特許第6618277号(P6618277)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ キヤノン株式会社の特許一覧

<>
  • 特許6618277-情報処理装置および情報処理方法 図000002
  • 特許6618277-情報処理装置および情報処理方法 図000003
  • 特許6618277-情報処理装置および情報処理方法 図000004
  • 特許6618277-情報処理装置および情報処理方法 図000005
  • 特許6618277-情報処理装置および情報処理方法 図000006
  • 特許6618277-情報処理装置および情報処理方法 図000007
  • 特許6618277-情報処理装置および情報処理方法 図000008
  • 特許6618277-情報処理装置および情報処理方法 図000009
  • 特許6618277-情報処理装置および情報処理方法 図000010
  • 特許6618277-情報処理装置および情報処理方法 図000011
  • 特許6618277-情報処理装置および情報処理方法 図000012
  • 特許6618277-情報処理装置および情報処理方法 図000013
  • 特許6618277-情報処理装置および情報処理方法 図000014
  • 特許6618277-情報処理装置および情報処理方法 図000015
  • 特許6618277-情報処理装置および情報処理方法 図000016
  • 特許6618277-情報処理装置および情報処理方法 図000017
  • 特許6618277-情報処理装置および情報処理方法 図000018
  • 特許6618277-情報処理装置および情報処理方法 図000019
  • 特許6618277-情報処理装置および情報処理方法 図000020
  • 特許6618277-情報処理装置および情報処理方法 図000021
  • 特許6618277-情報処理装置および情報処理方法 図000022
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6618277
(24)【登録日】2019年11月22日
(45)【発行日】2019年12月11日
(54)【発明の名称】情報処理装置および情報処理方法
(51)【国際特許分類】
   B29C 64/386 20170101AFI20191202BHJP
   B29C 64/112 20170101ALI20191202BHJP
   B33Y 10/00 20150101ALI20191202BHJP
   B33Y 30/00 20150101ALI20191202BHJP
   B33Y 50/00 20150101ALI20191202BHJP
【FI】
   B29C64/386
   B29C64/112
   B33Y10/00
   B33Y30/00
   B33Y50/00
【請求項の数】17
【全頁数】25
(21)【出願番号】特願2015-115169(P2015-115169)
(22)【出願日】2015年6月5日
(65)【公開番号】特開2017-1216(P2017-1216A)
(43)【公開日】2017年1月5日
【審査請求日】2018年5月29日
(73)【特許権者】
【識別番号】000001007
【氏名又は名称】キヤノン株式会社
(74)【代理人】
【識別番号】100126240
【弁理士】
【氏名又は名称】阿部 琢磨
(74)【代理人】
【識別番号】100124442
【弁理士】
【氏名又は名称】黒岩 創吾
(72)【発明者】
【氏名】落合 孝
【審査官】 ▲来▼田 優来
(56)【参考文献】
【文献】 国際公開第2003/016031(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B29C64/386,67/00
B33Y50/00
(57)【特許請求の範囲】
【請求項1】
造形材を用いて立体物を造形するためのデータを作成する情報処理装置であって、
前記立体物の形状を表す立体形状データを入力する入力手段と、
前記立体形状データに基づいて、前記立体形状データが表す形状の低周波成分であり、前記造形材の大ドットによって形成される形状を表す第一形状データと、前記立体形状データが表す形状の高周波成分であり、前記大ドットよりも小さい小ドットによって形成される形状を表す第二形状データとを作成する作成手段と、
を有することを特徴とする情報処理装置。
【請求項2】
前記作成手段は、前記立体形状データに対してローパスフィルタを適用することによって前記第一形状データを作成することを特徴とする請求項1に記載の情報処理装置。
【請求項3】
前記作成手段は、前記立体形状データに対してフーリエ変換を行うことによって前記第一形状データを作成することを特徴とする請求項1に記載の情報処理装置。
【請求項4】
前記作成手段は、前記立体形状データに対してフィルタ処理を適用することによって前記第一形状データ及び前記第二形状データを作成することを特徴とする請求項1又は請求項2に記載の情報処理装置。
【請求項5】
前記作成手段は、前記立体形状データに対してフーリエ変換を行うことによって前記第二形状データを作成することを特徴とする請求項1乃至請求項3のいずれか1項に記載の情報処理装置。
【請求項6】
前記作成手段は、前記第一形状データが表す形状の一部が、前記第一形状データが表す形状の一部に対応する前記立体形状データが表す形状の一部より大きい場合に、前記第一形状データに対してクリッピング処理を行うことを特徴とする請求項1乃至請求項5のいずれか1項に記載の情報処理装置。
【請求項7】
前記第一形状データは、前記立体物の大まかな形状を造形するためのデータであり、
前記第二形状データは、前記立体物の微細な形状を造形するためのデータであることを特徴とする請求項1乃至請求項6のいずれか1項に記載の情報処理装置。
【請求項8】
前記作成手段は、前記第一形状データに基づいて、前記造形材を積層する方向に前記第一形状データが表す形状をスライスした形状を表す第一スライスデータを作成し、前記第二形状データに基づいて、前記造形材を積層する方向に前記第二形状データが表す形状をスライスした形状を表す第二スライスデータを作成することを特徴とする請求項1乃至請求項7のいずれか1項に記載の情報処理装置。
【請求項9】
前記第一スライスデータが表す形状を構成する単位構成要素は、前記第二スライスデータが表す形状を構成する単位構成要素よりも大きいことを特徴とする請求項8に記載の情報処理装置。
【請求項10】
前記第二スライスデータが表す形状を構成する単位構成要素の前記積層する方向の高さが、前記第一スライスデータが表す形状を構成する単位構成要素の前記積層する方向の高さよりも低いことを特徴とする請求項8又は請求項9に記載の情報処理装置。
【請求項11】
前記第一スライスデータが表す形状を構成する単位構成要素は、前記立体物の内部に位置し、
前記第二スライスデータが表す形状を構成する単位構成要素は、前記立体物の表面に位置することを特徴とする請求項8乃至請求項10のいずれか1項に記載の情報処理装置。
【請求項12】
前記作成手段は、前記立体形状データと前記第一形状データとの差分に基づいて、前記第二形状データを作成することを特徴とする請求項1に記載の情報処理装置。
【請求項13】
前記第一スライスデータと前記第二スライスデータとに基づいて、前記立体物を造形する造形手段をさらに有することを特徴とする請求項8乃至請求項11のいずれか1項に記載の情報処理装置。
【請求項14】
前記造形手段によって造形された前記立体物の形状を測定する測定手段をさらに有し、
前記第二形状データは、前記立体形状データと、前記測定手段による測定結果との差分を表すデータであることを特徴とする請求項13に記載の情報処理装置。
