(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0029】
以下、本発明に係る実施形態及び変形例について、図面を用いて説明する。
【0030】
「実施形態」
本発明に係る冷凍サイクルの実施形態について、
図1〜
図10を参照して説明する。
【0031】
本実施形態の冷凍サイクルは、
図1に示すように、第一熱交換器1と、第二熱交換器2と、膨張弁3と、四方切替弁4と、循環ライン10と、多段圧縮装置20と、制御装置100と、を備える。
【0032】
第一熱交換器1、第二熱交換器2、膨張弁3、四方切替弁4、及び多段圧縮装置20は、いずれも、冷媒Rが流れる循環ライン10に設けられている。第一熱交換器1は、冷媒Rと第一媒体M1とを熱交換させて、冷媒Rを相変化させる。第二熱交換器2は、冷媒Rと第二媒体M2とを熱交換させて、冷媒Rを相変化させる。第一熱交換器1は、第一冷媒口1a及び第二冷媒口1bを有する。また、第二熱交換器2も、第一冷媒口2a及び第二冷媒口2bを有する。多段圧縮装置20は、気体の冷媒Rを圧縮する。膨張弁3は、液体の冷媒Rの圧力を減圧する。四方切替弁4は、四つのポートを有し、各ポート間で冷媒Rの流れを選択的に変えることができる。この四方切替弁4は、第一接続形態と第二接続形態とを選択的にとることで、各ポート間での冷媒Rの流れを変える。第一接続形態は、第一ポート4aと第二ポート4bとが接続され、且つ第三ポート4cと第四ポート4dとが接続されている形態である。また、第二接続形態は、第二ポート4bと第三ポート4cとが接続され、且つ第四ポート4dと第一ポート4aとが接続されている形態である。
【0033】
循環ライン10は、多段圧縮装置20の一部を構成する圧縮ライン14と、第一熱交換器1の第一冷媒口1aに接続されている第一ライン11と、第二熱交換器2の第一冷媒口2aに接続されている第二ライン12と、第二熱交換器2の第二冷媒口2bに接続されている第三ライン13と、を有する。圧縮ライン14の低圧側、言い換えると上流側の端は、四方切替弁4の第三ポート4cに接続されている。圧縮ライン14の高圧側、言い換えると下流側の端は、四方切替弁4の第一ポート4aに接続されている。第一ライン11の二つの端のうち、一方の端は、四方切替弁4の第二ポート4bに接続され、他方の端は、前述したように、第一熱交換器1の第一冷媒口1aに接続されている。第二ライン12の二つの端のうち、一方の端は、第一熱交換器1の第二冷媒口1bに接続され、他方の端は、前述したように、第二熱交換器2の第一冷媒口2aに接続されている。第三ライン13の二つの端のうち、一方の端は、前述したように、第二熱交換器2の第二冷媒口2bに接続され、他方の端は、四方切替弁4の第四ポート4dに接続されている。
【0034】
第一熱交換器1の第二冷媒口1bと第二熱交換器2の第一冷媒口2aとは、前述したように、第二ライン12で接続されている。また、第二熱交換器2の第二冷媒口2bと第一熱交換器1の第一冷媒口1aとは、第三ライン13、圧縮ライン14、及び第一ライン11で接続されている。膨張弁3は、第二ライン12中に配置されている。よって、この膨張弁3は、第一熱交換器1と第二熱交換器2との間の循環ライン10中であって、第一熱交換器1と第二熱交換器2との間に多段圧縮装置20が配置されていない循環ライン10中に配置されている。
【0035】
多段圧縮装置20は、
図2に示すように、複数の圧縮グループ20Gと、複数の圧縮グループ20G相互を接続する並列均油ライン39と、前述の圧縮ライン14と、を備える。
【0036】
複数の圧縮グループ20Gは、いずれも、アキュムレータ31と、低圧段圧縮機21Aと、高圧段圧縮機21Cと、低圧用回転数変更器29Aと、高圧用回転数変更器29Cと、低圧油分離器32Aと、高圧油分離器32Cと、前述の圧縮ライン14の一部と、低圧油戻しライン33Aと、高圧油戻しライン33Cと、直列均油ライン34と、均油弁35と、を備える。なお、本実施形態において、最上流圧縮機は低圧段圧縮機21Aである。
【0037】
アキュムレータ31は、冷媒Rを一時的に溜めておき、液相の冷媒Rと気相の冷媒Rとを分離する機能を有する。アキュムレータ31には、冷媒入口31aと冷媒出口31bとが形成されている。
【0038】
低圧段圧縮機21A及び高圧段圧縮機21Cは、いずれも、
図3に示すように、冷媒Rを圧縮する圧縮部22と、圧縮部22を回転させるモータ23と、これらを覆うハウジング24と、を有する。圧縮部22は、例えば、ロータリー型である。ハウジング24は、上下方向の延びる中心軸を中心として円筒状の胴部と、円筒状の胴の両端の開口を塞ぐ鏡部と、を有する。ハウジング24の胴部には、吸込口25が形成され、ハウジング24の上の鏡部には、吐出口26が形成されている。ハウジング24の下の鏡部内を含むハウジング24内の下部は、モータ23及び圧縮部22を動作させるために必要な油Oが溜まる油溜り部27(下ドーム部)を構成する。低圧用回転数変更器29Aは、低圧段圧縮機21Aのモータ23の回転数を変更する。高圧用回転数変更器29Cは、高圧段圧縮機21Cのモータ23の回転数を変更する。各回転数変更器29A,29Cは、例えば、モータ23に供給する交流電力の周波数を変更するインバータである。
【0039】
低圧油分離器32Aは、低圧段圧縮機21Aから冷媒Rと共に吐出された油Oの一部を捕捉する。高圧油分離器32Cは、高圧段圧縮機21Cから冷媒Rと共に吐出された油Oの一部を捕捉する。すなわち、各油分離器32A,32Cは、圧縮機21A,21Cから吐出された流体中から油Oを分離する。高圧油分離器32Cの油分離効率は、低圧油分離器32Aの油分離効率よりも高い。
【0040】
圧縮ライン14の一部としては、吸込ライン16と、低圧吐出ライン17と、高圧吐出ライン18とがある。これら吸込ライン16、低圧吐出ライン17及び高圧吐出ライン18は、複数の圧縮グループ20G毎に設けられている。吸込ライン16の二つの端のうち、一方の端は、低圧段圧縮機21Aの吸込口25に接続されている。アキュムレータ31は、この吸込ライン16中に配置されている。低圧吐出ライン17(グループ内連結ライン)の二つの端のうち、一方の端は、低圧段圧縮機21Aの吐出口26に接続され、他方の端は、高圧段圧縮機21Cの吸込口25に接続されている。この低圧吐出ライン17は、他の圧縮グループ20Gを構成するいずれの圧縮機21とも接続されていない。高圧吐出ライン18の二つの端のうち、一方の端は、高圧段圧縮機21Cの吐出口26に接続されている。
【0041】
低圧油分離器32Aは、低圧吐出ライン17中に配置されている。高圧油分離器32Cは、高圧吐出ライン18中に配置されている。低圧油戻しライン33Aの二つの端のうち、一方の端は、低圧油分離器32Aに接続され、他方の端は、吸込ライン16に接続されている。高圧油戻しライン33Cの二つの端のうち、一方の端は、高圧油分離器32Cに接続され、他方の端は、低圧吐出ライン17に接続されている。直列均油ライン34の二つの端のうち、一方の端は、高圧段圧縮機21Cの油溜り部27に接続され、他方の端は、低圧段圧縮機21Aの油溜り部27に接続されている。均油弁35は、この直列均油ライン34に設けられている。
