の値はほぼ一定値となるが、変位Zが大きく伸びると、荷重が一定ではなくなり、線形近似可能な範囲から外れる。
【0160】
また、封じ込めの特性(エアを封じ込めた状態でのバネ特性)では、
図10(1)に示すように(図中、測定値を破線で示し、線形近似直線を実線で示す)、内圧(圧力)Pが高いときの荷重誤差と内圧Pが低いときの荷重誤差とを比較すると、誤差の大きさは両者ともほぼ同等となるため、内圧Pが低いときの方が推定荷重(内圧から推定する荷重)に内在する誤差の割合が大きくなり、結果として、線形近似可能な範囲から外れることになる。また、変位Zが極めて小さい場合や内圧Pが極めて大きい場合も、線形近似直線からの測定値の乖離が大きく、線形近似可能な範囲から外れる。
【0161】
このように、サスペンション3の変位Z又は内圧Pが過大又は過小の場合、サスペンション3のバネ特性が線形近似可能な範囲から外れる傾向を示す。従って、線形近似が不可能となるエアサスペンション3の変位Zの上限閾値Z
High及び下限閾値Z
Lowと、エアサスペンション3の内圧Pの上限閾値P
High及び下限閾値P
Lowとを予め設定することにより、変位Zが所定の上限閾値Z
High以上(Z≧Z
High)或いは所定の下限閾値Z
Low以下(Z≦Z
Low)の場合(変位Zが所定の変位範囲から外れた場合)、又は内圧Pが所定の上限閾値P
High以上(P≧P
High)或いは所定の下限閾値P
Low以下(P≦P
Low)の場合(内圧Pが所定の圧力範囲から外れた場合)に、エアサスペンション3のバネ特性が線形近似可能な範囲から外れた更新禁止状態であると判定することができる。
【0162】
上記第1の推定方法及び第2の推定方法の何れにおいても、エアサスペンション3が線形近似可能な範囲で変形することを前提として、ロール剛性係数K
φ13や車高調整非実行時のロール角φ
2esを算出するため、左右のサスペンション3の少なくとも一方のバネ特性が線形近似可能な範囲から外れていると、これらの算出値の精度が低下する。
【0163】
このため、バネ特性が線形近似可能な範囲から外れている場合、処理部13は、更新禁止状態であると判定し、コントロールフラグを「0」に設定して、後述するロール剛性係数K
φ13の更新処理や補正ロール角φ
2offの更新処理の実行を禁止する。
【0164】
また、車高調整の非実行時も、コントロールフラグを「0」に設定して、後述するロール剛性係数K
φ13の更新処理や補正ロール角φ
2offの更新処理の実行を禁止する。
【0165】
図17に示すように、処理部13は、本処理を開始すると(ステップS90)、車高調整装置30が車高調整を実行しているか否か(車高調整の開始から終了までの期間内であるか否か)を判定する(ステップS91)。
【0166】
車高調整を実行していないと判定すると(ステップS91:NO)、処理部13は、コントロールフラグを「0」に設定して(ステップS92)、本処理を終了する。
【0167】
車高調整を実行していると判定すると(ステップS91:YES)、処理部13は、フルリバウンド及びフルバンプの何れでもない(非フルリバウンドで且つ非フルバンプ)か否かを判定する(ステップS93)。具体的には、フィルタ処理(ステップS1)で記憶した変位Z
L,Z
Rを読み込み、読み込んだ変位Z
L,Z
Rがともに最小変位Z
Minを超え且つ最大変位Z
Max未満の範囲内であるとき(Z
Min<Z
L,Z
R<Z
Max)、フルリバウンド及びフルバンプの何れでもないと判定する。
【0168】
フルリバウンド又はフルバンプの何れかであると判定すると(ステップS93:NO)、処理部13は、コントロールフラグを「0」に設定して(ステップS92)、本処理を終了する。
【0169】
フルリバウンド及びフルバンプの何れでもないと判定すると(ステップS93:YES)、処理部13は、フィルタ処理(ステップS1)で記憶した内圧P
L,P
R及び変位Z
L,Z
Rを読み込み、読み込んだ内圧P
L,P
Rがともに下限閾値P
Lowを超え且つ上限閾値P
High未満の範囲内であるか(P
Low<P
L,P
R<P
High)、及び読み込んだ変位Z
L,Z
Rがともに下限閾値Z
Lowを超え且つ上限閾値Z
High未満の範囲内であるか(Z
Low<Z
L,Z
R<Z
High)を判定する。
【0170】
内圧P
L,P
R及び変位Z
L,Z
Rがともに上記範囲内であると判定すると(ステップS94:YES)、処理部13は、コントロールフラグを「1」に設定して(ステップS95)、本処理を終了する。
【0171】
内圧P
L,P
R及び変位Z
L,Z