【請求項15】
前記造形材には、前記立体物を着色するための着色材が含まれることを特徴とする請求項13又は請求項14に記載の情報処理装置。
【請求項16】
コンピュータを、請求項1乃至請求項12のいずれか1項に記載された情報処理装置の各手段として機能させることを特徴とするプログラム。
【請求項17】
造形材を用いて立体物を造形するためのデータを作成する情報処理方法であって、
前記立体物の形状を表す立体形状データを入力する入力工程と、
前記立体形状データに基づいて、前記立体形状データが表す形状の低周波成分であり、前記造形材の大ドットによって形成される形状を表す第一形状データと、前記立体形状データが表す形状の高周波成分であり、前記大ドットよりも小さい小ドットによって形成される形状を表す第二形状データとを作成する作成工程と、
を有することを特徴とする情報処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は立体物を造形するためのデータを作成する情報処理に関する。
【背景技術】
【0002】
従来、三次元の立体物を造形する立体造形技術として、積層造形法が知られている。積層造形法は、粉体、樹脂、鋼板、紙などの造形材料を積層することで三次元の立体物を造形する方法である。積層造形法としては、インクジェット法、光造形法、粉末焼結法、粉末固着法(インクジェットバインダ法)、熱溶解積層法等、様々な方式がある。
【0003】
例えば、インクジェット法では、造形用の材料をインクジェットヘッドのノズルから噴射して積層することで立体物を造形する。また、光造形法では、液体樹脂に紫外線を照射して液体樹脂の一部を順次硬化し積層することで立体物を造形する。また、粉末焼結法では、粉末を層状に敷き詰め、レーザービーム等で直接焼結成形した層を積層することで立体物を造形する。また、粉末固着法(インクジェットバインダ法)では、粉末を層状に敷き詰め、インクジェット方式でバインダを添加して固着させた層を積層することで立体物を造形する。また、熱溶解積層法では、熱可塑性樹脂(ABS樹脂、ポリカーボネート樹脂等)を高温で溶かして積層することで立体物を造形する。
【0004】
いずれの方式においても、立体物の形状を表すデータを積層する方向に対してスライスしたスライスデータを作成し、そのスライスデータに従って、各層の結合体をステージ上に順次積層することで所望の立体物を造形する(特許文献1)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2004−90530号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、従来技術は、立体物の造形精度と造形時間が相反する関係にあった。すなわち、立体物を高精細に造形するためには、造形する際の材料の最小単位である立体素(ボクセル)を小さくすることで各層を薄く、より多くの層を積層することで立体物を高精細に造形できる。しかしながら、立体素を小さくするほど立体物の造形時間が増加してしまう。
【0007】
一方、立体物を高速に造形するためには、立体を造形する立体素を大きくすることで各層を厚くし、より少ない層を積層することで立体物を高速に造形できる。しかしながら、立体素を大きくするほど立体物の造形精度が低下してしまう。
【0008】
そこで本発明は、上記課題を鑑み、立体物を単一の立体素で造形する場合に比べて高速かつ高精細に造形するためのデータを作成することを目的とする。
【課題を解決するための手段】
【0009】
上記課題を解決するために、本発明に係る情報処理装置は、造形材を用いて立体物を造形するためのデータを作成する情報処理装置であって、前記立体物の形状を表す立体形状データを入力する入力手段と、前記立体形状データに基づいて、前記立体形状データが表す形状の低周波成分であり、前記造形材のドットによって形成される形状を表す第一形状データと、前記立体形状データが表す形状の高周波成分であり、前記ドットよりも小さいドットによって形成される形状を表す第二形状データとを作成する作成手段とを有する。
【発明の効果】
【0010】
本発明は、立体物を単一の立体素で造形する場合に比べて高速かつ高精細に造形するためのデータを作成することができる。
【図面の簡単な説明】
【0011】
図1】実施例1における立体造形装置の構成を示すブロック図である。
図2】従来の立体造形の様子を表す模式図である。
図3】実施例1における立体造形の様子を表す模式図である。
図4】実施例1において立体物を造形する処理のフローチャートである。
図5】実施例1における第一立体素と第二立体素を表す模式図である。
図6】実施例1において造形される立体物を三次元的に表す模式図である。
図7】実施例1において立体物を造形する途中過程での立体物の断面を表す模式図である。
図8】実施例1において立体物の断面と従来の立体物の断面との違いを示す模式図である。
図9】実施例2における第一立体素と第二立体素を表す模式図である。
図10】実施例2における立体物の断面を表す模式図である。
図11】実施例2における立体物を造形する途中過程での立体物の断面を表す模式図である。
図12】実施例3における立体造形装置の構成を示すブロック図である。
図13】実施例3において立体物を造形する処理のフローチャートである。
図14】実施例3において立体形状データに基づいて第一形状データ及び第二形状データを作成する方法を示す模式図である。
図15】実施例3において第一形状スライスデータ及び第二形状スライスデータを作成する方法を示す模式図である。
図16】実施例4における立体造形装置の構成を示すブロック図である。
図17】実施例4において立体物を造形する処理のフローチャートである。
図18】実施例5における立体造形装置の構成を示すブロック図である。
図19】実施例5において立体物を造形する処理のフローチャートである。
図20】本実施例における凹凸形状や立体物の各種タイプを表す模式図である。
図21】立体造形物の表面の一部に第一立体素で造形された部分が露出して場合を示す模式図である。
【発明を実施するための形態】
【0012】
以下、本発明の実施の形態を図面を用いて詳細に説明する。
【実施例1】
【0013】
[構成]
図1は実施例1において立体造形装置の構成を示すブロック図である。この立体造形装置は、インクジェット法、光造形法、粉末焼結法、粉末固着法(インクジェットバインダ法)、熱溶解積層法等により立体物を造形する装置であり、制御ブロック10とヘッドブロック20と造形材ブロック30を有する。また、必要に応じて、層の積層が完了したか否かを判断するためのデータを提供するデータ提供部40、UVランプ50、ヒータ35等を追加することもできる。以下、各構成要素について説明する。なお、制御ブロック10は、立体造形用のデータを作成するための情報処理装置として、図1に示す立体造形装置とは別に立体造形データを作成する作成装置として構成することができる。
【0014】
[制御ブロック]
制御ブロック10は、入力部11、装置制御部12、形状データ作成部13、スライスデータ作成部14、判定部15等で構成される。このとき、形状データ作成部13はスライスデータ作成部14及び判定部15から構成される。
【0015】
入力部11は、造形対象物の立体形状を表す立体形状データ(CADデータやデザインデータ等)をコンピュータ装置等から取得し、装置制御部12へ転送する。立体形状データは、例えば、立体形状を小さな三角形の集合体として表現するデータフォーマットで表される。立体形状データを取得する方法は特に限定されず、有線通信や無線通信等の短距離無線通信を利用して取得してもよいし、USBメモリ等の記録媒体を利用して取得してもよい。また、この立体形状データは、造形対象物を設計するコンピュータから直接取得してもよいし、立体形状データを管理/保存するサーバ等から取得してもよい。
