(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0010】
以下、図面を参照して、本発明の一実施形態について説明する。
【0011】
〔生物誘導装置100の概略構成〕
初めに、
図1〜
図3を参照して、生物誘導装置100の概略構成について説明する。
図1は、本発明の一実施形態に係る生物誘導装置100の外観斜視図である。
図2は、本発明の一実施形態に係る生物誘導装置100の平面図である。
図3は、
図2に示す生物誘導装置100のA−A断面図である。
【0012】
図1〜
図3に示す生物誘導装置100は、任意の設置面(例えば、地面、舗装面、床面、壁面、屋根等)に敷設される装置である。生物誘導装置100は、設置面上を移動する昆虫や害虫などの生物を所定の捕獲エリアへ誘導したり、所定の防除エリア内への生物の進入を防止したりすることが可能な装置である。
図1〜
図3に示すように、生物誘導装置100は、本体110と、複数の電極120と、バッテリ130と、制御装置140と、太陽電池パネル150とを備えて構成されている。なお、各図面では、生物誘導装置100の設置面に対して平行な方向を、X軸方向およびY軸方向とし、生物誘導装置100の設置面に対して垂直な方向を、Z軸方向としている。
【0013】
本体110は、生物誘導装置100の外形をなす、タイル状の部材である。本体110は、その他の構成部品(電極120、バッテリ130、制御装置140、および太陽電池パネル150)が組み込まれる。本体110としては、例えば、陶器、磁器、コンクリート、樹脂、ガラス、木材等の絶縁素材を用いることができる。なお、
図1〜
図3に示す例では、本体110は、平板状(薄型のタイル状)をなしているが、これに限らない。例えば、本体110は、シート状(より薄型のタイル状)、箱状(より厚みのあるタイル状)等をなすものであってもよい。また、
図1〜
図3に示す例では、本体110は、上方から平面視したときに矩形状をなしている(すなわち、薄型の直方体形状をなしている)が、これに限らない。例えば、本体110は、上方から平面視したときに円形状、多角形状等をなすものであってもよい。また、
図3に示す例では、本体110は、中空構造を有しているが、中空構造を有さないものであってもよい。
【0014】
複数の電極120は、本体110の表面において、マトリクス状に並べて配設されている。複数の電極120は、いずれも点状をなしている。
図1および
図2に示す例では、本体110の表面には、64個の電極120が、8×8列のマトリクス状に配設されている。電極120としては、例えば、銅、銅タングステン、銀タングステン、真鍮、アルミ等の、導電性素材を用いることができる。また、
図1および
図2に示す例では、各電極120は、上方から平面視したときに矩形状をなしているが、その他の形状(例えば、円形状)をなすものであってもよい。
【0015】
複数の電極120は、互いに隣接する2つの電極120を一つの組み合わせとして、複数の組み合わせを構成し得る。例えば、
図2に示す例では、複数の電極120は、電極A
1,A
2,・・・,A
Nと、電極B
1,B
2,・・・,B
Nとを含んでいる。但し、Nは、1以上の整数であり、本実施形態の場合は、N=32である。この例において、電極120(A
1)は、当該電極120(A
1)と隣接する、電極120(B
1),電極120(B
2),電極120(A
2)のいずれかと、組み合わせを構成し得る。各組み合わせにおいて、一方の電極と他方の電極は、互いに電圧の極性が異なる交流電力が印加される。例えば、一方の電極に+極性の電圧の交流電力が印加されるとき、他方の電極に−極性の電圧の交流電力が印加される。反対に、一方の電極に−極性の電圧の交流電力が印加されるとき、他方の電極に+極性の電圧の交流電力が印加される。また、
図2に示すように、複数の電極120がマトリクス状に並べて配設されている場合には、本体110の表面において、図中X軸方向および図中Y軸方向のいずれにおいても、+極性の電圧の交流電力が印加される電極と、−極性の電圧の交流電力が印加される電極とが、交互に並んで配置されるように、制御することが可能である。これにより、図中X軸方向および図中Y軸方向のいずれにおいても、隣接する2つの電極120に対し、互いに電圧の極性が異なる交流電力が印加されることとなり、当該隣接する2つの電極120に接触した生物に対して、交流電力による刺激を与えることができる。
【0016】
なお、電極120の組み合わせは、互いに隣接する2つの電極の電極に限らない。すなわち、互いに離間した2つの電極120を、電極120の組み合わせとしてもよい。例えば、電極120の大きさ,間隔と、誘導対象の生物の大きさ(特に、足を有する生物の場合は、足と足との間隔)との関係によっては、隣接する電極120同士に電圧を印加したとしても、生物がこれらの隣接する電極120に接触せずに、生物に電気的刺激を与えることができなくなる虞がある。この場合、電極120の大きさ,間隔と、誘導対象の生物の大きさとに応じて、組み合わせとする2つの電極120同士の間隔を決定するとよい。
【0017】
バッテリ130は、本体110の内部に配置されている。バッテリ130は、「所定の電源」および「二次電池」の一例であり、制御装置140に対して電力(直流電力)を供給する。バッテリ130としては、例えば、リチウムイオン電池、ニッケル水素電池等を用いることができる。なお、生物誘導装置100は、「所定の電源」として、バッテリ130(内部電源)を用いる代わりに、外部電源を用いてもよい。この場合、外部電源は、直流電源(例えば、外部バッテリ等)であってもよく、交流電源(例えば、商用電源等)であってもよい。但し、本実施形態のように、本体110の内部にバッテリ130を設けることにより、生物誘導装置100を設置する際に、外部電源との接続を意識する必要がなくなるため、生物誘導装置100の設置容易性をより高めることが可能となる。