【0042】
複数の圧縮グループ20Gは、いずれも、さらに、低圧用温度計37Aと、高圧用温度計37Cと、低圧用圧力計38Aと、高圧用圧力計38Cと、を備える。低圧用温度計37Aは、低圧段圧縮機21Aの油溜り部27に溜まっている油Oの温度を検知する。高圧用温度計37Cは、高圧段圧縮機21Cの油溜り部27に溜まっている油Oの温度を検知する。低圧用圧力計38Aは、低圧段圧縮機21Aが吸い込む冷媒Rの圧力、つまり吸込ライン16内の圧力を検知する。高圧用圧力計38Cは、高圧段圧縮機21Cが吸い込む冷媒Rの圧力、つまり低圧吐出ライン17内の圧力を検知する。
【0043】
多段圧縮装置の一部を構成する圧縮ライン14は、
図2に示すように、圧縮グループ20Gの一部を構成する前述の吸込ライン16、低圧吐出ライン17及び高圧吐出ライン18の他に、共有吸込ライン15と、共有吐出ライン19と、を有する。共有吸込ライン15の二つの端のうち、一方の端は、四方切替弁4の第三ポート4cに接続されている。この共有吸込ライン15の他方の端側には、複数の圧縮グループ20G毎の吸込ライン16における前述の二つの端のうち、他方の端が接続されている。共有吐出ライン19の二つの端のうち、一方の端は、四方切替弁4の第一ポート4aに接続されている。この共有吐出ライン19の他方の端側には、複数の圧縮グループ20G毎の高圧吐出ライン18における前述の二つの端のうち、他方の端が接続されている。
【0044】
並列均油ライン39は、複数の圧縮グループ20G毎の低圧段圧縮機21Aにおける油溜り部27相互を接続する。並列均油ライン39における油溜り部27との接続端は、開口している。この開口39aの位置は、油溜り部27に溜まる油量が上限値Llhと下限値Lllとの間の所定量になる位置である。開口している。
【0045】
制御装置100は、
図4に示すように、機能構成として、受付部101と、回転数設定部102と、油量推定部103と、油量判定部104と、回転数指示部105と、均油弁指示部106と、膨張弁指示部107と、切替弁指示部108と、記憶部109と、を有する。この制御装置100は、ハード構成として、各種演算を実行する演算器と、各種プログラムや各種データ等を一時的に記憶するメモリ等の主記憶装置と、各種プログラムや各種データ等を記憶するハードディスクドライブ装置等の補助記憶装置と、外部とデータ等の入出力を行うインタフェース回路と、を有する。受付部101、回転数指示部105、均油弁指示部106、膨張弁指示部107及び切替弁指示部108は、いずれも、インタベース回路と、主記憶装置と、主記憶装置に記憶されたプログラムを実行する演算器とを有して構成される。回転数設定部102、油量推定部103及び油量判定部104は、主記憶装置と、主記憶装置に記憶されたプログラムを実行する演算器とを有して構成される。記憶部109は、主記憶装置及び補助記憶装置を有して構成される。
【0046】
受付部101は、各種情報や指示等を受け付ける。低圧用温度計37Aで検知された温度、高圧用温度計37Cで検知された温度、低圧用圧力計38Aで検知された圧力、高圧用圧力計38Cで検知された圧力は、この受付部101が受け付ける。回転数設定部102は、圧縮機21A,21Cのモータ23毎の回転数を設定する。油量推定部103は、圧縮機21A,21Cの各油溜り部27に溜まっている油量を推定する。油量判定部104は、圧縮機21A,21Cの各油溜り部27に溜まっている油量が上限値又は下限値に至ったか否かを判定する。回転数指示部105は、圧縮機21A,21C毎の回転数を対応する回転数変更器29A,29Cに指示する。均油弁指示部106は、均油弁35に対して開閉を指示する。膨張弁指示部107は、膨張弁3に対して弁開度を指示する。切替弁指示部108は、四方切替弁4に対してポート間の接続形態として第一接続形態か第二接続形態かを指示する。
【0047】
記憶部109には、回転数設定部102が複数の圧縮グループ20G毎の圧縮機21A,21Cのモータ23毎の回転数を設定するために必要な情報が記憶されている。記憶部109に記憶されている情報は、各圧縮機21A,21Cにおける油溜り部27の初期油量Lls,Lhs及び油戻し運転後の油量Llr,Lhrと、各圧縮機21A,21Cの回転数Nと油Oの単位時間当たりの流出油量FOとの関係情報とである。
【0048】
初期油量Lhs,Llsとは、製品出荷時に油溜り部27に溜まっている油量、又は外部から油Oが補給された直後の油量である。また、油戻し運転後の油量Lhr,Llrとは、後述の油戻し工程直後に油溜り部27に溜まっている油量である。
【0049】
二つの圧縮機21A,21Cの回転数Nと圧縮機21A,21Cからの油Oの単位時間当たりの流出油量FOとの関係情報について説明する。
【0050】
図5に示すように、圧縮機21A,21Cの吐出口26から単位時間当たりの油Oの量、つまり単位時間当たりの吐出油量Qは、圧縮機21A,21Cの回転数Nの増加に伴って増加する。なお、
図5中、Qlは低圧段圧縮機21Aの単位時間当たりの吐出油量を示し、Qhは高圧段圧縮機21Cの単位時間当たりの吐出油量を示す。
【0051】
また、吐出油量Qは、
図6に示すように、油溜り部27(ドーム下部)の過熱度ΔTの増加に伴って減少する。そこで、本実施形態では、
図5に示すように、回転数Nに応じた吐出油量Qを油溜り部27の過熱度ΔTに応じて補正し、これを補正後の吐出油量Q
ΔTとする。なお、
図5中、Ql
ΔT1は、過熱度ΔT1のときの低圧段圧縮機21Aの単位時間当たりの吐出油量を示し、Ql
ΔT2は、過熱度ΔT2のときの低圧段圧縮機21Aの単位時間当たりの吐出油量を示す。また、Qh
ΔT1は、過熱度ΔT1のときの高圧段圧縮機21Cの単位時間当たりの吐出油量を示し、Qh
ΔT1は、過熱度ΔT2のときの高圧段圧縮機21Cの単位時間当たりの吐出油量を示す。
【0052】
ここで、油溜り部27の過熱度ΔTとは、以下の式(1)に示すように、CSST(Compressor Suction Saturated Temperature:圧縮機吸込飽和温度)に対する油溜り部27の温度Tdの温度偏差である。
ΔT=Td−CSST ・・・・・(1)
【0053】
本実施形態では、各圧縮機21A,21Cの吐出側に油分離器32A,32Cを設けている。圧縮機21から吐出した油Oの一部は、この油分離器32で捕捉される。油分離器32で捕捉された油Oは、油戻しライン33を介して、圧縮機21の吸込口25からこの圧縮機21の油溜り部27に戻る。このため、圧縮機21と油分離器32とを含めた系からの単位時間当たり流出油量FOは、圧縮機21の吐出口26から吐出した油Oのうちで、油分離器32で捕捉されなかった油Oの量になる。そこで、本実施形態では、以下の式(2)に示すように、吐出油量Q
ΔTを油分離器の油分離効率a(<1)で補正し、これを単位時間当たりの流出油量FOとする。なお、
図5中、FOl
ΔT1aは、過熱度ΔT1のときの低圧段圧縮機21Aの単位時間当たりの流出油量を示し、FOl
ΔT2aは、過熱度ΔT2のときの低圧段圧縮機21Aの単位時間当たりの流出油量を示す。また、FOh