【0016】
装置制御部12は、CPU等の演算手段を有しており、形状データ作成部13、スライスデータ作成部14及び判定部15等の制御部を含む。
【0017】
形状データ生成部13を構成するスライスデータ作成部14は、入力された立体形状データに基づいて、造形材料を積層させて立体物を造形するための各層のデータ(以下、スライスデータと呼ぶ)を作成する。なお、立体形状データからスライスデータを作成する方法は公知の手法を用いればよい。本実施例ではさらに、スライスデータは造形材料を形成する際の単位構成要素である立体素(ボクセル)から構成されるデータとして生成され、スライスデータから、第一形状スライスデータと第二形状スライスデータを作成する。このとき、第一形状スライスデータは立体物の内部を造形するための第一立体素から構成される形状データであり、第二形状スライスデータは立体物の表面を造形するための第二立体素から構成される形状データに相当する。ここで、立体物の表面とは、凹凸形状及び立体物の外側をなす領域であり、外界(空気)に接する領域である。立体物の表面は、凹凸形状や立体物の外側から視認したり接触したりすることができる。また、立体物の内部とは、凹凸形状及び立体物の内側をなす領域であり、外界(空気)に触れない領域である。ただし、透明性の高い造形材で造形された凹凸形状や立体物に関しては、凹凸形状や立体物の外側から視認したり接触したりできる場合も起こり得る。第一形状スライスデータ及び第二形状スライスデータは、後述の判定部15で得られる判定結果に基づいて作成される。第一形状スライスデータ及び第二形状スライスデータは、造形材ブロック30に送信される。
【0018】
判定部15は、スライスデータ作成部14で作成されたスライスデータに基づき、スライスデータの各立体素が立体物の内部と表面のいずれに位置するかを判定する。判定後、スライスデータ作成部14及び判定部15で得られたスライスデータ及び、各立体素に対応した判定結果をスライスデータ作成部14へ送信する。
【0019】
なお、装置制御部12は、造形動作中に装置全体の動作を制御する。例えば、スライスデータ及び、判定部15による立体素の位置の判定結果を造形材ブロック30に送信するとともに、ヘッドブロック20に対して造形材料を所望の場所に吐出又は塗布するための機構制御情報を送信する。機構制御情報は、後述するヘッド又は造形ステージをどのタイミングで移動させ造形材を吐出させるかというメカ制御を行うための情報である。具体的には、立体形状データの3次元座標又はヘッドと造形ステージとを移動させる移動量と、その移動タイミングとに、スライスデータを変換したものである。すなわち、装置制御部12は、造形材ブロック30とヘッドブロック20とを同期させて制御する。
【0020】
なお、上記入力部11、装置制御部12、形状データ作成部13、スライスデータ作成部14、判定部15は、ハードウエアとして構成してもよい。また、立体形状物データ入力部11、装置制御部12、形状データ作成部13、スライスデータ作成部14、判定部15として機能させる制御プログラムとして構成し、当該制御プログラムを立体造形装置または、当該立体造形装置を制御する装置で動作させる構成としてもよい。
【0021】
[ヘッドブロック]
ヘッドブロック20は、ヘッド移動ブロック21とステージ移動ブロック22等で構成される。ヘッド移動ブロック21は、X方向移動部21aとY方向移動部21b等で構成される。また、ステージ移動ブロック22は、Z方向移動部22a等で構成される。
【0022】
ヘッド移動ブロック21(X方向移動部21a及びY方向移動部21b)は、制御ブロック10から取得した機構制御情報に従って、図示しないモータ及び駆動機構を駆動し、造形材料を吐出又は塗布するためのヘッドをX方向(横方向)やY方向(横方向)に自在に移動させる。
【0023】
ステージ移動ブロック22(Z方向移動部22a)は、制御ブロック10から取得した機構制御情報に従って、図示しないモータ及び駆動機構を駆動し、造形ステージをZ方向(下方向)に移動させたり、ヘッド移動ブロック21をZ方向(上方向)に移動させたりして、ヘッドと造形物との間隔を調整する。
【0024】
[造形材ブロック]
造形材ブロック30は、第一供給部31と第一造形部(第一造形材料吐出部)32と、第二供給部33と第二造形部(第二造形材料吐出部)34等で構成される。
【0025】
第一供給部31は、カートリッジタンク(非図示)に蓄えられた第一の造形材料を、供給ポンプ(非図示)により、造形材料チューブ(非図示)を通して第一造形部32(ヘッド)に供給する。また、第一造形部32は、制御ブロック10から取得したスライスデータに従って、ヘッドによって定められた位置に所望のタイミングで造形材料を造形ステージ上に吐出する。このとき、第一造形部32が取得するスライスデータは、立体物の内部を造形するための第一形状スライスデータである。
【0026】
また、第二供給部33は、第一供給部31と同様に第二の造形材料を第二造形部34(ヘッド)に供給する。また、第二造形部34は、制御ブロック10から取得したスライスデータに従って、ヘッドによって定められた位置に所望のタイミングで造形材料を造形ステージ上に吐出する。このとき、第二造形部34が取得するスライスデータは、立体物の表面を造形するための第二形状スライスデータである。
【0027】
なお、第一供給部31、第一造形部32、第二供給部33、第二造形部34は、立体造形装置に各々一つ搭載してもよいし、各々複数搭載してもよい。また、第一供給部31と第二供給部22とを共通の供給部とし、同一の材料を第一供給部31及び第二供給部34に供給してもよい。また、第一造形部32及び第二造形部34を共通の造形部とし、ヘッドから吐出する造形材料の吐出量を制御することで、第一の造形と第二の造形を切り替えるような造形部を構成することもできる。例えば、ピエゾヘッドを用いて造形材料の吐出量を第一の造形時と第二の造形時とで切り替えてもよい。また、第一造形部32及び第二造形部34にはヒータ35が併設されることもある。これは、造形材料に熱を加え、造形材料の粘度を低下させ、第一造形部32及び第二造形部34からの吐出を容易にするためである。この場合、吐出直後の造形材料は高温で低粘度の状態になっており、自然冷却やUV照射により硬化させる必要がある。
【0028】
[着色]
また、第二造形部の造形材料に着色材を含めた構成としてもよい。その場合、第二造形部で微細な形状を形成しつつ同時に立体の表面に着色することができる。また、造形材料の他に造形材料の表面を着色するための印刷塗料を用いる場合は、図示しない印刷塗料供給部と印刷塗料着色部をさらに設けてもよい。印刷塗料供給部は、図示しないカートリッジタンクに蓄えられたインクを、供給ポンプにより、インクチューブを通して印刷塗料着色部(ヘッド)に供給する。また、印刷塗料着色部は、第一造形部32及び第二造形部34と一体又は別体で構成され、第一造形部32及び第二造形部34と同様に、制御ブロック10から取得した着色用スライスデータに従って、ヘッドによって定められた位置に所望のタイミングで印刷塗料を造形ステージ上の造形材料に塗布して印刷画像を形成する。なお、印刷塗料供給部及び印刷塗料着色部も、立体造形装置に各々一つ搭載してもよいし、多色印刷を実現するために各々複数搭載してもよい。造形材料の他に造形材料の表面を着色するための印刷塗料を用いる場合は、図示しない印刷塗料供給部と印刷塗料着色部をさらに設けてもよい。印刷塗料供給部は、図示しないカートリッジタンクに蓄えられたインクを、供給ポンプにより、インクチューブを通して印刷塗料着色部(ヘッド)に供給する。また、印刷塗料着色部は、第一造形部32及び第二造形部34と一体又は別体で構成され、第一造形部32及び第二造形部34と同様に、制御ブロック10から取得した着色用スライスデータに従って、ヘッドによって定められた位置に所望のタイミングで印刷塗料を造形ステージ上の造形材料に塗布して印刷画像を形成する。なお、印刷塗料供給部及び印刷塗料着色部も、立体造形装置に各々一つ搭載してもよいし、多色印刷を実現するために各々複数搭載してもよい。