【0018】
制御装置140は、本体110の内部に配置されている。制御装置140は、配線(図示省略)を介して、複数の電極120の各々に電気的に接続されている。制御装置140は、「制御手段」の一例であり、バッテリ130から供給された電力を用いて、複数の電極120の各々に印加する電力を制御する。具体的には、制御装置140は、バッテリ130から供給された直流電力を、当該制御装置140が備えるDC−ACインバータ(例えば、正弦波インバータ、矩形波インバータ等)により、出力用の交流電力へ変換する。そして、制御装置140は、生成された交流電力を、複数の電極120の各々に印加する。
【0019】
ここで、制御装置140は、複数の電極120の各々に対して印加する電力を、個別に制御することができる。この制御は、例えば、制御装置140において、CPU(Central Processing Unit)が所定の制御プログラムを実行することにより、実現される。例えば、制御装置140は、生物誘導装置100が備える複数の電極120のうち、全ての電極120に対して電力を印加することもできるし、特定の一部の電極120に対してのみ電力を印加することもできる。いずれの場合も、制御装置140は、特定の生物を防除するのに好適な電力設定値(例えば、電圧、周波数、デューティ比等)に基づく電力を、各電極120に対して印加することができる。
【0020】
例えば、制御装置140は、特定の生物のサイズが比較的小さい場合には、比較的小さい電圧値を有する電力を、各電極120に対して印加することができる。また、例えば、制御装置140は、特定の生物のサイズが比較的大きい場合には、比較的大きい電圧値を有する電力を、各電極120に対して電力を印加することができる。また、例えば、制御装置140は、特定の生物にとって感受性の高い周波数およびデューティ比を有する電力を、各電極120に対して印加することができる。なお、制御装置140による制御の詳細については、
図6を用いて後述する。
【0021】
なお、制御装置140は、メモリ142を備えている。メモリ142には、第1の設定テーブル502および第2の設定テーブル504が格納される。第1の設定テーブル502は、生物の種類毎に、当該生物を防除するのに好ましい電力設定値が設定される。第2の設定テーブル504は、生物誘導装置100が備える複数の電極120の各々に対して、当該電極120に印加する電力に関する電力設定値が設定される。なお、第1の設定テーブル502および第2の設定テーブル504の詳細については、
図5を用いて後述する。
【0022】
太陽電池パネル150は、本体110の表面に設置されている。太陽電池パネル150は、内部に設けられた太陽電池の表面に光が照射されると、当該太陽電池の光起電力効果により、電力を発生する。太陽電池パネル150によって発生された電力は、バッテリ130に供給されて、バッテリ130の充電に用いられる。本実施形態の生物誘導装置100は、太陽電池パネル150を設けたことにより、外部電源に接続することなく、バッテリ130から供給された電力による、長時間の動作が可能となっている。なお、
図2に示す例では、本体110の表面上における、複数の電極120が設けられていない領域に、太陽電池パネル150が配置されているが、これに限らない。例えば、太陽電池パネル150上に、複数の電極120が設けられてもよい。この場合、太陽電池パネル150は、本体110の表面上の全面に亘って設けられてもよい。
【0023】
例えば、このように構成された生物誘導装置100は、屋外および屋内を問わず、平面状の設置面(例えば、地面、舗装面、床面、壁面、屋根等)に対して、複数並べて敷設される。この際、生物誘導装置100は、各種接着手段(例えば、接着剤、モルタル、両面テープ等)によって、本体110の底面部分が、設置面(舗装面、床面、壁面、屋根等)に接着されることにより、設置面に固定されてもよい。また、例えば、生物誘導装置100は、本体110の底面から垂下する杭状の部材が設けられてもよく、この場合、当該杭状の部材が地中に埋め込まれることによって、設置面(地面等)に固定されてもよい。また、例えば、生物誘導装置100は、本体110が上下方向にある程度の厚みを有する場合には、本体110の一部が地中に埋め込まれることによって、設置面(地面等)に固定されてもよい。また、例えば、生物誘導装置100は、各種連結手段により、隣接する他の生物誘導装置100と互いに連結可能であってもよい。
【0024】
〔生物誘導装置100の電気的接続構成〕
次に、
図4を参照して、生物誘導装置100の電気的接続構成について説明する。
図4は、本発明の一実施形態に係る生物誘導装置100の電気的接続構成を示す図である。
【0025】
図4に示すように、制御装置140には、複数の電極120の各々が電気的に接続されている。これにより、制御装置140は、複数の電極120の各々に対して、個別に電力を印加することができる。
【0026】
また、
図4に示すように、複数の電極120は、電極A
1,A
2,・・・,A
Nと、電極B
1,B
2,・・・,B
Nとを含んでいる。制御装置140は、互いに隣接する2つの電極120に対して、互いに電圧の極性が異なる交流電力を印加することができる。
【0027】
また、