ΔT1aは、過熱度ΔT1のときの高圧段圧縮機21Cの単位時間当たりの流出油量を示し、FOh
ΔT2aは、過熱度ΔT2のときの高圧段圧縮機21Cの単位時間当たりの流出油量を示す。
FO=Q
ΔT×(1−a) ・・・・・(2)
【0054】
本実施形態において、複数の圧縮機21A,21C毎の関係情報は、回転数N、過熱度ΔT及び油分離効率aに応じた流出油量FOl
ΔT1a,FOl
ΔT2a,…,FOh
ΔT1a,FOh
ΔT2a,…である。すなわち、本実施形態では、複数の圧縮機21A,21C毎に、以下の式(3)に示すように、単位時間当たりの流出油量FOと、圧縮機21の回転数Nと、油溜り部27の過熱度ΔTと、油分離器32の油分離効率aとの関係情報が、記憶部109に記憶されている。
FO=g(N,ΔT,a) ・・・・・(3)
【0055】
関係情報を構成する複数のパラメータのうち、油分離器32の油分離効率aは、固定値である。よって、関係情報を構成する複数のパラメータのうち、単位時間当たりの流出油量FOと、圧縮機の回転数Nと、油溜り部27の過熱度ΔTと、が変数として扱われる。
【0056】
記憶部109には、以上で説明した関係情報FOl
ΔT1a,FOl
ΔT2a,…,FOh
ΔT1a,FOh
ΔT2a,…が、マップ形式で又は関数形式で記憶されている。
【0057】
以上のように、冷凍サイクルの構成要素である制御装置100は、多段圧縮装置20の各機器を制御する。よって、この制御装置100は、多段圧縮装置20の構成要素でもある。
【0058】
次に、冷凍サイクルの動作について説明する。
【0059】
まず、四方切替弁4が第一接続形態のときの冷凍サイクルの基本動作について説明する。なお、第一接続形態とは、前述したように、第一ポート4aと第二ポート4bとが接続され、且つ第三ポート4cと第四ポート4dとが接続されている形態である。
【0060】
多段圧縮装置20の各圧縮グループ20Gで圧縮された気体の冷媒Rは、
図1に示すように、四方切替弁4の第一ポート4a及び第二ポート4b、第一ライン11を経て、第一熱交換器1に流入する。気体の冷媒Rは、この第一熱交換器1で第一媒体M1と熱交換する。この結果、第一媒体M1は加熱される。一方、気体の冷媒Rは冷却されて凝縮し、液体の冷媒Rになる。よって、第一熱交換器1は、四方切替弁4が第一接続形態のとき凝縮器として機能する。
【0061】
第一熱交換器1で液化した冷媒Rは、第二ライン12を経て、第二熱交換器2に流入する。冷媒Rは、この第二ライン12を流れる過程で、この第二ライン12中に配置されている膨張弁3で減圧される。
【0062】
液体の冷媒Rは、第二熱交換器2で第二媒体M2と熱交換する。この結果、第二媒体M2は冷却される。一方、液体の冷媒Rは加熱されて気化し、気体の冷媒Rになる。よって、第二熱交換器2は、四方切替弁4が第一接続形態のとき蒸発器として機能する。
【0063】
第二熱交換器2で気化した冷媒Rは、第三ライン13、四方切替弁4の第四ポート4d及び第三ポート4cを経て、多段圧縮装置20の共有吸込ライン15に流入する。気体の冷媒Rは、共有吸込ライン15を経て、
図2及び
図3に示すように、複数の圧縮グループ20G毎の吸込ライン16に流入する。冷媒Rは、この吸込ライン16を流れる過程で、アキュムレータ31内に流入してから流出する。気体の冷媒R中には、ミスト状の液体の冷媒Rが僅かに残っている場合がある。アキュムレータ31では、気体の冷媒R中から液体の冷媒Rを分離し、気体の冷媒Rを排出する。
【0064】
アキュムレータ31からの気体の冷媒Rは、吸込ライン16を経て、この吸込ライン16と同じ圧縮グループ20Gに属する低圧段圧縮機21Aの吸込口25から低圧段圧縮機21A内に流入する。低圧段圧縮機21A内に流入した冷媒Rは、この低圧段圧縮機21Aの圧縮部22で圧縮されてから、低圧段圧縮器の吐出口26から吐出される。この際、低圧段圧縮機21A内の油Oの一部も吐出口26から吐出される。
【0065】
低圧段圧縮機21Aから吐出された冷媒R及び油Oは、低圧段圧縮機21Aと同じ圧縮グループ20Gに属する低圧吐出ライン17を経て、低圧段圧縮機21Aと同じ圧縮グループ20Gに属する高圧段圧縮機21Cの吸込口25から高圧段圧縮機21C内に流入する。油Oの一部は、この低圧吐出ライン17を流れる過程で、この低圧吐出ライン17に設けられている低圧油分離器32A、つまり低圧段圧縮機21Aと同じ圧縮グループ20Gに属する低圧油分離器32Aで捕捉される。低圧油分離器32Aで捕捉された油Oは、低圧油戻しライン33A及び吸込ライン16を経て、低圧段圧縮機21A内に戻る。
【0066】
高圧段圧縮機21C内に流入した冷媒Rは、この高圧段圧縮機21Cの圧縮部22で圧縮される。一方、高圧段圧縮機21C内に流入した油Oの一部は、この高圧段圧縮機21Cに油溜り部27に溜まる。圧縮部22で圧縮された冷媒Rは、高圧段圧縮機21Cの吐出口26から吐出される。この際、高圧段圧縮機21C内の油Oの一部も、吐出口26から吐出される。
【0067】
高圧段圧縮機21Cから吐出された冷媒R及び油Oは、同じグループに属する高圧吐出ライン18を流れる。油Oの一部は、この高圧吐出ライン18を流れる過程で、この高圧吐出ライン18に設けられている高圧油分離器32C、つまり高圧段圧縮機21Cと同じ圧縮グループ20Gに属する高圧油分離器32Cで捕捉される。高圧油分離器32Cで捕捉された油Oは、高圧油戻しライン33C及び低圧吐出ライン17を経て、高圧段圧縮機21C内に戻る。
【0068】
高圧油分離器32Cを通過した冷媒R及び油Oは、高圧吐出ライン18を経て、共有吐出ライン19に流れ込む。複数の圧縮グループ20G毎の高圧吐出ライン18からの冷媒R及び油Oは、この共有吐出ライン19で合流する。共有吐出ライン19に流れ込んだ冷媒R及び油Oは、四方切替弁4の第一ポート4a及び第二ポート4b、第一ライン11を経て、第一熱交換器1に流入する。
【0069】
以上のように、本実施形態の冷凍サイクルは、四方切替弁4が第一接続形態のとき、冷媒Rを介して第二媒体M2の熱を第一媒体M1に移動させる。
【0070】
次に、四方切替弁4が第二接続形態のときの冷凍サイクルの基本動作について説明する。なお、第二接続形態とは、前述したように、第二ポート4bと第三ポート4cとが接続され、且つ第四ポート4dと第一ポート4aとが接続されている形態である。
【0071】
多段圧縮装置20の各圧縮グループ20Gで圧縮された気体の冷媒Rは、
図1に示すように、四方切替弁4の第一ポート4a及び第四ポート4d、第三ライン13を経て、第二熱交換器2に流入する。気体の冷媒Rは、この第二熱交換器2で第二媒体M2と熱交換する。この結果、第二媒体M2は加熱される。一方、気体の冷媒Rは冷却されて凝縮し、液体の冷媒Rになる。よって、第二熱交換器2は、四方切替弁4が第二接続形態のとき凝縮器として機能する。
【0072】
第二熱交換器2で液化した冷媒Rは、第二ライン12を経て、第一熱交換器1に流入する。冷媒Rは、この第二ライン12を流れる過程で、この第二ライン12中に配置されている膨張弁3で減圧される。
【0073】