Rの少なくとも1つが上記範囲外であると判定すると(ステップS94:NO)、処理部13は、コントロールフラグを「0」に設定して(ステップS92)、本処理を終了する。
【0172】
なお、ステップS93の判定とステップS94の判定とにおいて、最大変位Z
Maxが上限値Z
Highよりも大きい場合又は最小変位Z
Minが下限値Z
Lowよりも小さい場合には、ステップS93における変位Z
L,Z
Rと最大変位Z
Max又は最小変位Z
Minとの比較を省略してもよく、反対に、最大変位Z
Maxが上限値Z
Highよりも小さい場合又は最小変位Z
Minが下限値Z
Lowよりも大きい場合には、ステップS94における変位Z
L,Z
Rと上限値Z
High又は下限値Z
Lowとの比較を省略してもよい。また、ステップS93及びステップS94のうち何れか一方のみによって、サスペンション3のバネ特性が線形近似可能な範囲であるか否かを判定してもよい。
【0173】
(4)車高調整モード処理:
図18
上記の処理(3)の後、処理部13は、車高調整モード処理を実行する。
【0174】
処理部13は、本処理を開始すると(ステップS30)、コントロールフラグが「1」であるか否かを判定する(ステップS31)。
【0175】
コントロールフラグが「1」であると判定すると(ステップS31:YES)、処理部13は、コントロールフラグの立ち上がり時であるか否か(ステップS3のフラグ設定処理でコントロールフラグを「1」に設定した直後であるか否か)を判定する(ステップS32)。
【0176】
コントロールフラグの立ち上がり時であると判定すると(ステップS32:YES)、処理部13は、フィルタ処理(ステップS1)で記憶した内圧P
L,P
R及び変位Z
L,Z
Rを、後述するステップS38の処理で用いるために内圧P
La,P
Ra及び変位Z
La,Z
Raとして記憶する(ステップS33)。次に、コントロールフラグの立ち上がり時であるか否かに関わらず、フィルタ処理(ステップS1)で記憶した内圧P
L,P
R及び変位Z
L,Z
Rを内圧P
Lb,P
Rb及び変位Z
Lb,Z
Rbとして読み込み(ステップS45)、読み込んだ内圧P
Lb,P
Rb及び変位Z
Lb,Z
Rbを用いて、上記の式(11)、式(12)及び式(13)に従ってロールモーメントM
x2b及びロール角φ
2bを算出する。次に、内圧P
Lb,P
Rbを用いて1次係数aを選択し、上記算出したロールモーメントM
x2b及びロール角φ
2bと、記憶されているロール剛性係数K
φ13と、選択した1次係数aとを用いて、上記の式(20)に従って車高調整非実行時のロール角φ
2esを算出する(ステップS34)。このとき使用するロール剛性係数K
φ13は、後述するステップS43において更新して記憶された最新のロール剛性係数K
φ13newである。なお、ステップS36〜S44の更新処理を省略する場合には、予め設定され記憶されたデフォルトのロール剛性係数K
φ13defを使用する。
【0177】
ロール角φ
2bと車高調整非実行時のロール角φ
2esとを算出した処理部13は、上記の式(22)に従って、補正ロール角φ
2offを算出し、算出した補正ロール角φ
2offを更新して記憶して(ステップS35)、本処理を終了する。
【0178】
また、コントロールフラグが「1」ではない(「0」である)と判定すると(ステップS31:NO)、処理部13は、コントロールフラグの立ち下がり時であるか否か(ステップS3のフラグ設定処理でコントロールフラグを「0」に設定した直後であるか否か)を判定する(ステップS36)。
【0179】
コントロールフラグの立ち下がり時であると判定すると(ステップS36:YES)、処理部13は、ロール剛性係数K
φ13の更新処理(ステップS37〜S44)を実行する。
【0180】
ロール剛性係数K
φ13は、上記の式(9)に示されるように、2つの異なる時点のロールモーメントの変化量ΔM(ΔM=M
x2a−M
x2b)とロール角の変化量Δφ(Δφ=φ
2a−φ
2b)とを、K
φ13=ΔM/Δφに代入することによって算出される値である。
【0181】
このため、積荷重量が軽い空車状態や、積荷重心が左右のほぼ中央である中荷状態では、ΔM及びΔφの値がともに小さく、算出されるロール剛性係数K
φ13の値が発散する傾向が強くなり、ロール剛性係数K
φ13の精度が低下する。
【0182】
また、車高調整中に積荷荷重変化や積荷崩れによってモーメントMxが変化する積荷移動状態では、ΔMやΔφの発生要因に荷重移動が含まれてしまうため、算出されるロール剛性係数K
φ13の精度が低下する。
【0183】