図4に示すように、制御装置140は、メモリ142を備えている。メモリ142には、第1の設定テーブル502および第2の設定テーブル504が格納される。制御装置140は、メモリ142に格納されている第1の設定テーブル502および第2の設定テーブル504に基づいて、複数の電極120の各々に対して、個別に電力を印加することができる。
【0028】
また、
図4に示すように、制御装置140には、バッテリ130が電気的に接続されている。これにより、制御装置140は、バッテリ130から供給される電力(直流電力)を用いて、複数の電極120の各々に対して、電力(交流電力)を印加することができる。
【0029】
また、
図4に示すように、バッテリ130には、太陽電池パネル150が電気的に接続されている。これにより、バッテリ130は、太陽電池パネル150から供給される電力により、充電されるようになっている。
【0030】
また、
図4に示すように、本実施形態の生物誘導装置100は、複数の電極120の各々に対して、制御装置140との間に、「保護装置」の一例として、ヒューズ160が設けられている。これにより、生物誘導装置100は、ある電極120に対して異物や生物等が付着することにより、その電極120が短絡して、その電極120に過電流が流れてしまった場合であっても、その電極に接続されたヒューズ160によって、その電極120を回路から遮断することにより、過電流による回路の損壊を回避することができるようになっている。
【0031】
〔メモリ142に格納される情報の一例〕
図5は、本発明の一実施形態に係る生物誘導装置100が備えるメモリ142に格納される情報の一例を示す図である。
【0032】
図5Aは、メモリ142に格納される、第1の設定テーブル502の一例を示す図である。第1の設定テーブル502は、生物の種類毎に、当該生物を防除するのに好ましい電力設定値が設定されるテーブルである。
図5Aに示す例では、第1の設定テーブル502は、電力設定値に関するデータ項目として、「電圧」、「周波数」、および「デューティ比」を含んでいる。「電圧」、「周波数」、および「デューティ比」には、生物を防除するのに有効な値が設定される。特に、「電圧」には、生物が死滅するに至らない程度の電圧値が設定される。なお、「デューティ比」は、電極120に印加される交流電力が矩形波によるものである場合にのみ値が設定される。
【0033】
ここで、本発明の発明者は、「電圧」には、生物の種類に応じて、0〜12Vの範囲内の電圧値を設定することが好ましいことを、試験等によって見出している。また、本発明の発明者は、「周波数」には、生物の種類に応じて、300〜2.0KHzの範囲内の周波数値を設定することが好ましいことを、試験等によって見出している。
【0034】
なお、第1の設定テーブル502は、生物誘導装置100と接続可能な外部機器(例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等)に設けられてもよい。この場合、例えば、制御装置140は、誘導または防除する生物の種類に対応する電力設定値を、外部機器から取得するようにしてもよい。
【0035】
また、
図5Aに示す例では、第1の設定テーブル502には、生物の種類を問わない電力設定値が設定されている。この電力設定値は、複数の種類の生物を、誘導または防除の対象とする場合に用いられる。
【0036】
図5Bは、メモリ142に格納される、第2の設定テーブル504の一例を示す図である。第2の設定テーブル504は、生物誘導装置100が備える複数の電極120の各々に対して、当該電極120に印加する電力に関する電力設定値が設定されるテーブルである。
図5Bに示す例では、第2の設定テーブル504は、電力設定値に関するデータ項目として、「電圧」、「周波数」、および「デューティ比」を含んでいる。
【0037】
ここで、本実施形態の生物誘導装置100は、一部の領域内の電極120に対して電力を印加し、他の一部の領域内の電極120に対して電力を印加しないようにすることができる。例えば、
図5Bに示す例では、電極A
1,A
2,B
1,B
2に対しては、電力を印加する設定がなされており、電極A
N,B
Nに対しては、電力を印加しない設定がなされている。特に、電極A
1,A
2,B
1,B
2に対しては、「電圧」に「10V」が設定されており、「周波数」に「1.0KHz」が設定されており、「デューティ比」に「50%」が設定されている。これらの電力設定値は、
図5Aに示す「生物B」の電力設定値に対応するものである。すなわち、
図5Bに示す例では、第2の設定テーブル504において、一部の領域内の電極A
1,A
2,B
1,B
2によって、「生物B」を誘導または防除するための設定がなされている。
【0038】
〔制御装置140による制御の手順〕
図6は、本発明の一実施形態に係る生物誘導装置100が備える制御装置140による制御の手順を示すフローチャートである。
【0039】
まず、制御装置140は、誘導または防除の対象とする生物の種類を特定するか否かを判断する(ステップS601)。誘導または防除の対象とする生物の種類を特定するか否かは、例えば、外部機器(例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等)から設定される。
【0040】
ステップS601において、誘導または防除の対象とする生物の種類を特定しないと判断された場合(ステップS601:No)、制御装置140は、メモリ142に格納されている第1の設定テーブル502(
図5参照)を参照することにより、生物の種類を問わない電力設定値(例えば、電圧、周波数、およびデューティ比)を取得する(ステップS602)。そして、制御装置140は、ステップS605へ処理を進める。