液体の冷媒Rは、第一熱交換器1で第一媒体M1と熱交換する。この結果、第一媒体M1は冷却される。一方、液体の冷媒Rは加熱されて気化し、気体の冷媒Rになる。よって、第一熱交換器1は、四方切替弁4が第二接続形態のとき蒸発器として機能する。
【0074】
第一熱交換器1で気化した冷媒Rは、第一ライン11、四方切替弁4の第二ポート4b及び第三ポート4cを経て、多段圧縮装置20の共有吸込ライン15に流入する。共有吸込ライン15に流入した冷媒Rは、四方切替弁4が第一接続形態のときと同様、多段圧縮装置20で圧縮される。
【0075】
以上のように、本実施形態の冷凍サイクルは、四方切替弁4が第二接続形態のとき、冷媒Rを介して第一媒体M1の熱を第二媒体M2に移動させる。
【0076】
本実施形態では、第一媒体M1を冷却するか加熱するかの指示を受付部101が受け付けることで、四方切替弁4が第一接続形態又は第二接続形態になる。
【0077】
次に、
図7に示すフローチャートに従って、多段圧縮装置20の詳細動作について説明する。
【0078】
制御装置100の受付部101が、運転開始指示を受け付けると、多段圧縮装置20の各機器が動作し始める。この運転開始指示には、第一媒体M1を冷却するか加熱するかの指示の他、第一冷媒Rの目標温度等の指示が含まれる。
【0079】
受付部101が運転開始指示を受けると、回転数設定部102は、この運転開始指示に含まれる第一冷媒Rの目標温度等や圧縮機21の過熱度ΔT等に応じて、回転数設定部102が複数の圧縮グループ20G毎の低圧段圧縮機21Aの回転数及び高圧段圧縮機21Cの回転数を定める(S1:回転数設定工程(直列回転数設定工程))。
【0080】
この回転数設定工程(S1)では、回転数設定部102が、第一冷媒Rの目標温度等に応じた各圧縮機21A,21Cの回転数を定める。次に、回転数設定部102は、記憶部109に記憶されている情報を用いて、低圧段圧縮機21Aからの流出油量FOlよりも、同じ圧縮グループ20Gに属する高圧段圧縮機21Cからの流出油量FOhが少なくなるよう、第一冷媒Rの目標温度等に応じて定めた各圧縮機21A,21Cの回転数を設定し直す。
【0081】
回転数設定部102は、まず、各圧縮機21A,21Cの油溜り部27の過熱度ΔTを求める。回転数設定部102は、この過熱度ΔTを求めるため、受付部101を介して、低圧用温度計37Aで検知された温度、高圧用温度計37Cで検知された温度、低圧用圧力計38Aで検知された圧力、高圧用圧力計38Cで検知された圧力を取得する。
【0082】
式(1)を用いて説明したように、過熱度ΔTは、CSST(Compressor Suction Saturated Temperature:圧縮機吸込飽和温度)に対する油溜り部27の温度Tdの温度偏差である。そこで、回転数設定部102は、各圧縮機21A,21CにおけるCSSTを求める。CSSTは、圧縮機21が吸い込む流体の圧力により一律に定まる。このため、回転数設定部102は、低圧用圧力計38Aで検知された低圧段圧縮機21Aが吸い込む冷媒Rの圧力を用いて、低圧段圧縮機21AのCSSTを求める。さらに、高圧用圧力計38Cで検知された高圧段圧縮機21Cが吸い込む冷媒Rの圧力を用いて、高圧段圧縮機21CのCSSTを求める。回転数設定部102は、続いて、低圧用温度計37Aで検知された低圧段圧縮機21Aにおける油溜り部27の温度から低圧段圧縮機21AのCSSTを引いて、低圧段圧縮機21Aにおける溜り部の過熱度ΔTを求める。さらに、高圧用温度計37Cで検知された高圧段圧縮機21Cにおける油溜り部27の温度から高圧段圧縮機21CのCSSTを引いて、高圧段圧縮機21Cにおける溜り部の過熱度ΔTを求める。
【0083】
よって、本実施形態における過熱度把握部は、低圧用温度計37A、高圧用温度計37C、低圧用圧力計38A、高圧用圧力計38C、及びこれらの計測器で計測された値に基づいて過熱度を求める回転数設定部102の一機能により構成される。
【0084】
回転数設定部102は、各圧縮機21A,21Cにおける油溜り部27の過熱度ΔTを求めると、記憶部109に記憶されている低圧段圧縮機21Aの関係情報を用いて、低圧段圧縮機21Aの回転数N及び過熱度ΔTに対応した流出油量FOlを求める。具体的には、例えば、
図5に示すように、低圧段圧縮機21Aの回転数がNlで、低圧段圧縮機21Aの過熱度がΔT1である場合、低圧段圧縮機21Aの過熱度ΔT1のときの関係情報FOl
ΔT1aを用いて、低圧段圧縮機21Aの回転数Nl及び過熱度がΔT1に対応した流出油量FOl
(Nl,ΔT1)を求める。
【0085】
次に、回転数設定部102は、記憶部109に記憶されている高圧段圧縮機21Cの関係情報を用いて、高圧段圧縮機21Cの流出油量FOhが低圧段圧縮機21Aの流出油量FOlよりも小さくなる高圧段圧縮機21Cの回転数Nを定める。具体的には、例えば、
図5に示すように、低圧段圧縮機21Aの流出油量がFOl
(Nl,ΔT1)で、高圧段圧縮機21Cの過熱度がΔT2である場合、回転数設定部102は、まず、低圧段圧縮機21Aの流出油量FOl
(Nl,ΔT1)よりも予め定められた分ΔFOだけ小さい高圧段圧縮機21Cの流出油量FOhを定める。続いて、高圧段圧縮機21Cの過熱度がΔT2のときの関係情報FOl
ΔT2aを用いて、高圧段圧縮機21Cの流出油量がFOhのときの高圧段圧縮機21Cの回転数Nhを定める。
【0086】
以上で、低圧段圧縮機21Aからの流出油量FOlよりも高圧段圧縮機21Cからの流出油量FOhが少なくなる各圧縮機21A,21Cの回転数Nが定まる。なお、ここでは、低圧段圧縮機21Aの回転数Nlを基準にして高圧段圧縮機21Cの回転数Nhを定めたが、高圧段圧縮機21Cの回転数Nhを基準にして低圧段圧縮機21Aの回転数Nlを定めてもよい。
【0087】
回転数設定部102が複数の圧縮グループ20G毎の各圧縮機21A,21Cの回転数Nを定めると、回転数指示部105が複数の圧縮グループ20G毎の各圧縮機21A,21Cの回転数変更器29A,29Cに対して、回転数設定部102により定められた回転数Nl,Nhを指示する(S2:回転数指示工程(直列回転数指示工程))。
【0088】
回転数変更器29は、制御装置100から回転数Nの指示を受け付けると、圧縮機21のモータ23の回転数を指示された回転数Nにする。回転数設定部102が定めた各圧縮機21A,21Cの回転数Nl,Nhは、低圧段圧縮機21Aからの流出油量FOlよりも高圧段圧縮機21Cからの流出油量FOhが少なくなる回転数である。このため、
図8に示すように、低圧段圧縮機21Aにおける油溜り部27の油量は、基本的に、時間経過に伴って少なくなり、逆に、高圧段圧縮機21Cにおける油溜り部27の油量は、時間経過に伴って多くなる。
【0089】
次に、油量推定部103が複数の圧縮グループ20G毎に高圧段圧縮機21Cにおける油溜り部27の油量を推定する(S3:高圧段圧縮機の油量推定工程)。高圧段圧縮機21Cにおける油溜り部27の油量は、前述したように、時間経過に伴って多くなる。この油量の単位時間当たりの増加量ΔLは、以下の式(4)に示すように、低圧段圧縮機21Aの単位時間当たりの流出油量FOlから高圧段圧縮機21Cの単位時間当たりの流出油量FOhを減算した値である。