さらに、異なる2つの時点でのサスペンション3の状態変化が小さい場合(上記の式(21)の分母((M
x2a−M
x2b)+2×trd
2×a(φ
2b−φ
2a))の絶対値が小さい場合)にも、算出されるロール剛性係数K
φ13の精度が低下する。
【0184】
従って、ステップS23及びステップS35においてロール剛性係数K
φ13を用いて算出される車高調整非実行時のロール角φ
2esの信頼性を維持するため、空車状態や中荷状態や積荷移動状態の場合、或いはサスペンション3の状態変化が小さい場合には、更新禁止状態であると判定してロール剛性係数K
φ13を更新せず、これら以外の場合に限ってロール剛性係数K
φ13を更新する。
【0185】
空車状態か否かの判定(空車判定)では、本判定時(車高調整終了時)の内圧P
Lb,P
Rbを用いて、上記の式(11)に従って左右の後輪に作用する輪荷重F
Lb及びF
Rbを算出する。
【0186】
次に、後輪軸に作用するリヤ軸重F
Rrを、下記の式(24)に従って算出する。
【0188】
リヤ軸重F
Rrが予め設定された所定の閾値B未満の場合(F
Rr<B)は、空車状態であると判定し、リヤ軸重F
Rrが閾値B以上の場合(F
Rr≧B)は、空車状態ではないと判定する。
【0189】
中荷状態か否かの判定(中荷判定・偏積状態判定)では、本判定時の内圧P
Lb,P
Rbを用いて、上記の式(11)及び式(12)に従ってロールモーメントM
x2bを算出する。
【0190】
次に、積荷偏積によるロールモーメントM
xbを、下記の式(25)に従って算出する。式(25)において使用するロール剛性係数K
φ13は、後述するステップS43において更新して記憶された最新のロール剛性係数K
φ13newである。なお、ステップS36〜S44の更新処理を省略する場合には、予め設定され記憶されたデフォルトのロール剛性係数K
φ13defを使用する。
【0192】
ロールモーメントM
xbが予め設定された閾値C未満の場合(M
xb<C)は、中荷状態であると判定し、ロールモーメントM
xbが閾値C以上の場合(M
xb≧C)は、中荷状態ではないと判定する。
【0193】
積荷移動状態か否かの判定(積荷移動判定)では、車高調整開始時の内圧P
La,P
Raと本判定時の内圧P
Lb,P
Rbとを用いて、上記の式(10)〜式(12)に従って2つの時点でのロールモーメントM
x2a及びM
x2bをそれぞれ算出する。
【0194】
次に、車高調整終了時の積荷偏積によるロールモーメントM
xbと車高調整開始時の積荷偏積によるロールモーメントM
xaとの差を、偏積モーメント差ΔM
xとして、ロールモーメントM
x2a及びM
x2bを用いて下記の式(26)に従って算出する。
【0196】
上記の式(26)の偏積モーメント差ΔM
xは、ロールモーメントの変化量ΔM(ΔM=M
x2a−M
x2b)及びロール角の変化量Δφ(Δφ=φ
2a−φ
2b)によって、下記の式(27)として表される。式(26)及び式(27)において使用するロール剛性係数K
φ13は、後述するステップS43において更新して記憶された最新のロール剛性係数K
φ13newである。なお、ステップS36〜S44の更新処理を省略する場合には、予め設定され記憶されたデフォルトのロール剛性係数K
φ13defを使用する。
【0198】
偏積モーメント差ΔM
xの絶対値が予め設定された閾値Dを超えている場合(ΔM
x>D)は、積荷移動状態であると判定し、偏積モーメント差ΔM
xの絶対値が閾値D以下の場合(ΔM
x≦D)は、積荷移動状態ではないと判定する。
【0199】
異なる2つの時点でのサスペンション3の状態変化が大きいか否か(信頼性の高いロール剛性係数K
φ13の算出が可能な程度以上にサスペンション3の状態が変化したか否か)の判定では、上記の式(21)の分母の絶対値(│ΔM+2×trd
2×a×Δφ│)をサスペンション3の所定の状態値として算出し、その算出値が予め設定された所定の閾値Aを超えているか否かを判定する。上記の式(21)の分母の絶対値が閾値Aを超えている場合は、信頼性の高いロール剛性係数K
φ13の算出が可能な程度以上にサスペンション3の状態が変化したと判定し、閾値A以下の場合は、サスペンション3の状態変化が上記程度に達していないと判定する。
【0200】
ロール剛性係数K
φ13の更新処理へ移行すると、処理部13は、フィルタ処理(ステップS1)で記憶した内圧P
L,P
R及び変位Z
L,Z
Rを内圧P
Lb,P
Rb及び変位Z
Lb,Z
Rbとして読み込み(ステップS37)、読み込んだ内圧P
Lb,P
Rb及び変位Z
Lb,Z
Rbを用いて、上記の式(10)〜式(13)に従ってロールモーメントM