【0041】
一方、ステップS601において、誘導または防除の対象とする生物の種類を特定すると判断された場合(ステップS601:Yes)、制御装置140は、生物誘導装置100によって誘導または防除する生物の種類を特定する(ステップS603)。例えば、生物誘導装置100によって誘導または防除する生物の種類は、外部機器(例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等)から設定される。
【0042】
次に、制御装置140は、メモリ142に格納されている第1の設定テーブル502(
図5参照)を参照することにより、ステップS603で特定された生物の種類に対応する電力設定値(例えば、電圧、周波数、およびデューティ比)を取得する(ステップS604)。そして、制御装置140は、ステップS605へ処理を進める。
【0043】
ステップS605では、制御装置140は、生物誘導装置100が備える複数の電極120のうち、電力を印加する電極120を特定する。例えば、電力を印加する電極120は、外部機器(例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等)から設定される。なお、電力を印加する電極120は、特定の一部の電極120であってもよく、全ての電極120であってもよい。
【0044】
次に、制御装置140は、ステップS605で特定された各電極120に対し、ステップS602またはステップS604で取得された電力設定値を設定する(ステップS606)。ステップS606において各電極120に対して設定された電力設定値は、例えば、メモリ142に格納されている第2の設定テーブル504(
図5参照)に設定される。
【0045】
次に、制御装置140は、ステップS605で特定された各電極120に対し、ステップS606で設定された電力設定値(例えば、電圧、周波数、およびデューティ比)に基づく交流電力を生成し、当該交流電力を印加する(ステップS607)。そして、制御装置140は、
図6に示す一連の制御を終了する。
【0046】
ステップS607において、各電極120に印加される交流電力は、矩形波によるものであってもよく、正弦波によるものであってもよい。また、ステップS607において、各電極120に印加される交流電力の周波数は、所定の周波数(例えば、1KHz)を中心周波数として、時系列に変化するものであってもよい。これにより、生物誘導装置100は、電力に対する感受性のピーク周波数が様々である多様な生物を、各電極120によって誘導または防除することができる。なお、この場合、各電極120に印加される交流電力の周波数は、予め定められた複数の周波数に順に切り換えられてもよく、ランダムに切り換えられてもよい。
【0047】
図6に示した制御により、制御装置140は、特定の一部の領域内の電極120、または、全ての電極120に対して、特定の種類の生物または複数の種類の生物を誘導または防除するのに好適な電力設定値に基づく電力を、印加することができる。これにより、生物誘導装置100の表面上の一部または全部に、特定の種類の生物または複数の種類の生物を防除するための領域が形成され、生物誘導装置100の表面上を移動しようとする特定の種類の生物または複数の種類の生物は、当該領域内の電極120に接触すると、電力による刺激が与えられ、当該領域から逃げ出すこととなる。但し、各電極120に印加される電力は、特定の種類の生物または複数の種類の生物を死滅させるに至らない電圧値に基づくものであるため、特定の種類の生物または複数の種類の生物は、当該領域において死滅することなく、当該領域から逃げ出すこととなる。よって、本実施形態の生物誘導装置100は、特定の種類の生物または複数の種類の生物を生きたまま捕獲する、という用途にも利用することが可能である。
【0048】
なお、各電極120に対して印加する電力を個別に制御する方法は、
図6に示した方法に限らない。例えば、各電極120の電力設定値は、外部機器(例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等)から、第2の設定テーブル504(
図5参照)に対して、直接設定されてもよい。また、各電極120の電力設定値は、制御装置140に設けられたディップスイッチ等により、直接切り換え可能であってもよい。
【0049】
〔生物誘導装置100の第1実施例〕
次に、
図7を参照して、生物誘導装置100の第1実施例について説明する。この第1実施例では、生物誘導装置100によって、家屋22を含む防除エリア20内への生物30の進入を防止する例を説明する。
【0050】
図7は、本発明の一実施形態に係る生物誘導装置100の第1実施例を示す図である。
図7A〜Cに示すように、防除エリア20の側方には、当該防除エリア20への進入経路を遮るように、複数の生物誘導装置100がマトリクス状(2×6列)に並べて配置されている。
【0051】
なお、
図7A〜Cにおいて、着色がなされている生物誘導装置100は、各電極120に対して5V(生物30の防除に好適な電圧値)の交流電力が印加される生物誘導装置100を示す。一方、
図7A〜Cにおいて、着色がなされていない生物誘導装置100は、各電極120に対して交流電力が印加されない生物誘導装置100を示す。
【0052】
図7Aに示す例では、内側(防除エリア20側)の1列の生物誘導装置100は、各電極120に対して5Vの交流電力が印加される。一方、外側の1列の生物誘導装置100は、各電極120に対して交流電力が印加されない。すなわち、