ΔL=FOl−FOh ・・・・・(4)
【0090】
そこで、油量推定部103は、低圧用温度計37Aで検知された温度、低圧用圧力計38Aで検知された圧力、低圧段圧縮機21Aの回転数、及び低圧段圧縮機21Aの関係情報を用いて、低圧段圧縮機21Aの単位時間当たりの流出油量FOlを求める。さらに、油量推定部103は、高圧用温度計37Cで検知された温度、高圧用圧力計38Cで検知された圧力、高圧段圧縮機21Cの回転数、高圧段圧縮機21Cの関係情報を用いて、高圧段圧縮機21Cの単位時間当たりの流出油量FOhを求める。そして、低圧段圧縮機21Aの単位時間当たりの流出油量FOlから高圧段圧縮機21Cの単位時間当たりの流出油量FOhを減算して、高圧段圧縮機21Cにおける単位時間当たりの油量の増加量ΔLを求める。
【0091】
続いて、油量推定部103は、単位時間当たりの油量の増加量ΔLについて、高圧段圧縮機21Cにおける油溜り部27の油量の増加開始時刻から現時刻までの時間分積算し、高圧段圧縮機21Cにおける油溜り部27の油量の増加開始時刻から現時刻までの油量の増加量ΣΔLを求める。そして、油量推定部103は、油量の増加開始時刻における油量に、この増加量ΣΔLを加算して、現時点の高圧段圧縮機21Cにおける油溜り部27の油量L
h(t)を推定する。なお、油量の増加開始時刻における油量は、前述の初期油量Lhs、後述の油戻し運転終了直後の油量Lhr、後述の均油運転直後の油量等である。
【0092】
次に、油量推定部103が複数の圧縮グループ20G毎に低圧段圧縮機21Aにおける油溜り部27の油量を推定する(S4:低圧段圧縮機21Aの油量推定工程)。この高圧段圧縮機21Cにおける油溜り部27の油量の推定方法については、後述する。
【0093】
油量推定部103が複数の圧縮グループ20G毎の低圧段圧縮機21Aにおける油溜り部27の油量を推定すると、油量判定部104は、複数の圧縮グループ20G毎に低圧段圧縮機21Aの油量Llが予め定められている下限値Lll以下になったか否かを判断する(S5:低圧段圧縮機の下限値判定工程)。油量判定部104は、いずれかの圧縮グループ20Gの低圧段圧縮機21Aの油量Llが下限値Lll以下になったと判定すると、その旨を回転数指示部105及び膨張弁指示部107に通知し、循環ライン10中に拡散した油Oを各圧縮グループ20Gの低圧段圧縮機21A内に戻す油戻し処理工程(S10)を実行させる。一方、油量判定部104は、全ての圧縮グループ20Gの低圧段圧縮機21Aの油量Llが下限値Lll以下ではないと判定すると、複数の圧縮グループ20G毎に高圧段圧縮機21Cの油量Lhが予め定められている上限値Lhaになったか否かを判定する(S6:高圧段圧縮機の上限値判定工程)。
【0094】
高圧段圧縮機21Cの油量Lhが上限値Lhaになっていなければ、回転数設定工程(S1)に戻る。一方、高圧段圧縮機21Cの油量Lhが上限値Lhaになっていれば、油量判定部104がその旨を均油弁指示部106に通知する。均油弁指示部106は、この通知を油量判定部104から受けると、高圧段圧縮機21Cと同じ圧縮グループ20Gの均油弁35に対して、予め定められた時間だけ開くよう指示する(S7:直列均油量処理工程)。均油弁35は、この指示を受けると、予め定められた時間だけ開き、その後閉じる。
【0095】
高圧段圧縮機21Cのハウジング24内の圧力は、同じ圧縮グループ20Gの低圧段圧縮機21Aのハウジング24内の圧力よりも高い。このため、同じ圧縮グループ20Gの均油弁35が開くと、高圧段圧縮機21Cの油溜り部27に溜まっている油Oは、直列均油ライン34及び均油弁35を介して、低圧段圧縮機21Aの油溜り部27に流入し始める。この結果、
図8に示すように、均油弁35の開時刻t1から高圧段圧縮機21C内の油量が次第に減少する一方で、低圧段圧縮機21A内の油量が次第に増加する。
【0096】
低圧段圧縮機21A内への単位時間当たりの油Oの流入量は、高圧段圧縮機21Cのハウジング24内の圧力と低圧段圧縮機21Aのハウジング24内の圧力との圧力差と、直列均油ライン34及び均油弁35の流路抵抗とで定まる。直列均油ライン34及び均油弁35の流路抵抗は、固定値である。高圧段圧縮機21Cのハウジング24内の圧力と低圧段圧縮機21Aのハウジング24内の圧力との圧力差も、ほぼ一定である。そこで、本実施形態では、圧力差及び流量抵抗に応じて定まる単位時間当たりの油Oの流入量が一定であると仮定して、実際に低圧段圧縮機21Aに流入する油量が目的の油量になるまでの時間を定め、この時間分Δtだけ、均油弁35を開ける。すなわち、
図8に示すように、均油弁35が時刻t1のときに開いたとすると、この時刻t1からΔt時間後の時刻t1aになると、均油弁35が閉じる。なお、高圧段圧縮機21Cのハウジング24内の圧力、及び低圧段圧縮機21Aのハウジング24内の圧力をそれぞれ圧力計で検知し、これらの圧力差に応じて、均油弁35を開けておく時間を定めてもよい。
【0097】
この結果、高圧段圧縮機21Cの油量は、上限値Lhaから少なくなり、例えば、高圧段圧縮機21Cの初期油量Lhsよりも少なく且つ高圧段圧縮機21Cの油量の下限値Lhlよりも多い油量になる。なお、ここでの上限値Lhaは、高圧段圧縮機21Cの動作上の観点から定められた上限値Lhhよりも小さい値で、高圧段圧縮機21C内の油Oを低圧段圧縮機21A内に送るための閾値としての上限値である。一方、低圧段圧縮機21Aの油量は、例えば、低圧段圧縮機21Aの初期油量Llsよりも少ない油量から多くなり、例えば、低圧段圧縮機21Aの初期油量Llsよりも多く且つ低圧段圧縮機21Aの油量の上限値Llhよりも少ない油量になる。
【0098】
その後、受付部101が運転停止指示を受け付けると(S8)、受付部101は均油弁指示部106及び回転数指示部105に対してその旨を通知し、これらに停止処理を実行させる(S9:停止処理)。均油弁指示部106は、この通知を受けると、複数の圧縮グループ20G毎の均油弁35に対して予め定められた時間Δtだけ開くよう指示する。この結果、全ての均油弁35が一時的に開く。回転数指示部105は、その後、複数の圧縮グループ20G毎の各圧縮機21A,21Cの回転数変更器29A,29Cに対して回転数0、つまり停止を指示する。この結果、全ての圧縮機21A,21Cは停止する。
【0099】
一方、受付部101が運転停止指示を受け付けなければ(S8)、回転数設定工程(S1)に戻る。そして、以上で説明したS1〜S8の工程が繰り返し実行される。この過程で、高圧段圧縮機21C内では、
図8に示すように、油量の増加、直列均油量工程(S7)の実行による油量の減少を繰り返す。また、低圧段圧縮機21A内では、油量の減少、直列均油量工程(S7)の実行による油量の増加を繰り返す。
【0100】
ところで、高圧段圧縮機21Cの油量は、直列均油量工程(S7)が繰り返し実行されても、高圧段圧縮機21Cの上限値Lhaに復帰する。一方、低圧段圧縮機21Aに関しては、直列均油量工程(S7)の実行直後の油量が、直列均油量工程(S7)を実行する毎に減少する。これは、多段圧縮装置20のライン系統内から循環ライン10中の残りライン中に、高圧段圧縮機21Cからの流出油量FOh分だけ油Oが拡散するためである。このため、直列均油量工程(S7)で低圧段圧縮機21Aの油量を増加させても、複数回の直列均油量工程(S7)の実行後に、低圧段圧縮機21Aの油量は、下限値Lllに至ることになる。