x2b及びロール角φ
2bを算出する。また、直近のステップS33の処理で記憶した内圧P
La,P
Ra及び変位Z
La,Z
Raを用いて、上記の式(10)〜式(13)に従ってロールモーメントM
x2a及びロール角φ
2aを算出する。そして、算出したロールモーメントM
x2a,M
x2b及びロール角φ
2a,φ
2bを用いて、ロールモーメントの変化量ΔM(ΔM=M
x2a−M
x2b)及びロール角の変化量Δφ(Δφ=φ
2a−φ
2b)を算出する(ステップS38)。
【0201】
次に、処理部13は、空車状態であるか否かを判定し(ステップS39)、空車状態ではないと判定すると(ステップS39:NO)、中荷状態であるか否かを判定し(ステップS40)、中荷状態ではないと判定すると(ステップS40:NO)、積荷移動状態であるか否かを判定し(ステップS41)、積荷移動状態ではないと判定すると(ステップS41:NO)、信頼性の高いロール剛性係数K
φ13の算出が可能な程度以上にサスペンション3の状態が変化したか否かを判定する(ステップS44)。
【0202】
空車状態、中荷状態及び積荷移動状態の何れでもなく、信頼性の高いロール剛性係数K
φ13の算出が可能な程度以上にサスペンション3の状態が変化したと判定すると(ステップS44:YES)、処理部13は、ステップS38で算出したロールモーメントの変化量ΔMとロール角の変化量Δφとを、K
φ13=ΔM/Δφに代入することによって、ロール剛性係数K
φ13を算出し、算出したK
φ13を最新のロール剛性係数K
φ13newとして更新して記憶し(ステップS43)、本処理を終了する。なお、初期状態(車両の出荷時)には、デフォルトのロール剛性係数K
φ13defが記憶され、ロール剛性係数K
φ13の最初の更新が実行されるまでの間は、このデフォルト値が最新のロール剛性係数K
φ13newとして使用される。
【0203】
一方、空車状態、中荷状態又は積荷移動状態の何れかである、或いは信頼性の高いロール剛性係数K
φ13の算出が可能な程度以上にサスペンション3の状態が変化していないと判定すると(ステップS39:YES、ステップS40:YES、ステップS41:YES、又はステップS44:NO)、ロール剛性係数K
φ13を更新せずに(ステップS42)、本処理を終了する。
【0204】
また、コントロールフラグの立ち下がり時ではないと判定した場合(ステップS36:NO)、処理部13は、ロール剛性係数K
φ13の更新処理(ステップS37〜S44)を実行せずに、本処理を終了する。
【0205】
なお、上記ロール剛性係数K
φ13の更新処理(ステップS36〜S44)は省略可能である。この場合、ロール剛性係数K
φ13は、デフォルトのロール剛性係数K
φ13defが常時使用される。
【0206】
また、上記の更新判定に代えて又は加えて、ロール角の変化量Δφの絶対値(│φ
2a−φ
2b│)が第1の所定位置以下の場合に、更新禁止状態であると判定してもよく、ロールモーメントの変化量ΔMの絶対値(│M
x2a−M
x2b│)が第2の所定値以下の場合に、更新禁止状態であると判定してもよい。
【0207】
(5)補正後ロール角算出処理:
図19
上記の処理(4)の後、処理部13は、補正後ロール角算出処理を実行する。
【0208】
処理部13は、本処理を開始すると(ステップS50)、補正有効モードであるか否か(補正無効フラグが「0」であるか否か)を判定する(ステップS51)。
【0209】
補正有効モードである(補正無効フラグが「0」である)と判定した場合(ステップS51:YES)、車高調整装置30が自動車高調整モードにおいて自動車高調整を適正に実行しているか否か(補正有効判定フラグが「1」であるか否か)を判定する(ステップS52)。
【0210】
自動車高調整モードにおいて自動車高調整を適正に実行している(補正有効判定フラグが「1」である)と判定した場合(ステップS52:YES)、更新された最新の補正ロール角φ
2offを検出ロール角φに加算することによって補正後ロール角φ
AMDを算出し(ステップS51)、本処理を終了する。
【0211】
このように算出した補正後ロール角φ
AMDは、横転危険度判定部22(
図1に示す)に提供される。なお、補正ロール角φ
2offは、ステップS24又はステップS35において更新して記憶された最新の補正ロール角φ
2offが使用される。
【0212】
一方、補正無効モードである(補正無効フラグが「1」である)と判定した場合(ステップS51:NO)、或いは自動車高調整モードではない又は自動車高調整モードであっても自動車高調整を適正に実行していない(補正有効判定フラグが「0」である)と判定した場合(ステップS52:NO)、補正ロール角φ