図7Aに示す例では、内側の1列の生物誘導装置100によって、防除エリア20内への生物30の進入を防ぐことができる。
【0053】
図7Bに示す例では、外側の1列の生物誘導装置100は、各電極120に対して5Vの交流電力が印加される。一方、内側の1列の生物誘導装置100は、各電極120に対して交流電力が印加されない。すなわち、
図7Bに示す例では、外側の1列の生物誘導装置100群によって、防除エリア20内への生物30の進入を防ぐことができる。
【0054】
図7Cに示す例では、全ての生物誘導装置100は、各電極120に対して5Vの交流電力が印加される。すなわち、
図7Cに示す例では、全ての生物誘導装置100によって、防除エリア20内への生物30の進入を防ぐことができる。
【0055】
本実施例において、複数の生物誘導装置100の各々は、各電極120に対して5Vの交流電力を印加するか否かを、設定することが可能である。これにより、本実施例では、
図7A〜Cに示したように、複数の生物誘導装置100のうち、任意の生物誘導装置100(例えば、生物30の進入を防ぎたい位置に配置されている生物誘導装置100)のみに対して、各電極120に対して交流電力が印加されるようにすることができる。
【0056】
なお、本実施例において、各生物誘導装置100の設定は、例えば、各生物誘導装置100と接続可能な外部機器(例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等)、各生物誘導装置100が備えるディップスイッチ等によって、容易に行うことができる。また、各生物誘導装置100の設定は、各生物誘導装置100を設置面に設置するときだけでなく、各生物誘導装置100を設置面に設置した後も、行うことが可能である。
【0057】
〔生物誘導装置100の第2実施例〕
次に、
図8を参照して、生物誘導装置100の第2実施例について説明する。この第2実施例では、1つの生物誘導装置100(複数の電極120)によって、捕獲エリア40へ生物30および生物50を誘導する例を説明する。
【0058】
図8は、本発明の一実施形態に係る生物誘導装置100の第2実施例を示す図である。
図8A,Bに示すように、捕獲エリア40の側方には、当該捕獲エリア40への進入経路を遮るように、1つの生物誘導装置100が配置されている。
【0059】
なお、
図8A,Bにおいて、着色がなされている電極120は、5V(生物30の防除に好適な電圧値)の交流電力が印加される電極120を示す。また、
図8Aにおいて、着色がなされていない電極120は、交流電力が印加されない電極120を示す。また、
図8Bにおいて、ハッチングがなされている電極120は、10V(生物50の防除に好適な電圧値)の交流電力が印加される電極120を示す。
【0060】
図8Aに示す例では、上から1〜3,6〜8列目の各電極120に対して、5V(生物30の防除に好適な電圧値)の交流電力が印加される。一方、上から4,5列目の各電極120に対しては、交流電力が印加されない。これにより、生物誘導装置100の表面上においては、上から1〜3列目の各電極120によって、生物30が防除される第1の領域が形成される。また、上から6〜8列目の各電極120によって、生物30が防除される第2の領域が形成される。そして、第1の領域と第2の領域との間に、生物30が防除されない第3の領域が形成される。その結果、生物30は、生物誘導装置100の表面上において、第1の領域および第2の領域を避けて、第3の領域を移動するようになる。そして、例えば、
図8Aに示すように、第3の領域の延長線上に、捕獲エリア40を設けることにより、生物30を捕獲エリア40へ誘導して、生物30を効率的に捕獲することができる。
【0061】
図8Bに示す例では、上から1,2,7,8列目の各電極120に対して、10V(生物50の防除に好適な電圧値)の交流電力が印加される。一方、上から3〜6列目の各電極120に対しては、5V(生物30の防除に好適な電圧値)の交流電力が印加される。これにより、生物誘導装置100の表面上においては、上から1,2列目の各電極120によって、生物30および生物50の双方が防除される第1の領域が形成される。また、上から7,8列目の各電極120によって、生物30および生物50の双方が防除される第2の領域が形成される。そして、第1の領域と第2の領域との間に、生物30のみが防除される第3の領域が形成される。その結果、生物30は、生物誘導装置100の表面上を移動することができなくなる。すなわち、生物30は、生物誘導装置100によって、捕獲エリア40への進入が防除されることとなる。一方、生物50は、生物誘導装置100の表面上において、第1の領域および第2の領域を避けて、第3の領域を移動するようになる。そして、例えば、
図8Bに示すように、第3の領域の延長線上に、捕獲エリア40を設けることにより、生物50を捕獲エリア40へ誘導して、生物50を効率的に捕獲することができる。
【0062】
このように、本実施例の生物誘導装置100は、電極120毎に、印加する交流電力を個別に設定することが可能である。これにより、本実施例の生物誘導装置100は、
図8Aに示したように、特定の生物を、目的のエリアへ誘導することができる。また、本実施例の生物誘導装置100は、
図8Bに示すように、特定の生物の進入を防除しつつ、他の特定の生物を、目的のエリアへ誘導することもできる。
【0063】
なお、各電極120の設定は、例えば、生物誘導装置100と接続可能な外部機器(例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等)、生物誘導装置100が備えるディップスイッチ等によって、容易に行うことができる。また、各電極120の設定は、生物誘導装置100を設置面に設置するときだけでなく、生物誘導装置100を設置面に設置した後も、行うことが可能である。