【0029】
また、造形材料の他にサポート材料を用いる場合は、図示しないサポート材料提供部とサポート材料射出部を設けてもよい。サポート材料の役割は、上方向に造形してゆく際、オーバーハングしている部位などを造形する場合に、造形材料を支えるための柱のような役割を担う。一般的に、サポート材は造形完了後、水や熱や剥離によって除去される。
【0030】
また、データ提供部40は、造形材料の冷却硬化時間やUVランプ50の照射時間などをカウントするタイマーや、造形材料の冷却硬化を検出する温度センサ、硬化に伴う造形材料の色変化を検出する色センサ、UVランプ50の紫外線照射量を測定する線量計などで構成され、新たに積層された造形材料の層が印刷可能な状態になったか否かの判断を装置制御部12が行うための情報を収集して、装置制御部12に提供する。
【0031】
また、UVランプ50は、造形材料としてUV硬化樹脂を使用する場合や印刷塗料としてUV硬化インクを使用する場合に、これらの材料を硬化させるために用いる。
【0032】
[造形の模式図]
図2は、従来例の立体造形における断面の様子を表す模式図である。なお、説明の簡単のため、X方向とZ方向との一部を図示し、2次元的な断面図としている。以降の説明図においても同様である。図中のX方向及びY方向に対して造形部201を移動させつつ、造形部201に設けられた不図示のノズルを用いて造形材料を射出する。造形部201は複数のノズルは備えることができる。このとき、造形物は支持体202で支持されながら造形される。また、造形部201から射出された造形材料が造形物を構成する立体素203として造形物に積層するように形成される。このようにして造形材料を積層させて1層分を造形した後に、造形部201を上昇させるか、あるいは造形ステージを下降させることで、次の層の造形を行う。層単位の積層を順次繰り返すことで自由な形状の立体物を造形する。
【0033】
図3は、実施例1において立体造形の様子を表す模式図である。図中のX方向及びY方向に対して第一造形部32及び第二造形部34を移動させつつ、第一造形部32及び第二造形部34に設けられた不図示のノズルを用いてそれぞれ造形材料を射出する。第一造形部32及び第二造形部34は複数のノズルを備えることができる。このとき、造形物は支持体202で支持されるように造形される。詳細には、第一造形部32及び第二造形部34から射出された造形材料が造形物を構成する第一立体素301(太枠で図示)及び第二立体素302(細枠で図示)としてそれぞれ造形物に積層するように形成される。このとき、第一形状データは立体物の大まかな(ラフな)形状を造形するための第一立体素から構成される形状データである。第二形状データは立体物の微細な形状を造形するための第二立体素から構成される形状データであり、第一造形部で造形する第一立体素301のサイズ(体積)は、第二造形部で造形する第二立体素302のサイズ(体積)よりも大きい。また、第一造形部で造形する第一立体素301の幅が、第二造形部で造形する第二立体素302の幅よりも大きくしてもよい。また、図中では、第一立体素301のZ方向に対する高さ(厚み)と、第二立体素302のZ方向に対する高さ(厚み)とを同一として図示したが、第一立体素301のZ方向に対する高さ(厚み)が、第二立体素302のZ方向に対する高さ(厚み)よりも大きくしてもよい。
【0034】
また、立体の表面は複雑な形状の場合が多く、厳密に内部と表面を定義するのは困難性を伴うが、本実施形態における内部と表面は、立体物に対してより内部側かあるいは表面側にあるか、という相対的な関係性のことである。なお、立体物の表面において、第一立体素301が一部露出する等の例外的な場合が生じていたとしても、立体物のほとんどにおいて上記関係性が成り立っていれば、本実施形態の範疇に含まれる。図3では、単位長さを1とした場合に、第一立体素301のサイズ(体積)、X方向の幅、Y方向の幅(不図示)、Z方向の高さをそれぞれ72対6対6対2とし、第二立体素302のサイズ(体積)、X方向の幅、Y方向の幅(不図示)、Z方向の高さをそれぞれ18対3対3対2として模式的に示した。このとき、第一立体素301及び第二立体素302はそれぞれ直方体と仮定している。第一立体素32と第二立体素34とのサイズ(体積)、X方向の幅、Y方向の幅、Z方向の高さに関しては、上述の大小関係の特徴を満たす範囲で任意のサイズ、幅、高さとすることができる。
【0035】
また、第一造形部32で造形される第一立体素301は、インクジェット法の記録ヘッドの大ドットを吐出するノズルを用いて造形することができる。また、第二造形部で造形される第二立体素302は、インクジェット法の記録ヘッドの小ドットを吐出するノズルを用いて造形することができる。ここでの大ドット、小ドットとは、吐出するドットのサイズ、幅、高さの少なくとも一つの大小関係が相対的に異なることを意味する。
【0036】
このようにして造形材料を積層させて1層分を造形した後に、造形部201を上昇させるか、あるいは造形ステージを下降させることで、次の層の造形を行う。層単位の積層を順次繰り返すことで自由な形状の立体物を造形することができる。
【0037】
[造形順序]
なお、第一立体素301を造形するタイミングと、第二立体素302を造形するタイミングとの関係については、様々な場合を採り得る。まず、第一立体素301をすべて造形した後に、第二立体素302を造形してもよい。あるいは、下層から上層へと、第一立体素301の造形と、第二立体素302の造形とを層毎に行ってもよい。あるいは、上記2つの方法を混在させたような造形タイミングであってもよい。以上のいずれの造形タイミングにおいても、前述のように、第一立体素301は、造形する立体物のより内部を造形するのに、第二立体素302は、造形する立体物のより表面を造形するのに用いる。
【0038】
[処理の流れ]
図4は、実施例1において立体物を造形する処理の流れ(ステップ)を示すフローチャートである。
【0039】
まず、S401において、入力部11が造形対象物の立体形状データ(CADデータやデザインデータ等)をコンピュータ装置等から取得する。
【0040】
次に、スライスデータ作成部14が、S402において、S401において入力された立体形状データに基づいて、造形材料を積層させて立体物を造形するためのn層目のスライスデータを作成する。nは作成されるスライスデータ数であり、nの初期値は1とする。
【0041】
次に、S403において、n+1層目のスライスデータを作成する。n+1層目のスライスデータは、次ステップの立体素位置判定処理において使用するために作成しておく。なお、本ステップはn層目が最上層の場合は省略される。
【0042】
次に、S404において、判定部15が、n層目を構成する各立体素に対して立体素位置判定処理を行う。判定処理は、S402及びS403で作成されたスライスデータに基づき、スライスデータの各立体素が立体物の内部と表面のいずれに位置するかを判定する処理である。判定対象の立体素に対して、その周囲に造形される複数の立体素の存在有無を調べ、判定対象の立体素の周囲に立体素が存在しない場合には表面と判定し、判定対象の立体素の周囲のすべてに立体素が存在する場合には内部と判定する。判定対象の立体素の周囲としては、例えば、上下、左右、前後の計6個の立体素と定義することができる。この場合、S403では、n+1層目に加えてn−1層目も作成し、保持しておく。また、判定対象の立体素に対する斜め方向も考慮し、例えば、周辺の計26個(3×3×3−1)の立体素と定義してもよい。