【0101】
そこで、本実施形態では、以上で説明したS1〜S8の工程中で、複数の圧縮グループ20G毎に低圧段圧縮機21Aの油量推定工程(S4)及び低圧段圧縮機21Aの下限値判定工程(S5)を実行する。そして、本実施形態では、低圧段圧縮機21Aの下限値判定工程(S5)で、いずれかの圧縮グループ20Gにおける低圧段圧縮機21Aの油量が下限値Lll以下になったと判定されると、油戻し処理工程(S10)を実行する。
【0102】
多段圧縮装置20のライン系統内から循環ライン10中の残りライン中に拡散する単位時間当たり油量は、前述したように、高圧段圧縮機21Cからの単位時間当たりの流出油量FOhである。このため、以下の式(5)に示すように、現時点における低圧段圧縮機21Aの油量と高圧段圧縮機21Cの油量とを合せた総油量L
total(t)は、間近に行った油戻し運転直後における低圧段圧縮機21Aの油量Llrと高圧段圧縮機21Cの油量Lhrとを合せた総油量(Llr+Lhr)から、高圧段圧縮機21Cからの単位時間当たりの流出油量FOhを油戻し運転後から現時点までの時間分だけ積算した値ΣFOhを減算した値である。
L
total(t)=(Llr+Lhr)−ΣFOh ・・・・・(5)
【0103】
また、以下の式(6)に示すように、現時点の低圧段圧縮機21Aの油量L
l(t)は、現時点における総油量L
total(t)から現時点の高圧段圧縮機21Cの油量L
h(t)を減算した値である。
L
l(t)=L
total(t)−L
h(t) ・・・・・(6)
【0104】
そこで、油量推定部103は、以上の式(5)及び式(6)の演算を実行して、現時点の低圧段圧縮機21Aの油量L
l(t)を求める(S4:低圧段圧縮機21Aの油量推定工程)。ここで、油量推定部103は、式(5)中の油戻し運転直後における低圧段圧縮機21Aの油量Llrと高圧段圧縮機21Cの油量Lhrとを記憶部109から取得する。また、油量推定部103は、式(5)中の高圧段圧縮機21Cの単位時間当たりの流出油量FOhとして、高圧段圧縮機21Cの油量推定工程(S3)で現時点での高圧段圧縮機21Cの油量L
h(t)を推定する過程で求めた流出油量FOhを用いる。さらに、油量推定部103は、式(6)中の現時点での高圧段圧縮機21Cの油量L
h(t)として、高圧段圧縮機21Cの油量推定工程(S3)で求めた現時点での高圧段圧縮機21Cの油量L
h(t)を用いる。なお、本実施形態では、油量推定部103が最上流の圧縮機21A内の油量を把握しているので、この油量推定部103により最上流油量把握部が構成される。
【0105】
油量推定部103が低圧段圧縮機21Aにおける油溜り部27の油量を推定すると、前述したように、油量判定部104が、複数の圧縮グループ20G毎に低圧段圧縮機21Aの油量Llが下限値Lll以下になったか否かを判断する(S5:低圧段圧縮機の下限値判定工程)。油量判定部104は、全ての圧縮グループ20Gにおける低圧段圧縮機21Aの油量油量Llが下限値Lll以下ではないと判定すると、前述したように、複数の圧縮グループ20G毎に高圧段圧縮機21Cの上限値判定工程(S6)を実行する。一方、油量判定部104は、
図9に示すように、いずれかの圧縮グループ20Gの低圧段圧縮機21Aの油量Llが下限値Lll以下になったと判定すると、その旨を回転数指示部105及び膨張弁指示部107に通知する。回転数指示部105は、油量判定部104から通知を受けると、複数の圧縮グループ20G毎の各圧縮機21A,21Cに対して油戻し運転用として予め定めらた回転数を対応する回転数変更器29A,29Cに指示する。この結果、各圧縮機21A,21Cの回転数は、油戻し運転用の回転数になる。また、膨張弁指示部107は、油量判定部104から通知を受けると、膨張弁3に対して油戻し運転用として予め定めらた弁開度を指示する。この結果、膨張弁3は、油戻し運転用の弁開度になる(S10:油戻し処理工程)。よって、本実施形態では、回転数指示部105及び膨張弁指示部107により、油戻し運転指示部が構成される。
【0106】
なお、ここでは、油戻し運転を実行するために、各圧縮機21A,21Cの回転数及び膨張弁3の弁開度を調節する。しかしながら、油戻し運転には、公知の各種方法がある。このため、この油戻し処理工程(S10)では、公知の他の方法で、油戻し運転を実行してもよい。
【0107】
油戻し処理、言い換えると油戻し運転が実行させると、循環ライン10中に拡散していた油Oが複数の圧縮グループ20G毎の低圧段圧縮機21A内に戻り、
図10の(a)に示すように、低圧段圧縮機21Aの油量は、各低圧段圧縮機21Aの油量の下限値Lllよりも多い油量になる。但し、各低圧段圧縮機21Aの油量は、互いに相違する。これは、複数の圧縮グループ20G毎で、低圧段圧縮機21Aの吸込口25に接続されている吸込ライン16やこの吸込ライン16中に配置されているアキュムレータ31の抵抗等が異なるためである。ここで、油戻し運転の結果、例えば、
図10の(a)に示すように、第一低圧段圧縮機21Ax内の油レベルは、下限値Lllより高いものの、並列均油ライン39の開口39aの位置よりも低くなったする。第二低圧段圧縮機21Ay内の油レベルは、下限値Lllより高く、さらに、並列均油ライン39の開口39aの位置より高くなったとする。また、第三低圧段圧縮機21Az内の油レベルが、下限値Lllより高いものの、並列均油ライン39の開口39aの位置よりも低くなったする。
【0108】
なお、第一低圧段圧縮機21Axは、複数の圧縮グループ20Gのうちの第一圧縮グループ20Gxに属する低圧段圧縮機21Aである。第二低圧段圧縮機21Ayは、複数の圧縮グループ20Gのうちの第二圧縮グループ20Gyに属する低圧段圧縮機21Aである。第三低圧段圧縮機21Azは、複数の圧縮グループ20Gのうちの第三圧縮グループ20Gzに属する低圧段圧縮機21Aである。
【0109】
そこで、本実施形態では、油戻し処理工程(S10)後に並列均油量処理工程(S11)を実行する。
【0110】
並列均油量処理工程(S11)では、まず、回転数設定部102が、複数の圧縮グループ20G毎の低圧段圧縮機21Aのうち、第一低圧段圧縮機21Ax内の圧力が残りの全ての低圧段圧縮機21A内の圧力より低くなるよう、第一低圧段圧縮機21Axの回転数と残りの全ての低圧段圧縮機21Aの回転数とのうちの少なくとも一方の回転数を定める。例えば、第一低圧段圧縮機21Axの回転数を残りの全ての低圧段圧縮機21Ay,21Azの回転数よりも相対的に高くする。この方法としては、第一低圧段圧縮機21Axの回転数を現状の回転数より高くする方法、残りの全ての低圧段圧縮機21Ay,21Azの回転数を現状の回転数より低くする方法、第一低圧段圧縮機21Axの回転数を現状の回転数より高くすると共に、残りの全ての低圧段圧縮機21Ay,21Azの回転数を現状の回転数より低くする方法がある。