【0064】
〔生物誘導装置100の第3実施例〕
次に、
図9を参照して、生物誘導装置100の第3実施例について説明する。この第3実施例では、複数の生物誘導装置100によって、捕獲エリア40へ生物30および生物50を誘導する例を説明する。
【0065】
図9は、本発明の一実施形態に係る生物誘導装置100の第3実施例を示す図である。
図9A,Bに示すように、捕獲エリア40の側方には、当該捕獲エリア40への進入経路を遮るように、複数の生物誘導装置100がマトリクス状(4×6列)に並べて配置されている。
【0066】
なお、
図9A,Bにおいて、着色がなされている生物誘導装置100は、各電極120に対して5V(生物30の防除に好適な電圧値)の交流電力が印加される生物誘導装置100を示す。また、
図9Aにおいて、着色がなされていない生物誘導装置100は、各電極120に対して交流電力が印加されない生物誘導装置100を示す。また、
図9Bにおいて、ハッチングがなされている生物誘導装置100は、各電極120に対して10V(生物50の防除に好適な電圧値)の交流電力が印加される生物誘導装置100を示す。
【0067】
図9Aに示す例では、上から1,2,5,6列目の各生物誘導装置100においては、各電極120に対して5V(生物30の防除に好適な電圧値)の交流電力が印加される。一方、上から3,4列目の各生物誘導装置100においては、各電極120に対して交流電力が印加されない。これにより、本実施例においては、上から1,2列目の各生物誘導装置100によって、生物30が防除される第1の領域が形成される。また、上から5,6列目の各生物誘導装置100によって、生物30が防除される第2の領域が形成される。そして、第1の領域と第2の領域との間に、生物30が防除されない第3の領域が形成される。その結果、本実施例において、生物30は、第1の領域および第2の領域を避けて、第3の領域を移動するようになる。そして、例えば、
図9Aに示すように、第3の領域の延長線上に、捕獲エリア40を設けることにより、生物30を捕獲エリア40へ誘導して、生物30を効率的に捕獲することができる。
【0068】
図9Bに示す例では、上から1,2,5,6列目の生物誘導装置100においては、各電極120に対して10V(生物50の防除に好適な電圧値)の交流電力が印加される。一方、上から3,4列目の各生物誘導装置100においては、各電極120に対して5V(生物30の防除に好適な電圧値)の交流電力が印加される。これにより、本実施例においては、上から1,2列目の各生物誘導装置100によって、生物30および生物50の双方が防除される第1の領域が形成される。また、上から5,6列目の各生物誘導装置100によって、生物30および生物50の双方が防除される第2の領域が形成される。そして、第1の領域と第2の領域との間に、生物30のみが防除される第3の領域が形成される。その結果、生物30は、複数の生物誘導装置100の表面上を移動することができなくなる。すなわち、生物30は、複数の生物誘導装置100によって、捕獲エリア40への進入が防除されることとなる。一方、生物50は、複数の生物誘導装置100の表面上において、第1の領域および第2の領域を避けて、第3の領域を移動するようになる。そして、例えば、
図9Bに示すように、第3の領域の延長線上に、捕獲エリア40を設けることにより、生物50を捕獲エリア40へ誘導して、生物50を効率的に捕獲することができる。
【0069】
このように、本実施例の構成では、生物誘導装置100毎に、印加する交流電力を個別に設定することが可能である。これにより、本実施例の構成は、
図9Aに示したように、特定の生物を、目的のエリアへ誘導することができる。また、本実施例の構成は、
図9Bに示すように、特定の生物の進入を防除しつつ、他の特定の生物を、目的のエリアへ誘導することもできる。
【0070】
なお、本実施例において、各生物誘導装置100の設定は、例えば、各生物誘導装置100と接続可能な外部機器(例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等)、各生物誘導装置100が備えるディップスイッチ等によって、容易に行うことができる。また、各生物誘導装置100の設定は、各生物誘導装置100を設置面に設置するときだけでなく、各生物誘導装置100を設置面に設置した後も、行うことが可能である。
【0071】
〔生物誘導装置100の変形例〕
次に、
図10を参照して、生物誘導装置100の変形例について説明する。この変形例では、生物誘導装置100とは電極の形状および配置が異なる、生物誘導装置100’について説明する。
図10は、本発明の一変形例に係る生物誘導装置100’の外観斜視図である。なお、以降の説明では、生物誘導装置100に関し、生物誘導装置100からの変更点について説明する。
【0072】
図10に示すように、生物誘導装置100’は、複数の電極120’を備えている。複数の電極120’の各々は、図中X軸方向に沿って延伸する帯状をなしている。複数の電極120は、本体110の表面において、図中Y軸方向に並べて配設されている。
図10に示す例では、本体110の表面には、8本の電極120’が、図中Y軸方向に並べて配設されている。電極120’としては、例えば、銅、銅タングステン、銀タングステン、真鍮、アルミ等の、導電性素材を用いることができる。
【0073】
複数の電極120’は、第1の電極A