【0043】
次に、スライスデータ作成部14が、S405において、n層目のスライスデータと立体素位置判定処理の結果に基づき、第一形状スライスデータと第二形状スライスデータを作成する。第一形状スライスデータは複数の第一立体素501から構成され、第二スライス形状データは複数の第二立体素502から構成される。第一立体素501及び第二立体素502に関しては後述する。
【0044】
次に、造形材ブロック30が、S406において、n層目の内部と判定された第一形状データを第一造形部32で造形し、S407において、n層目の表面と判定された第二形状データを第二造形部34で造形する。
【0045】
次に、装置制御部12が、S408において、n層目に対する後処理を行う。本実施例では、第一造形部32及び第二造形部34で造形された造形物を硬化させるため、UVランプ50を用いて紫外線照射を行う。
【0046】
次に、S409において、装置制御部12が、全ての層の造形が完了されたかどうかを判断する。全ての層の造形が完了している場合には、造形処理を終了する。全ての層の造形が完了していない場合にはnを1増加させてS402へ戻り、次の層の造形を同様に行う。なお、制御ブロック10をデータ生成装置とする場合は、S406〜S408の処理はスキップし、S409において全ての層の造形の完了を判断するのではなく、全ての層に対して第一形状スライスデータと第二形状スライスデータが作成されたか否かを判断する。
【0047】
図5は、実施例1において第一立体素と第二立体素を表す模式図である。図5(a)は、第一立体素501であり、第一立体素501は第一造形部32で造形される。第一立体素501は、X方向、Y方向、Z方向の3次元軸に対して、幅x、幅y、高さzの直方体で表されるボクセルデータとして表され、そのサイズ(体積)Vb1は、xyzである。図5(b)は、第二立体素502であり、第二立体素502は第二造形部34で造形される。第二立体素502は、X方向、Y方向、Z方向の3次元軸に対して、幅0.5x、幅0.5y、高さzの直方体で表されるボクセルデータとして表され、そのサイズ(体積)Vb2は、0.25xyzである。このとき、造形方法がインクジェット法であれば、例えばx、yを40μm、zを10μmとして第一立体素501及び第二立体素402を構成することができる。図5(a)と(b)を比較して分かるように、第一造形部32で造形する立体素のサイズは、前記第二造形部34で造形する立体素のサイズよりも大きい。また、第一造形部32で造形する立体素の幅は、前記第二造形部34で造形する立体素の幅よりも大きい。
【0048】
図6は、実施例1において造形される立体物を三次元的に表す模式図である。ここでは、説明を簡単にするため、立体物のXYZの各方向に対して高々10数個前後の立体素から模式図を示している。実際の立体物は、立体物のサイズに合わせ、より多数の立体素を用いて造形される。まず、図6(a)は、第一造形部32により第一立体素501のみを造形した立体物を三次元的に表して模式図である。また、図6(b)は、図中(a)の第一立体素501のみからなる立体物に対して、第二造形部34により第二立体素502をさらに造形した立体物を三次元的に表した模式図である。図6(b)からは確認できないが、図6(b)の立体物の内部には、第一立体素501が存在する。また、図6(c)は、図6(b)の立体物の一断面を三次元的に表した模式図である。図6(c)の立体物の内部は第一立体素501で構成され、表面は、第二立体素502で構成される。このように、本実施形態においては、立体物の内部と表面とでそれぞれ異なる大きさの立体素を用いて造形される。なお、図6の説明においては、立体物の内部か表面かを分かりやすくするために、第一立体素501をグレー色、第二立体素502を白色で表したが、これは説明の都合上であり、造形材料の色や材料の特徴を表すものではない。
【0049】
図7は、実施例1において立体物を造形する途中過程での立体物の断面を表す模式図である。図7(a)から(j)へと第一造形部32または第二造形部34により各層を順次造形していくことで立体物が造形される。説明の都合上、図7(a)から(j)の各図面においては、第一立体素501を太枠で囲い、第二立体素502を細枠で囲って示している。また、図7(a)から(j)のそれぞれの途中過程において、第一造形部32または第二造形部34により造形される立体素をグレーで色塗りして示している。各過程について順に説明する。まず、図7(a)は、第一造形部32での1層目を造形した後の造形物を表す模式図である。この過程において、第一造形部32により第一立体素501が支持体202上に造形される。次に、図7(b)は、第二造形部34での1層目を造形した後の造形物を表す模式図である。この過程において、第二造形部34により第二立体素502が支持体202上に造形される。次に、図7(c)は、第一造形部32での2層目を造形した後の造形物を表す模式図である。この過程において、第一造形部32により第一立体素501が造形済みの層の上に造形される。次に、図7(d)は、第二造形部34での2層目を造形した後の造形物を表す模式図である。この過程において、第二造形部34により第二立体素502が造形済みの層の上に造形される。以下、図7(e)から図7(j)においても、図7(c)、(d)と同様に、第一造形部32または第二造形部34を用いて、第一立体素501または第二立体素502が造形済みの層の上に造形することで、最終的な立体物が造形される。なお、図7(g)と(i)においては、造形すべき第一立体素501がないため、それらの過程は省略される。
【0050】
なお、本実施例においては、各過程の後に、そのときの途中の造形物を硬化させるため、UVランプ50を用いて紫外線照射を行う。紫外線の量や照射時間、造形からの照射までの時間等のプロセス条件については、造形材料が適切に硬化されるように任意に制御することができる。
【0051】
図8は、実施例1において立体物の断面と従来例における立体物の断面との違いを示す模式図である。図8(a)は、第一の実施例において造形された立体物の断面の一例である。一方で、図8(b)と図8(c)は従来の立体物であり、図8(b)は、第一立体素501のみで造形された立体の断面の一例であり、図8(c)は、第二立体素502のみで造形された立体の断面の一例である。
【0052】
このとき、図8(b)は、よりサイズの大きな第一立体素501のみで造形するため、よりサイズの小さな第二立体素502のみで造形する図8(c)と比較すると、造形する立体素の数が少なく、より高速に立体物を造形することができる。しかしながら、図8(b)は、よりサイズの大きな第一立体素501のみで造形するため、よりサイズの小さな第二立体素502のみで造形する図8(c)と比較すると、造形する立体素のサイズが大きいため、立体物の表面形状が粗くなり造形精度が低下してしまう。
【0053】
以上、実施例1で説明したように、図8(b)及び図8(c)のような従来の造形手法では、立体物の造形精度と造形時間が相反する関係にあるという課題があったが、図8(a)のように造形することで、このような課題を解決することができる。すなわち、立体物の内部に相当する大まかな形状をよりサイズの大きな第一立体素501を用いて高速に造形し、立体物の表面の微細な形状をよりサイズの小さな第二立体素502で高精細に造形することで、立体物を高速かつ高精細に造形することが可能となる。
【実施例2】
【0054】
実施例1では、サイズ(体積)とX・Y方向の幅が異なりZ方向の高さが同一である第一立体素と第二立体素とを用いて、立体物を造形する方法について説明した。本実施例においては、サイズ(体積)とX・Y方向の幅、及びZ方向の高さも異なる第一立体素と第二立体素とを用いて、立体物を造形する方法について説明する。