2offの値をゼロに更新して記憶し(ステップS54)、この補正ロール角φ
2offを検出ロール角φに加算することによって補正後ロール角φ
AMDを算出して(ステップS53)、本処理を終了する。すなわち、補正無効モードの場合や、マニュアルモードの場合や、自動車高調整モードであっても自動車高調整が適正に実行されていない場合には、ロール角補正は実質的に実行されず、検出ロール角φが補正後ロール角φ
AMDとして横転危険度判定部22(
図1に示す)に提供される。
【0213】
<ロール角補正処理例[2]:
図20、
図21>
上記のロール角補正処理例[1]では、第2の推定方法のみによって車高調整非実行時のロール角φ
2esを推定したが、この処理例[2]では、第1の推定方法と第2の推定方法とを併用して、車高調整非実行時のロール角φ
2esを推定する。
【0214】
すなわち、ロールモーメントM
x2及びロール角φ
2を検出するときのエアサスペンション3の状態(検出環境)が理想的な検出環境であって、算出されるロール角φ
2esの信頼性が高い場合には、第1の推定方法によってロール角φ
2esを算出し、第1の推定方法ではロール角φ
2esを算出できない場合や、算出されるロール角φ
2esの信頼性が低下する場合には、第2の推定方法によってロール角φ
2esを算出する。
【0215】
第1の推定方法によってロール角φ
2esを算出できない場合には、キーON直後(車高調整の開始前)が該当する。また、第1の推定方法によって算出されるロール角φ
2esの信頼性が低下する場合には、空車状態や中荷状態や積荷移動状態の他、異なる2つの時点でのサスペンション3の状態変化が小さい場合(上記の式(21)の分母((M
x2a−M
x2b)+2×trd
2×a(φ
2b−φ
2a))の絶対値が小さい場合)が該当する。
【0216】
処理部13は、処理例[1]と同様に、
図1のステップS1〜S5の処理を実行するが、これらの処理のうち車高調整モード処理(ステップS4)については、
図18に示す処理(ステップS30〜S44)に代えて、
図20及び
図21に示す以下の処理を実行する。
【0217】
処理部13は、本処理を開始すると(ステップS60)、コントロールフラグが「1」であるか否かを判定する(ステップS61)。
【0218】
コントロールフラグが「1」であると判定すると(ステップS61:YES)、処理部13は、コントロールフラグの立ち上がり時であるか否かを判定する(ステップS62)。
【0219】
コントロールフラグの立ち上がり時であると判定すると(ステップS62:YES)、処理部13は、処理例[1]と同様に、フィルタ処理(ステップS1)で記憶した内圧P
L,P
R及び変位Z
L,Z
Rを内圧P
La,P
Ra及び変位Z
La,Z
Raとして読み込み(ステップS63)、読み込んだ内圧P
La,P
Ra及び変位Z
La,Z
Raを用いて、上記の式(10)、式(12)及び式(13)に従ってロールモーメントM
x2a及びロール角φ
2aを算出し、算出したロールモーメントM
x2a及びロール角φ
2aと記憶されているロール剛性係数K
φ13newとを用いて、上記の式(20)に従って(第2の推定方法によって)、車高調整非実行時のロール角φ
2esを算出する(ステップS64)。このとき、算出したロールモーメントM
x2a及びロール角φ
2aを更新して記憶する。
【0220】
ロール角φ
2aと車高調整非実行時のロール角φ
2esとを算出した処理部13は、上記の式(22)に従って、補正ロール角φ
2offを算出し、算出した補正ロール角φ
2offを更新して記憶して(ステップS65)、本処理を終了する。
【0221】
一方、コントロールフラグの立ち上がり時ではないと判定すると(ステップS62:NO)、処理部13は、フィルタ処理(ステップS1)で記憶した内圧P
L,P
R及び変位Z
L,Z
Rを内圧P
Lb,P
Rb及び変位Z
Lb,Z
Rbとして読み込み(ステップS66)、読み込んだ内圧P
Lb,P
Rb及び変位Z
Lb,Z
Rbを用いて、上記の式(10)〜式(13)に従ってロールモーメントM
x2b及びロール角φ
2bを算出し、算出したロールモーメントM
x2b及びロール角φ
2bと、直近のステップS64の処理において記憶されたロールモーメントM
x2a及びロール角φ
2aとを用いて、ロールモーメントの変化量ΔM(ΔM=M
x2a−M
x2b)及びロール角の変化量Δφ(Δφ=φ
2a−φ
2b)を算出する
(ステップS67)。
【0222】