1,A
2,・・・,A
Nと、第2の電極B
1,B
2,・・・,B
Nとを含んでいる。但し、Nは、1以上の整数であり、本変形例の場合は、N=4である。第1の電極および第2の電極は、互いに電圧の極性が異なる交流電力が印加される。例えば、第1の電極に+極性の電圧の交流電力が印加されるとき、第2の電極に−極性の電圧の交流電力が印加される。反対に、第1の電極に−極性の電圧の交流電力が印加されるとき、第2の電極に+極性の電圧の交流電力が印加される。また、
図10に示すように、本体110の表面においては、第1の電極と第2の電極とが、図中Y軸方向に交互に並べて配置されている。これにより、隣接する2つの電極120が、互いに電圧の極性が異なる交流電力が印加されるものとなり、当該隣接する2つの電極120に接触した生物に対して、交流電力によるダメージを与えることができる。
【0074】
〔生物誘導装置100’の実施例〕
次に、
図11を参照して、生物誘導装置100’の実施例について説明する。この実施例では、1つの生物誘導装置100’(複数の電極120’)によって、捕獲エリア40へ生物30および生物50を誘導する例を説明する。
【0075】
図11は、本発明の一変形例に係る生物誘導装置100’の実施例を示す図である。
図11A,Bに示すように、捕獲エリア40の側方には、当該捕獲エリア40への進入経路を遮るように、1つの生物誘導装置100’が配置されている。
【0076】
なお、
図11A,Bにおいて、着色がなされている電極120’は、5V(生物30の防除に好適な電圧値)の交流電力が印加される電極120’を示す。また、
図11Aにおいて、着色がなされていない電極120’は、交流電力が印加されない電極120’を示す。また、
図11Bにおいて、ハッチングがなされている電極120’は、10V(生物50の防除に好適な電圧値)の交流電力が印加される電極120’を示す。
【0077】
図11Aに示す例では、上から1〜3,6〜8列目の各電極120’に対して、5V(生物30の防除に好適な電圧値)の交流電力が印加される。一方、上から4,5列目の各電極120’に対しては、交流電力が印加されない。これにより、生物誘導装置100’の表面上においては、上から1〜3列目の各電極120’によって、生物30が防除される第1の領域が形成される。また、上から6〜8列目の各電極120’によって、生物30が防除される第2の領域が形成される。そして、第1の領域と第2の領域との間に、生物30が防除されない第3の領域が形成される。その結果、生物30は、生物誘導装置100’の表面上において、第1の領域および第2の領域を避けて、第3の領域を移動するようになる。そして、例えば、
図11Aに示すように、第3の領域の延長線上に、捕獲エリア40を設けることにより、生物30を捕獲エリア40へ誘導して、生物30を効率的に捕獲することができる。
【0078】
図11Bに示す例では、上から1,2,7,8列目の各電極120’に対して、10V(生物50の防除に好適な電圧値)の交流電力が印加される。一方、上から3〜6列目の各電極120’に対しては、5V(生物30の防除に好適な電圧値)の交流電力が印加される。これにより、生物誘導装置100’の表面上においては、上から1,2列目の各電極120’によって、生物30および生物50の双方が防除される第1の領域が形成される。また、上から7,8列目の各電極120’によって、生物30および生物50の双方が防除される第2の領域が形成される。そして、第1の領域と第2の領域との間に、生物30のみが防除される第3の領域が形成される。その結果、生物30は、生物誘導装置100’の表面上を移動することができなくなる。すなわち、生物30は、生物誘導装置100’によって、捕獲エリア40への進入が防除されることとなる。一方、生物50は、生物誘導装置100’の表面上において、第1の領域および第2の領域を避けて、第3の領域を移動するようになる。そして、例えば、
図11Bに示すように、第3の領域の延長線上に、捕獲エリア40を設けることにより、生物50を捕獲エリア40へ誘導して、生物50を効率的に捕獲することができる。
【0079】
このように、本実施例の生物誘導装置100’は、電極120’毎に、印加する交流電力を個別に設定することが可能である。これにより、本実施例の生物誘導装置100’は、
図11Aに示したように、特定の生物を、目的のエリアへ誘導することができる。また、本実施例の生物誘導装置100’は、
図11Bに示すように、特定の生物の進入を防除しつつ、他の特定の生物を、目的のエリアへ誘導することもできる。
【0080】
なお、各電極120’の設定は、例えば、生物誘導装置100’と接続可能な外部機器(例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等)、生物誘導装置100’が備えるディップスイッチ等によって、容易に行うことができる。また、各電極120’の設定は、生物誘導装置100’を設置面に設置するときだけでなく、生物誘導装置100’を設置面に設置した後も、行うことが可能である。
【0081】
以上説明したように、本実施形態の生物誘導装置100,100’は、タイル状の本体110と、本体110の表面に配設された複数の電極120,120’と、バッテリ130(所定の電源)から供給された電力を用いて、複数の電極120,120’の各々に対して印加する電力を個別に制御可能な制御装置140(制御手段)とを備えている。
【0082】