【0055】
実施例2では、第一立体素と第二立体素の積層方向の高さが異なるため、それらの高さの関係に応じて、第二造形部で造形される第二立体素から構成される層の数が、第一造形部で造形する第一立体素から構成される層の数と異なる。なお、実施例2においては、実施例1と同一の箇所に関しては説明を省略し、異なる箇所について主に説明する。
【0056】
図9は、実施例2における第一立体素と第二立体素を表す模式図である。図9(a)は、第一立体素901であり、第一立体素901は第一造形部32で造形される。第一立体素901は、X方向、Y方向、Z方向の3次元軸に対して、幅x、幅y、高さzの直方体で表されるボクセルデータとして表され、そのサイズ(体積)Vb1は、xyzである。図9(b)は、第二立体素902であり、第二立体素902は第二造形部34で造形される。第二立体素502は、X方向、Y方向、Z方向の3次元軸に対して、幅0.5x、幅0.5y、高さ0.5zの直方体で表されるボクセルデータとして表され、そのサイズ(体積)Vb2は、0.125xyzである。このとき造形方法がインクジェット法であれば、例えばx、yを40μm、zを10μmとして第一立体素501及び第二立体素402を構成することができる。図9(a)と図9(b)を比較して分かるように、第一造形部32で造形する立体素のサイズ、幅、高さは、前記第二造形部34で造形する立体素のサイズ、幅、高さよりも大きい。
【0057】
図10は、実施例2における立体物の断面を表す模式図である。実施例2においても、実施例1と同様に、立体物の内部をよりサイズの大きな第一立体素901で造形し、立体物の表面をよりサイズの小さな第二立体素902で造形する点は共通である。しかしながら、第一立体素901と第一立体素の高さが異なるため、高さのより低い第二立体素を高さのより高い第二立体素よりも多く積層させて立体像を造形する必要がある。すなわち、第二立体素で造形される層の数は、第一立体素で造形される層の数よりも多くする。実施例2における一例としては、前述の通り、第一立体素の高さがzで、第二立体素の高さが0.5zの関係にあるため、第二立体素で造形される層の数は、第一立体素で造形される層の数よりも2倍多くする。第一立体素及び第二立体素のそれぞれの高さの関係によって、第一立体素及び第二立体素のそれぞれで造形する層の数を任意に決定することができる。
【0058】
図11は、実施例2における立体物を造形する途中過程での立体物の断面を表す模式図である。図11(a)から図11(o)へと第一造形部32または第二造形部34により各層を順次造形していくことで立体物が造形される。説明の都合上、図11(a)から図11(o)の各図面においては、第一立体素901を太枠で囲い、第二立体素902を細枠で囲って示している。また、図11(a)から図11(o)のそれぞれの途中過程において、第一造形部32または第二造形部34により造形される立体素をグレーで色塗りして示している。各過程について順に説明する。
【0059】
まず、図11(a)は、第一造形部32での1層目を造形した後の造形物を表す模式図である。この過程において、第一造形部32により第一立体素901が支持体202上に造形される。次に、図11(b)は、第二造形部34での1層目を造形した後の造形物を表す模式図である。この過程において、第二造形部34により第二立体素902が支持体202上に造形される。次に、図11(c)は、第二造形部34での2層目を造形した後の造形物を表す模式図である。この過程において、第二造形部34により第二立体素902が支持体202上に造形される。次に、図中11(d)は、第一造形部32での2層目を造形した後の造形物を表す模式図である。この過程において、第一造形部32により第一立体素901が造形済みの層の上に造形される。次に、図11(e)は、第二造形部34での3層目を造形した後の造形物を表す模式図である。この過程において、第二造形部34により第二立体素902が造形済みの層の上に造形される。次に、図11(f)は、第二造形部34での4層目を造形した後の造形物を表す模式図である。この過程において、第二造形部34により第二立体素902が造形済みの層の上に造形される。以下、図11(g)から図11(o)においても、図11(d)、図11(f)と同様に、第一造形部32または第二造形部24を用いて、第一立体素901または第二立体素902が造形済みの層の上に造形することで、最終的な立体物が造形される。なお、図11(j)と図11(m)においては、造形すべき第一立体素901がないため、それらの過程は省略される。
【0060】
なお、実施例1と同様、実施例2においても各過程の後にそのときの途中の造形物を硬化させるため、UVランプ50を用いて紫外線照射を行う。紫外線の量や照射時間、造形からの照射までの時間等のプロセス条件については、造形材料が適切に硬化されるように任意に制御することができる。
【0061】
以上、実施例2で説明したように、立体物の内部に相当する大まかな形状をよりサイズの大きな第一立体素901を用いて高速に造形し、立体物の表面に相当する微細な形状をよりサイズの小さな第二立体素902で高精細に造形することで、立体物を高速かつ高精細に造形することが可能となる。
【実施例3】
【0062】
実施例1及び実施例2では、立体形状データからスライスデータを作成し、スライスデータを構成する各立体素が立体物の内部と表面のいずれに位置するかを判定することで、第一形状スライスデータと第二形状スライスデータとを作成する例について説明した。
【0063】
実施例3では、立体形状データの周波数に着目することで、第一の周波数帯を有する形状データと第二の周波数帯を有する形状データとを作成し、それら形状データからスライスデータを作成する例について説明する。以降、実施例1又は実施例2と共通の箇所については説明を省略し、異なる箇所について主に説明する。
【0064】
図12は、実施例3における立体造形装置の構成を示すブロック図である。本ブロック図は、図4における形状データ作成部13を形状データ作成部131で置き換えた構成である。そのため、形状データ作成部131以外の構成については、図4と同一である。そのため、以降では、形状データ作成部131について説明する。
【0065】
形状データ作成部131は、第一形状データ作成部132、第二形状データ作成部133、第一形状スライスデータ作成部134、第二形状スライスデータ作成部135で構成される。
【0066】
第一形状データ作成部132は、入力された立体形状データに基づいて、立体形状データが表す立体形状が第一の周波数帯を有する第一形状データを作成する。このとき、第一形状データは立体形状データの低周波成分に相当する形状データである。
【0067】
また、第二形状データ作成部133は、入力された立体形状データに基づいて、立体形状データが表す立体形状が第二の周波数帯を有する第二形状データを作成する。このとき、第二形状データは立体形状データの高周波成分に相当する形状データである。なお、第一形状データと第二形状データとを足し合わせると、立体形状データとなる。
【0068】
また、第一形状スライスデータ作成部134は、第一形状データを、造形材料を積層する方向にスライスし、第一形状のスライスデータを作成する。このとき、第一形状スライスデータは、立体物の内部を造形するための第一立体素から構成される。
【0069】
また、第二形状スライスデータ作成部135は、第二形状データを、造形材料を積層する方向にスライスし、第二形状のスライスデータを作成する。このとき、第二形状スライスデータは、立体物の表面を造形するための第二立体素から構成される。
【0070】
また、第一形状スライスデータ及び第二形状スライスデータは、造形材ブロック30に送信される。
【0071】
図13は、実施例3において立体物を造形する方法を示すフローチャートである。