次に、処理部13は、車高調整開始時と車高調整終了時との間において、信頼性の高いロール角φ
2esの算出が可能な程度以上にサスペンション3の状態が変化したか否か(2つの時点間のサスペンション3の所定の状態値の差が所定の閾値を超えているか否か)を判定する(ステップS68)。具体的には、上記の式(21)の分母の絶対値(│ΔM+2×trd
2×a×Δφ│)を算出し、その算出値が予め設定された所定の閾値Aを超えているか否かを判定する。
【0223】
算出値が閾値Aを超えている場合、処理部13は、空車状態であるか否かを判定し(ステップS69)、空車状態ではないと判定すると(ステップS69:NO)、中荷状態であるか否かを判定し(ステップS70)、中荷状態ではないと判定すると(ステップS70:NO)、さらに積荷移動状態であるか否かを判定する(ステップS71)。なお、空車判定、中荷判定及び積荷移動判定は、処理例[1]のステップS39〜S41と同様に実行されるため、詳細な説明は省略する。
【0224】
式(21)の分母の絶対値(│ΔM+2×trd
2×a×Δφ│)が閾値Aを超えており、且つ空車状態、中荷状態及び積荷移動状態の何れでもないと判定すると(ステップS71:NO)、処理部13は、第1の推定方法によって車高調整非実行時のロール角φ
2esを算出する(ステップS72)。具体的には、ステップS66で読み込んだ内圧P
Lb,P
Rbを用いて1次係数aを選択し、選択した1次係数aと、ステップS67で算出したロールモーメントM
x2b、ロール角φ
2b、ロールモーメントの変化量ΔM及びロール角の変化量Δφと1次係数aとを用いて、上記の式(21)に従ってロール角φ
2esを算出する。
【0225】
ロール角φ
2bと車高調整非実行時のロール角φ
2esとを算出した処理部13は、上記の式(22)に従って、補正ロール角φ
2offを算出し、算出した補正ロール角φ
2offを更新して記憶して(ステップS74)、本処理を終了する。
【0226】
一方、式(21)の分母の絶対値(│ΔM+2×trd
2×a×Δφ│)が閾値A以下であるか、或いは空車状態、中荷状態又は積荷移動状態の何れかであると判定すると(ステップS68:NO、ステップS69:YES、ステップS70:YES、ステップS71:YES)、処理部13は、第2の推定方法によって車高調整非実行時のロール角φ
2esを算出する(ステップS73)。具体的には、ステップS66で読み込んだ内圧P
Lb,P
Rb及び変位Z
Lb,Z
Rbを用いて、上記の式(11)〜式(13)に従ってロールモーメントM
x2b及びロール角φ
2bを算出する。次に、内圧P
Lb,P
Rbを用いて1次係数aを選択し、上記算出したロールモーメントM
x2b及びロール角φ
2bと、記憶されているロール剛性係数K
φ13newと、選択した1次係数aとを用いて、上記の式(20)に従って車高調整非実行時のロール角φ
2esを算出する。
【0227】
ロール角φ
2bと車高調整非実行時のロール角φ
2esとを算出した処理部13は、上記の式(22)に従って、補正ロール角φ
2offを算出し、算出した補正ロール角φ
2offを更新して記憶して(ステップS74)、本処理を終了する。
【0228】
また、コントロールフラグが「1」ではないと判定すると(ステップS61:NO)、処理部13は、コントロールフラグの立ち下がり時であるか否かを判定する(ステップS36)。
【0229】
コントロールフラグの立ち下がり時であると判定すると(ステップS36:YES)、処理部13は、ロール剛性係数K
φ13の更新処理(ステップS37〜S44)を実行する。なお、ロール剛性係数K
φ13の更新処理(ステップS37〜S44)は、処理例[1]と同様であるため、詳細な説明は省略する。
【0230】
また、コントロールフラグの立ち下がり時ではないと判定した場合も(ステップS36:NO)、処理例[1]と同様に、処理部13は、ロール剛性係数K
φ13の更新処理(ステップS37〜S44)を実行せずに、本処理を終了する。
【0231】
<ロール角補正処理例[3]:
図22>
上記のロール角補正処理例[1]及び[2]では、補正後ロール角算出処理(ステップS5)において、補正ロール角φ
2off(ステップS24、S35、S65又はS74で更新された補正ロール角φ
2off)を検出ロール角φに加算することによって、補正後ロール角φ
AMDを算出する(ステップS51)。
【0232】