【0111】
同様に、回転数設定部102は、第二低圧段圧縮機21Ay内の圧力が残りの全ての低圧段圧縮機21Az,21Ax内の圧力より低くなるよう、第二低圧段圧縮機21Ayの回転数と残りの全ての低圧段圧縮機21Az,21Axの回転数とのうちの少なくとも一方の回転数を定める。さらに、回転数設定部102は、第三低圧段圧縮機21Az内の圧力が残りの全ての低圧段圧縮機21Ax,21Ay内の圧力より低くなるよう、第三低圧段圧縮機21Azの回転数と残りの全ての低圧段圧縮機21Ax,21Ayの回転数とのうちの少なくとも一方の回転数を定める。
【0112】
以上のように、回転数設定部102は、全ての低圧段圧縮機21A毎に、一の低圧段圧縮機21A内の圧力が残りの全ての低圧段圧縮機21A内の圧力より低くなるよう、一の低圧段圧縮機21Aの回転数と残りの全ての低圧段圧縮機21Aの回転数とのうちの少なくとも一方の回転数を定める(S12:回転数設定工程)。
【0113】
次に、回転数指示部は、第一低圧段圧縮機21Ax内の圧力が残りの全ての低圧段圧縮機21Ay,21Az内の圧力より低くなる得る回転数、第二低圧段圧縮機21Ay内の圧力が残りの全ての低圧段圧縮機21Az,21Ax内の圧力より低くなる得る回転数、第三低圧段圧縮機21Az内の圧力が残りの全ての低圧段圧縮機21Ax,21Ay内の圧力より低くなる得る回転数を、順次、対応回転変更器に指示する(S13:回転数指示工程)。
【0114】
この結果、まず、第一低圧段圧縮機21Ax内の圧力が残りの全ての低圧段圧縮機21Ay,21Az内の圧力より低くなる。
図10の(a)を用いて前述したように、油戻し処理工程(S10)の結果、第二低圧段圧縮機21Ay内の油レベルが、下限値Lllより高く、さらに、並列均油ライン39の開口39aの位置よりも高くなった場合、
図10の(b)に示すように、この第二低圧段圧縮機21Ay内の油が低圧の第一低圧段圧縮機21Ax内に吸引される。このため、第二低圧段圧縮機21Ay内の油量が減少する一方で、第一低圧段圧縮機21Ax内の油量が増加する。但し、第二低圧段圧縮機21Ay内の油レベルがこの第二低圧段圧縮機21Ay内の並列均油ライン39の開口39aの位置に至ると、第二低圧段圧縮機21Ayから油が流出しなくなる。また、
図10の(a)を用いて前述したように、油戻し処理工程(S10)の結果、第三低圧段圧縮機21Az内の油レベルが、下限値Lllより高いものの、並列均油ライン39の開口39aの位置よりも低くなった場合、第三低圧段圧縮機21Az内の油は、低圧の第一低圧段圧縮機21Ax内に吸引されない。すなわち、
図10の(b)に示すように、第三低圧段圧縮機21Az内の油レベルは変化しない。
【0115】
次に、第二低圧段圧縮機21Ay内の圧力が残りの全ての低圧段圧縮機21Az,21Ax内の圧力より低くなる。この際、
図10の(c)に示すように、この第一低圧段圧縮機21Ax内の油が低圧の第二低圧段圧縮機21Ay内に吸引される。このため、第一低圧段圧縮機21Ax内の油量が減少する一方で、第二低圧段圧縮機21Ay内の油量が増加する。但し、第一低圧段圧縮機21Ax内の油レベルがこの第一低圧段圧縮機21Ax内の並列均油ライン39の開口39aの位置に至ると、第一低圧段圧縮機21Axから油が流出しなくなる。また、第三低圧段圧縮機21Az内の油レベルは、下限値Lllより高いものの、並列均油ライン39の開口39aの位置よりも低いため、第三低圧段圧縮機21Az内の油は、低圧の第二低圧段圧縮機21Ay内に吸引されない。すなわち、第一低圧段圧縮機21Ax内が低圧になった場合と同様、第三低圧段圧縮機21Az内の油レベルは変化しない。
【0116】
最後に、第三低圧段圧縮機21Az内の圧力が残りの全ての低圧段圧縮機21Ax,21Ay内の圧力より低くなる。この際、
図10の(d)に示すように、この第二低圧段圧縮機21Ay内の油が低圧の第三低圧段圧縮機21Az内に吸引される。このため、第二低圧段圧縮機21Ay内の油量が減少する一方で、第三低圧段圧縮機21Az内の油量が増加する。但し、第二低圧段圧縮機21Ay内の油レベルがこの第二低圧段圧縮機21Ay内の並列均油ライン39の開口39aの位置に至ると、第二低圧段圧縮機21Ayから油が流出しなくなる。また、第一低圧段圧縮機21Ax内の油レベルは、並列均油ライン39の開口39aの位置のレベルであるため、第一低圧段圧縮機21Ax内の油は、低圧の第三低圧段圧縮機21Az内に吸引されない。すなわち、第一低圧段圧縮機21Ax内の油レベルは、並列均油ライン39の開口39aの位置のレベルのまま変化しない。
【0117】
以上で並列均油量処理工程(S11)は終了する。この並列均油量処理工程(S11)の結果、第一低圧段圧縮機21Ax内の油レベル及び第二低圧段圧縮機21Ay内の油レベルは、並列均油ライン39の開口39aの位置のレベルになる。また、第三低圧段圧縮機21Az内の油レベルは、
図10の(d)に示す例では、並列均油ライン39の開口39aの位置よりも僅かに高いレベルになる。よって、並列均油量処理工程(S11)により、複数の圧縮グループ20G毎の低圧段圧縮機21A内の油レベルは、いずれも、ほぼ並列均油ライン39の開口39aの位置のレベルになる。なお、
図10の(d)に示す例では、前述したように、第三低圧段圧縮機21Az内の油レベルが、並列均油ライン39の開口39aの位置よりも僅かに高いのレベルになっている。しかしながら、油戻し処理工程(S10)後の各低圧段圧縮機21A内の油の総量によって、第三低圧段圧縮機21Az内の油レベルは、並列均油ライン39の開口39aの位置よりも僅かに低いレベルになる場合もある。
【0118】
油戻し処理工程(S6)が終了すると、回転数設定工程(S1)に戻る。
【0119】
以上のように、本実施形態では、並列均油ライン39の開口39aを低圧段圧縮機21A内の所定の位置に配置したことにより、簡単な制御及び簡単なライン構成で、複数の低圧段圧縮機21A内の油量を所定の油量に調節することができる。このため、本実施形態では、ライン構成の複雑化を抑えることができ、設備コストの増加を抑えることができる。さらに、本実施形態では、配管抵抗の増加に伴うランニングコストの増加も抑えることができる。
【0120】
また、本実施形態では、上流側の低圧段圧縮機21Aの流出油量FOlに対して下流側の高圧段圧縮機21Cの流出油量FOhが少なくなるよう、各圧縮機21A,21Cが運転される。このため、本実施形態では、上流側の低圧段圧縮機21Aの油量が下限値Lllになるより先に、下流側の高圧段圧縮機21Cの油量が下限値Lhlになることを防ぐことができる。言い換えると、本実施形態では、いずれかの圧縮機21A,21Cの油量が下限値になる場合、その圧縮機は上流側の低圧段圧縮機21Aになる。また、油戻り運転では、循環ライン10中に拡散していた油Oが、高圧段圧縮機21C内に戻る前に、低圧段圧縮機21A内に戻る。よって、本実施形態では、いずれかの圧縮機21A,21Cの油量が下限値になっても、油戻し運転により、油量が下限値になった圧縮機21Aの油量を短時間で回復させることができる。
【0121】