【0072】
まず、S1301において、立体形状データを入力する。本ステップでは、造形対象物の立体形状データ(CADデータやデザインデータ等)をコンピュータ装置等から取得する。
【0073】
次に、S1302において、入力された立体形状データに基づいて、第一の周波数帯を有する第一形状データを作成する。このとき、第一形状データは立体形状データよりも低周波な形状データである。
【0074】
次に、S1303において、入力された立体形状データに基づいて、第二の周波数帯を有する第二形状データを作成する。本実施例では、第二形状データは立体形状データと同一とする。なお、第二形状データを最終的に造形する立体素のサイズを考慮して第二形状データを立体形状データよりも精度を低くする等の処理をすることで、第二形状データを立体形状データと異なるデータとしてもよい。
【0075】
次に、S1304において、S1302で作成された第一形状データを、造形材料を積層する方向にスライスし、第一形状のスライスデータを作成する。このとき、第一形状スライスデータは、立体物の内部を造形するための第一立体素から構成される。
【0076】
次に、S1305において、S1303で作成された第二形状データを、造形材料を積層する方向にスライスし、第二形状のスライスデータを作成する。このとき、第二形状スライスデータは、立体物の表面を造形するための第二立体素から構成される。
【0077】
次に、S1306において、第一形状スライスデータを第一造形部32で造形する。第一造形部32は、実施例1及び実施例2と同様、第一立体素を造形する。
【0078】
次に、S1307において、第二形状スライスデータを第二造形部34で造形する。第二造形部34は、実施例1及び実施例2と同様、第二立体素を造形する。
【0079】
なお、S1306における第一造形及びS1307における第二造形の際に、造形物を硬化させるため、UVランプ50を用いて紫外線照射を行う。
【0080】
なお、以上の説明では、第一形状スライスデータを第一造形部で造形した後に、第二形状スライスデータを造形する処理フローを説明したが、第一造形部による造形と第二造形部による造形を下層から上層へと両方とも行うことで立体物の造形を行ってもよい。
【0081】
図14は、実施例3において立体形状データに基づいて第一形状データ及び第二形状データを作成する方法を示す模式図である。図14(a)は、立体形状データ1401を表す。簡単のため、XZ方向の2次元断面を連続線で模式的に図示しているが、実際にはXYZの3次元空間における立体形状を表すデータである。図14(b)は、図14(a)の立体形状データ1401に基づいて、第一形状データ1402と第二形状データ1403とを作成したときのそれぞれのXZ方向の2次元断面を連続線で模式的に図示したものである。S1301及びS1302で説明したように、第一形状データ140は、立体形状データ101及び第二形状データ140よりも低周波な形状データである。
【0082】
なお、立体形状データ1401及び第一形状データ1402及び第二形状データ1403はそれぞれ、例えば、小さな三角形の集合体として表現するデータフォーマットで表すことができる。また、立体形状データ1401から第一形状データ1402及び第二形状データ1403を作成する際は、元の立体形状データに対して3次元のローパスフィルタ、3次元のフーリエ変換、凸包等の、公知の各種フィルタ処理や信号処理を適用する。例えば、ローパスフィルタの場合、例えば3×3×3のフィルタサイズで係数が1のフィルタを適用する。これにより、図14に表したような所望の形状データを作成することができる。
【0083】
また、上記各種方法で作成する際に、第一形状データ1402が立体形状データ1401よりも表面にはみ出した形状となった場合には、立体形状データ1401よりも内部側に位置するように第一形状データ1402のデータを適切にクリッピングすればよい。
【0084】
図15は、実施例3において第一形状スライスデータ及び第二形状スライスデータを作成する方法を示す模式図である。図15(a)は、第一形状データ1402に基づき、第一形状スライスデータを作成したときの第一立体素1404を模式的に図示したものである。図14と同様に、簡単のため、XZ方向の2次元断面を連続線で模式的に図示している。実際にはXYZの3次元空間における立体形状を表すデータである。このとき、第一立体素1404は、第一形状データ1402よりも内部側に位置するように作成される。図15(b)は、第一形状データ1402及び第二形状データ1403に基づいて作成される第二立体素1405を模式的に図示したものである。このとき、第二立体素1405は、第一形状データ1402と第二形状データ1403の間の空間を埋め合わせる位置となるように作成される。図15(c)は、それぞれ作成された第一立体素1404と第二立体素1405とを模式的に図示したものである。このとき、第一立体素1404は第二立体素1405に接し、かつ立体物の外側を造形するように位置している。
【0085】
以上、実施例3で説明したように、立体形状データの周波数に着目することで、第一の周波数帯を有する形状データと第二の周波数帯を有する形状データとを作成しそれぞれのスライスデータを作成する。そして、より低周波な第一の周波数帯を有する形状データを、よりサイズの大きな第一立体素を用いて高速に造形し、より高周波な第二の周波数帯を有する形状データを、よりサイズの小さな第二立体素を用いて高精細に造形することで、立体物を高速かつ高精細に造形することが可能となる。
【実施例4】
【0086】
実施例3では、より低周波な第一の周波数帯を有する形状データを、よりサイズの大きな第一立体素を用いて高速に造形し、より高周波な第二の周波数帯を有する形状データを、よりサイズの小さな第二立体素を用いて高精細に造形する例を示した。実施例4では、より低周波な第一の周波数帯を有する形状データを、よりサイズの大きな第一立体素を用いて高速に造形した後に、造形された第一造形物の形状を、形状を測定するためのセンサで測定し、立体形状データとの差分の形状を求め、その差分の形状を、よりサイズの小さな第二立体素を用いて高精細に造形する例について説明する。以降、実施例3と共通の構成及び方法については説明を省略し、異なる箇所について主に説明する。
【0087】
図16は、実施例4において立体造形装置の構成を示すブロック図である。本ブロック図は、図12における形状データ作成部131を形状データ作成部161に置き換え、新たに立体形状測定部163を追加したものである。形状データ作成部161は、第一形状データ(低周波成分)作成部164、第一形状スライスデータ作成部165、差分形状データ作成部166、差分形状スライスデータ作成部167で構成される。その他の構成については実施例3と同一である。
【0088】
第一形状データ作成部164は、入力された立体形状データに基づいて、第一の周波数帯を有する第一形状データを作成する。このとき、第一形状データは立体形状データの低周波成分に相当する形状データである。
【0089】
第一形状スライスデータ作成部165は、第一形状データを造形材料を積層する方向にスライスし、第一形状のスライスデータを作成する。このとき、第一形状スライスデータは、立体物の表面を造形するための第一立体素から構成される。第一形状スライスデータは、造形材ブロック30に送信され、第一造形部32において造形される。
【0090】
立体形状測定部163は、第一造形部32で造形された立体物の形状を測定し、測定結果を差分形状データ作成部166へ送信する。
【0091】
差分形状データ作成部166は、立体形状データと立体形状測定部163で測定された測定結果に基づき、これらの差分データとして差分形状データを作成する。
【0092】