しかし、空車状態や中荷状態では、積荷がロール角φに与える影響が小さく、検出ロール角φを補正する必要性が乏しい。このため、処理例[3]では、空車状態の場合や中荷状態の場合には、補正無効モードの場合やマニュアルモードの場合や自動車高調整モードで自動車高調整を適正に実行していない場合と同様に、ロール角補正が実質的に実行されないように(検出ロール角φがそのまま補正後ロール角φ
AMDとして出力されるように)、補正ロール角φ
2offをゼロに設定する。
【0233】
処理部13は、処理例[1]又は処理例[2]と同様に、
図1のステップS1〜S5の処理を実行するが、これらの処理のうち補正後ロール角算出処理(ステップS5)については、
図19に示す処理(ステップS50〜S54)に代えて、
図22に示す以下の処理を実行する。
【0234】
処理部13は、本処理を開始すると(ステップS80)、補正有効モードであるか否か(補正無効フラグが「0」であるか否か)を判定する(ステップS81)。
【0235】
補正有効モードである(補正無効フラグが「0」である)と判定した場合(ステップS81:YES)、車高調整装置30が自動車高調整モードにおいて自動車高調整を適正に実行しているか否か(補正有効判定フラグが「1」であるか否か)を判定する(ステップS82)。
【0236】
自動車高調整モードにおいて自動車高調整を適正に実行している(補正有効判定フラグが「1」である)と判定した場合(ステップS82:YES)、空車状態であるか否かを判定し(ステップS83)、空車状態ではないと判定すると(ステップS83:NO)、
中荷状態であるか否かを判定し(ステップS84)、中荷状態ではないと判定すると(ステップS84:NO)、処理例[1]及び[2]と同様に、補正ロール角φ
2off(ステップS24、S35、S65又はS74で更新された補正ロール角φ
2off)を検出ロール角φに加算することによって、補正後ロール角φ
AMDを算出して(ステップS86)、本処理を終了する。
【0237】
一方、補正無効モードである(補正無効フラグが「1」である)と判定した場合(ステップS81:NO)、自動車高調整モードではない又は自動車高調整モードであっても自動車高調整を適正に実行していない(補正有効判定フラグが「0」である)と判定した場合(ステップS82:NO)、空車状態であると判定した場合(ステップS83:YES)、或いは中荷状態の何れかであると判定すると(ステップS84:YES)、補正ロール角φ
2offの値をゼロに更新して記憶し(ステップS85)、この補正ロール角φ
2offを検出ロール角φに加算することによって補正後ロール角φ
AMDを算出して(ステップS86)、本処理を終了する。すなわち、補正無効モードの場合、マニュアルモードの場合、自動車高調整モードであっても自動車高調整が適正に実行されていない場合、或いは空車状態や中荷状態の場合には、ロール角補正は実質的に実行されず、検出ロール角φが補正後ロール角φ
AMDとして横転危険度判定部22(
図1に示す)に提供される。
【0238】
なお、処理例[2]に処理例[3]を適用する場合、処理例[2]のステップS69及びS70は省略してもよい。また、処理例[2]において、ステップS69で空車状態と判定した場合(ステップS69:YES)、及びステップS70で中荷状態と判定した場合(ステップS70:YES)に、ステップS73へ移行せず、処理例[3]のステップS85と同様に、補正ロール角φ
2offの値をゼロに更新して記憶するように構成してもよい。さらに、処理例[2]において、車両調整モード処理の開始直後(ステップS60とステップS61との間)に空車判定及び中荷判定を実行し、空車状態及び中荷状態の場合には、補正ロール角φ
2offの値をゼロに更新して記憶するように構成してもよい。
【0239】
本実施形態によれば、発進補助が実行されない通常状態では通常用の二次元マップを用いて横転危険度を判定し、発進補助状態では通常用とは異なる発進補助用の二次元マップを用いて横転危険度を判定する(若しくは横転危険度を判定しない)ので、発進補助状態の横転危険度を適正に判定することができる。
【0240】
また、システムの故障等によって自動車高調整が正常に機能していない場合、調整判定部18は、車高調整装置30が自動車高調整を適正に実行していないと判定して補正有効判定フラグを「0」に設定し、ロール角出力部16は、検出ロール角φと等しい値のロール角を有効なロール角として横転危険度判定装置20へ出力する。従って、過大な推定誤差を含むロール角が出力されてしまう可能性を未然に排除することができ、ロール角推定装置10から横転危険度判定装置20へ出力するロール角の信頼性の低下を抑制することができる。
【0241】
また、自動車高調整を適正に実行していない場合や補正無効モードの場合には使用されないロール剛性係数K