本実施形態では、複数の圧縮機21A,21C毎に油分離器32A,32C及び油戻しライン33A,33Cが設けられている。このため、本実施形態では、各圧縮機21A,21Cの油量減少を抑えることができる。さらに、本実施形態では、最下流の高圧段圧縮機21Cに対する高圧油分離器32Cの油分離効率が、低圧段圧縮機21Aに対する低圧油分離器32Aの油分離効率よりも高い。このため、本実施形態では、多段圧縮装置20の冷媒Rが流れる系統から外部に流出する油Oの量を効果的に抑えることができる。
【0122】
本実施形態では、高圧段圧縮機21Cの油溜り部27と低圧段圧縮機21Aの油溜り部27とが直列均油ライン34で接続されている。このため、本実施形態では、高圧段圧縮機21C内に溜まっている油Oを、直列均油ライン34を介して、低圧段圧縮機21A内に送ることができ、低圧段圧縮機21A内の油量減少を抑えることができる。
【0123】
高圧段圧縮機21Cの油溜り部27と低圧段圧縮機21Aの油溜り部27とが直列均油ライン34で常時連通している状態では、高圧段圧縮機21C内の圧力が常時低下し、高圧段圧縮機21Cにおける圧縮効率が常時低下している状態になる。本実施形態では、直列均油ライン34に均油弁35が設けられている。このため、本実施形態では、高圧段圧縮機21C内に溜まっている油Oを低圧段圧縮機21A内に送る必要性が高まったときだけ、均油弁35を開けることで、低圧段圧縮機21A内の油量回復を図ることができると共に、高圧段圧縮機21Cにおける圧縮効率の低下を一時的なものにすることができる。
【0124】
本実施形態では、油戻し運転を実行することで、循環ライン10中に拡散していた油Oを最下流の高圧段圧縮機21C内に戻すことができる。
【0125】
「各種変形例」
以上で説明した実施形態の各種変形例について説明する。
【0126】
上記実施形態では、油戻し処理工程(S10)後に並列均油量処理工程(S11)を実行する。しかしながら、複数の圧縮グループ20G毎の低圧段圧縮機21Aのうち、少なくとも一の低圧段圧縮機21A内に、並列均油ライン39の開口39aよりも上方のレベルにまで油が溜まっている場合であれば、油戻し処理工程(S10)後でなくても、並列均油量処理工程(S11)を実行してもよい。
【0127】
上記実施形態では、並列均油量処理工程(S11)の回転数設定工程(S12)で、複数の低圧段圧縮機21A毎に、その低圧段圧縮機21Aを低圧にするための各低圧段圧縮機21Aの回転数を全て求めてから、回転数指示工程(S13)を実行する。しかしながら、回転数設定工程(S12)で、複数の低圧段圧縮機21Aのうち、一の低圧段圧縮機21Aを低圧にするための各低圧段圧縮機21Aの回転数を求める毎に、回転数指示工程(S13)を実行してもよい。
【0128】
複数の低圧段圧縮機21A内における並列均油ライン39の各開口39aのレベルは、複数の低圧段圧縮機21A相互で同じレベルである必要はない。すなわち、各低圧段圧縮機21A内の油量に関する所定値は、その低圧段圧縮機21Aに対して所定値であればよく、複数の低圧段圧縮機21A相互で異なっていてもよい。
【0129】
上記実施形態における一の圧縮グループ20Gは、2台の圧縮機21A,21Cが直列に配置されている例である。しかしながら、圧縮グループ20Gは、3台以上の圧縮機が直列に配置されてもよい。例えば、
図11に示すように、3台の圧縮機21A,21B,21Cが直列に配置されてもよい。この場合でも、上流側の圧縮機の流出油量に対して下流側の圧縮機の流出油量が少なくなるよう、各圧縮機の回転数を定めることで、上記実施形態と同様に、油量が下限値になった圧縮機21Aの油量を短時間で回復させることができる。この場合、回転数設定部102は、最上流の低圧段圧縮機21Aの流出油量FOlに対して、その下流側に配置されている中圧段圧縮機21Bの流出油量FLmが少なくなるよう、低圧段圧縮機21A及び中圧段圧縮機21Bの回転数を定める。さらに、回転数設定部102は、中圧段圧縮機21Bの流出油量FLmに対して、その下流側に配置されている高圧段圧縮機21Cの流出油量FLhが少なくなるよう、高圧段圧縮機21Cの回転数を定める。なお、この場合も、高圧段圧縮機21Cの回転数を定めてから、中圧段圧縮機21Bの回転数を定め、最後に低圧段圧縮機21Aの回転数を定めてもよい。
【0130】
また、3台以上の圧縮機が直列に配置されている場合も、各圧縮機の下流側に油分離器を設けると共に、各油分離器と対応する圧縮機とを油戻しラインで接続することが好ましい。この場合も、上流側の圧縮機に対する油分離器の油分離効率よりも、下流側の圧縮機に対する油分離器の油分離効率を高くすることが好ましい。例えば、
図11に示すように、3台の圧縮機21A,21B,21Cが直列に配置されている場合、低圧段圧縮機21Aの下流側に低圧油分離器32Aを設け、この低圧油分離器32Aと低圧段圧縮機21Aとを低圧油戻しライン33Aで接続する。中圧段圧縮機21Bの下流側に中圧油分離器32Bを設け、この中圧油分離器32Bと中圧段圧縮機21Bとを中圧油戻しライン33Bで接続する。さらに、高圧段圧縮機21Cの下流側に高圧油分離器32Cを設け、この高圧油分離器32Cと高圧段圧縮機21Cとを高圧油戻しライン33Cで接続する。また、この
図11に示す例でも、上流側の低圧油分離器32Aの油分離効率よりも、下流側の中圧油分離器32Bの油分離効率を高くし、この中圧油分離器32Bの油分離効率よりも、下流側の高圧油分離器32Cの油分離効率を高くすることが好ましい。
【0131】
上記実施形態の多段圧縮装置20は、三つの圧縮グループ20Gを備えている。しかしながら、多段圧縮装置は、圧縮グループ20Gを二つ備えてもよいし、四つ以上備えてもよい。
【0132】
上記実施形態では、圧縮機21に溜まっている油量を把握する油量把握部として、油量推定部103を例示している。しかしながら、油量把握部は、圧縮機21に溜まっている油量を検知する液量計又は液レベル計であってもよい。
【0133】
上記実施形態では、直列均油ライン34に均油弁35を設けている。しかしながら、直列均油ライン34には、必ずしも均油弁35を設ける必要はない。但し、均油弁35を設けない場合、前述したように、高圧段圧縮機21Cの圧縮効率が常時低下している状態になる。このため、高圧段圧縮機21Cの圧縮効率の低下を抑えたい場合には、本実施形態と同様、直列均油ライン34に均油弁35を設けることが好ましい。
【0134】
上記実施形態では、低圧段圧縮機21Aの油量推定工程(S4)の前に、高圧段圧縮機21Cの油量推定工程(S3)を実行する。しかしながら、回転数指示工程(S2)後であって、高圧段圧縮機21Cの上限値判定工程(S6)の前であれば、高圧段圧縮機21Cの油量推定工程(S3)をどのタイミングで行ってもよい。
【0135】
上記実施形態における冷凍サイクルは、四方切替弁4を備えている。この四方切替弁4は、前述したように、第一熱交換器1を凝縮器として機能させる場合と、この第一熱交換器1を蒸発器として機能させる場合とに切り替えるために設けられている。このため、第一熱交換器1を専ら凝縮器として機能させる場合や、この第一熱交換器1を専ら蒸発器として機能させる場合には、四方切替弁4は不要である。