これにより、本実施形態の生物誘導装置100,100’は、設置面の形状に合わせて容易に設置することができるとともに、電界を形成する領域を多様に変更することができる。また、本実施形態の生物誘導装置100,100’は、複数の電極120,120’の各々に対して印加する電力を個別に制御することにより、生物を所定の方向へ誘導することができるように、電界を形成することが可能である。
【0083】
特に、本実施形態の生物誘導装置100は、本体110の表面において、複数の電極120がマトリクス状に配設されている。これにより、本実施形態の生物誘導装置100は、電界を形成する領域の形状を、より多様化することができる。このため、本実施形態の生物誘導装置100は、生物を誘導する方向を、より多様化することができる。
【0084】
また、本実施形態の生物誘導装置100,100’は、制御装置140により、本体110の表面における一部の領域内の電極120,120’に対して電力を印加し、他の一部の領域内の電極120,120’に対して電力を印加しないことにより、本体110の表面上(他の一部の領域)に、生物を誘導する誘導経路を形成することができる。これにより、本実施形態の生物誘導装置100,100’は、本体110の表面上において、生物を所定の方向へ誘導することができる。
【0085】
また、本実施形態の生物誘導装置100,100’は、制御装置140により、本体110の表面における一部の領域内の電極120,120’に対して第1の電力を印加し、他の一部の領域内の電極120,120’に対して第1の電力よりも電圧値が低い第2の電力を印加することにより、本体110の表面上(他の一部の領域)に、生物を誘導する誘導経路を形成することができる。これにより、本実施形態の生物誘導装置100,100’は、本体110の表面上において、特定の生物を所定の方向へ誘導することができるとともに、他の生物(特定の生物よりも小さい生物)の進入を防除することができる。
【0086】
また、本実施形態の生物誘導装置100,100’は、本体110の表面における一部の領域内の電極120,120’に対して、生物の種類に応じた電力設定値に基づく電力を印加することができる。これにより、本実施形態の生物誘導装置100,100’は、本体110の表面上において、特定の生物を所定の方向へ誘導することができる。
【0087】
特に、本実施形態の生物誘導装置100,100’は、生物の種類に応じた電力設定値に、生物が死滅するに至らない電圧値を含めるようにしている。これにより、本実施形態の生物誘導装置100,100’は、本体110の表面上において、特定の生物を死滅させることなく、所定の方向へ誘導することができる。よって、本実施形態の生物誘導装置100,100’は、特定の生物を、生きたまま捕獲することが可能である。
【0088】
なお、本実施形態の生物誘導装置100,100’は、当該生物誘導装置100,100’を複数組み合わせて、生物誘導ユニットとして利用および提供することが可能である。生物誘導ユニットは、生物誘導装置100,100’を単体で利用するよりも、より広範囲に、生物を誘導または防除するための電界を形成することができる。また、生物誘導ユニットは、複数の生物誘導装置100,100’の配置を変更することにより、より多様な形状の設置面に合わせて、複数の生物誘導装置100,100’を設置することができる。
【0089】
以上、本発明の好ましい実施形態について詳述したが、本発明はこれらの実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形又は変更が可能である。
【0090】
例えば、本体110の表面上における複数の電極120,120’の構成(例えば、形状、サイズ、数、配列等)は、上記実施形態で説明したものに限らない。
【0091】
また、上記実施形態では、1つの生物誘導装置100,100’に対して、1つの制御装置140を設けるようにしているが、これに限らない。例えば、複数の生物誘導装置100,100’に対して、1つの制御装置140を設けるようにしてもよい。また、制御装置140を、生物誘導装置100の外部に設けるようにしてもよい。
【0092】
また、上記実施形態では、1つの生物誘導装置100,100’に対して、1つのバッテリ130を設けるようにしているが、これに限らない。例えば、複数の生物誘導装置100,100’に対して、1つのバッテリ130を設けるようにしてもよい。
【0093】
また、上記実施形態では、1つの電極120,120’に対して、1つのヒューズ160を設けるようにしているが、これに限らない。例えば、複数の電極120,120’に対して、1つのヒューズ160を設けるようにしてもよい。また、ヒューズ160を設けない構成としてもよい。
【0094】
また、上記実施形態では、1つの生物誘導装置100,100’に対して、1つの太陽電池パネル150を設けるようにしているが、これに限らない。例えば、複数の生物誘導装置100,100’に対して、1つの太陽電池パネル150を設けるようにしてもよい。また、太陽電池パネル150を、生物誘導装置100の外部に設けるようにしてもよい。また、太陽電池パネル150を設けない構成としてもよい。
【0095】
また、上記実施形態では、各電極120に対して交流電力を印加するようにしているが、これに限らない。すなわち、各電極120に対して直流電力を印加するようにしてもよい。この場合も、防除対象の生物の種類に応じて、その生物が死滅するに至らない電圧値を有する直流電力を、各電極120に対して印加することが好ましい。
【0096】
本国際出願は、2017年8月15日に出願した日本国特許出願第2017−156934号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。