φ13や補正ロール角φ
2offを、自動車高調整を適正に実行している場合や補正有効モードの場合と同様に、演算して履歴データとして蓄積して記憶するので、自動車高調整を適正に実行していない期間や偏荷が生じ難い車両についても、履歴データの解析によって偏荷の発生状態を事後的に推測することができる。
【0242】
また、モード記憶部17の補正無効モードフラグを「1」に設定することによって、検出ロール角φと等しい値のロール角を、有効なロール角としてロール角推定装置10から横転危険度判定装置20へ確実に出力させることができる。
【0243】
従って、ロール角推定装置10を含む構成を異なる車種間で共通化した基準車両を製造した後、車種に対応する構造物を基準車両の車体フレームの後部に搭載する製造工程において、積載物が車幅方向に偏在する偏荷が生じ難い車両(例えば、タンクローリ車や車載車やミキサー車など)を製造する場合、構造物の搭載時や搭載後に、補正無効モードフラグを「1」に設定することによって、検出ロール角と等しい値のロール角を確実に出力させることができる。
【0244】
以上、本発明者によってなされた発明を適用した実施形態について説明したが、この実施形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、この実施形態に基づいて当業者等によりなされる他の実施形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論である。
【0245】
例えば、上記処理例[1]では、車高調整モード処理において、車高調整開始時にのみロール角φ
2esを算出したが、車高調整中の他の時点(例えば、車高調整開始時から所定時間後など)でロール角φ
2esを算出してもよい。
【0246】
処理例[2]における2つの時点の組み合わせは、車高調整開始時と車高調整終了時に限定されず、第1の時点を車高調整開始前(開始時を含まない)とし、第2の時点を車高調整開始後(調整中、終了時及び終了後を含み、開始時は含まない)としてもよく、第1の時点を車高調整中(開始時を含み、終了時は含まない)とし、第2の時点を第1の時点よりも後(調整中及び終了後を含む)としてもよい。
【0247】
処理例[1]において、ステップS39〜S41の1つ又は複数を省略してもよい。処理例[2]において、ステップS68〜S71の1つ又は複数を省略してもよい。また、処理例[3]において、ステップS83又はステップS84の一方を省略してもよい。
【0248】
バネ特性が線形近似可能な範囲か否かの判定を、コントロールフラグの設定処理に含めず、車高調整モード設定処理(ステップS4)において、ロール剛性係数K
φ13の更新処理前や補正ロール角φ
2offの更新処理前の任意のタイミングで行い、バネ特性が線形近似可能な範囲から外れている場合にこれらの更新処理を禁止してもよい。
【0249】
ロール角推定装置10は、車高調整非実行時のロール角φ
2esを算出する度に、算出したロール角φ
2esを運転者に対して視認可能な状態で報知してもよい。例えば、車室内の運転席前方に表示部を設け、算出したロール角φ
2esを所定の表示態様で表示部に表示してもよい。所定の表示態様は、ロール角φ
2esの数値表示であってもよく、ロール角φ
2esの数値に応じて状態が変化(例えば伸縮、移動、変色等)するインジケータなどであってもよい。
【0250】
検出ロール角φと等しい値のロール角を有効なロール角として横転危険度判定装置20へ出力する場合に、補正ロール角φ
2offをゼロとして補正後ロール角φ
AMDを算出し、算出した補正後ロール角φ
AMDを出力しているが、これに代えて、検出ロール角φをそのまま有効なロール角として横転危険度判定装置20へ出力してもよい。
【0251】
車高調整装置30が車高調整に関するシステムの故障等を自己診断する機能を有する場合、調整判定部18は、自動車高調整を適正に実行しているか否かを車高調整装置30の診断結果に従って判定してもよい。
【0252】
ロール角推定装置10に、モード入力部41及びモード設定部42(
図3に二点鎖線で示す)を設けてもよい。モード入力部41には、モードの設定指示が入力される。モード設定部42は、モード入力部41に補正有効モードの設定指示が入力された場合は、補正無効モードフラグを「0」に設定し、補正無効モードの設定指示が入力された場合は、補正無効モードフラグを「1」に設定する。
【0253】
モード入力部41及びモード設定部42を設けることにより、補正無効モードフラグの状態を、外部設定装置40を用いることなく、モード入力部41への入力によって変更することができる。