差分形状スライスデータ作成部167は、差分形状データに基づき、差分形状データを、造形材料を積層する方向にスライスし、差分形状のスライスデータを作成する。このとき、差分形状スライスデータは、立体物の差分を造形するための第二立体素から構成される。差分形状スライスデータは、造形材ブロック30に送信され、第二造形部34において造形される。
【0093】
図17は、実施例4において立体物を造形する方法を示すフローチャートである。
【0094】
まず、S1701において、立体形状データを入力する。本ステップでは、造形対象物の立体形状データ(CADデータやデザインデータ等)をコンピュータ装置等から取得する。
【0095】
次に、S1702において、入力された立体形状データに基づいて、第一の周波数帯を有する第一形状データを作成する。このとき、第一形状データは立体形状データよりも低周波な形状データである。
【0096】
次に、S1703において、S1702で作成された第一形状データを、造形材料を積層する方向にスライスし、第一形状のスライスデータを作成する。このとき、第一形状スライスデータは、立体物の内部を造形するための第一立体素から構成される。
【0097】
次に、S1704において、第一形状スライスデータを第一造形部32で造形する。第一造形部32は、実施例1から実施例3と同様、第一立体素を造形する。
【0098】
次に、S1705において、第一造形部で造形された第一造形物の立体形状を立体形状測定センサで測定する。立体形状測定センサは、例えば、非接触で光学的に立体物の形状を測定する3次元スキャナ(3次元デジタイザ)や接触式の形状測定センサを用いることができる。ここでは、第一造形部で造形された第一造形物の立体形状を測定できればよく、その他様々な方式式を用いて立体形状を測定すればよい。
【0099】
次に、S1706において、立体形状データと形状測定センサで測定した形状との差分を算出し、差分形状データを作成する。
【0100】
次に、S1707において、差分形状データから差分形状スライスデータを作成する。
【0101】
次に、S1708において、差分形状スライスデータを第二造形部34で造形する。第二造形部34は、実施例1から実施例3と同様、第二立体素を造形する。
【0102】
なお、S1704における第一造形及びS1708における第二造形の際に、造形物を硬化させるため、UVランプ50を用いて紫外線照射を行う。
【0103】
以上、実施例4で説明したように、立体形状データの周波数に着目して、第一の周波数帯を有する形状データを第一造形部で造形した後に、その造形物の形状を測定し、その測定結果と最終的に造形する立体形状データとの差分を求め第二造形部で造形することで、立体物を高速かつ高精細に造形することが可能となる。
【実施例5】
【0104】
実施例4では、立体形状データから第一形状データを作成し第一造形部で造形した後に、造形物の形状を測定し、元の立体形状データとの差分である差分形状データを第二造形部で造形する例を示した。実施例5では、造形物の形状を測定するのではなく、元の立体形状データと第一形状データをスライスした第一形状スライスデータとの差分を算出し、算出した差分形状データに基づき第二造形部で造形する例を示す。以降、実施例4と共通の箇所については説明を省略し、異なる箇所について主に説明する。
【0105】
図18は、実施例5において立体造形装置の構成を示すブロック図である。本ブロック図は、実施例4における立体形状測定部163と差分形状データ作成部166への接続を除去し、差分形状データ作成部166への入力を、入力部11の出力と第一形状スライスデータ作成部165の出力の2つとしたものである。差分形状データ入力部166は、入力部11の出力である立体形状データと、第一形状スライスデータ作成部165の出力である第一形状スライスデータとに基づき、差分形状データを作成する。その他の構成については実施例4と同一である。
【0106】
図19は、実施例5において立体物を造形する方法を示すフローチャートである。
【0107】
まず、S1901において、立体形状データを入力する。本ステップでは、造形対象物の立体形状データ(CADデータやデザインデータ等)をコンピュータ装置等から取得する。
【0108】
次に、S1902において、入力された立体形状データに基づいて、第一の周波数帯を有する第一形状データを作成する。このとき、第一形状データは立体形状データよりも低周波な形状データである。
【0109】
次に、S1903において、S1902で作成された第一形状データを、造形材料を積層する方向にスライスし、第一形状のスライスデータを作成する。このとき、第一形状スライスデータは、立体物の内部を造形するための第一立体素から構成される。
【0110】
次に、S1904において、立体形状データと第一形状スライスデータとの差分を算出し、差分形状データを作成する。
【0111】
次に、S1905において、差分形状データから差分形状スライスデータを作成する。
【0112】
次に、S1906において、第一形状スライスデータを第一造形部32で造形する。第一造形部32は、実施例1から実施例4と同様、第一立体素を造形する。
【0113】
次に、S1907において、差分形状スライスデータを第二造形部34で造形する。第二造形部34は、実施例1から実施例4と同様、第二立体素を造形する。
【0114】
なお、S1906における第一造形及びS1907における第二造形の際に、造形物を硬化させるため、UVランプ50を用いて紫外線照射を行う。
【0115】
以上、実施例5で説明したように、元の立体形状データと第一形状データをスライスした第一形状スライスデータとの差分を算出し、算出した差分形状データに基づき第二造形部で造形することで、立体物を高速かつ高精細に造形することが可能となる。
【0116】
〔その他の実施例〕
以上の実施例では、立体物の内部をよりサイズの大きな第一立体素を用いて高速に造形し、立体物の表面をよりサイズの小さな第二立体素を用いて高精細に造形することで、立体物を高速かつ高精細に造形する例を説明した。本実施形態の目的は、立体造形物を高速かつ高精細に造形することであり、上記目的を逸脱しない限りにおいて、構成の様々な変形例を採り得ることができる。例えば、前記第一形状データは、相対的にサイズの大きな第一立体素を、相対的にサイズの小さな第二立体素よりも多く含んだ、立体物の内部側を造形するための形状データであり、前記第二形状データは、相対的にサイズの小さな第二立体素を、相対的にサイズの大きな第一立体素よりも多く含んだ、立体物の表面側を造形するための形状データであればよい。すなわち、第一形状データが、第一立体素のみでなく第二立体素を含む場合や、第二形状データが、第二立体素のみでなく第一立体素を含む場合があってもよい。
【0117】
また、以上の実施例では、第一形状データで立体物の内部側を造形し、第二形状データで立体物の表面側を造形するような、2つの形状データを用いた実施例について、説明してきたが、形状データが3つ以上、生成されるような場合においても、本実施形態を同様に適用することができる。例えば、第一形状データ、第二形状データ、第三形状データを用いて、第一形状データで立体物の最も内部側を造形し、その外側を第二形状データ、立体物の表面側を第三形状データで造形することができる。このとき、立体物の内部側に相当する形状データほど、相対的により大きな立体素を用いて、それぞれ造形されることが特徴となる。
【0118】
また、以上の実施例では、インクジェット法を中心に、一例として説明したが、本実施形態は上記実施例に限定されるものではなく、インクジェット法以外の、光造形法、粉末焼結法、粉末固着法(インクジェットバインダ法)、熱溶解積層法等の各種積層造形方法においても、同様に適用することができる。例えば、光造形法のように、液体樹脂に紫外線を照射して液体樹脂の一部を順次硬化し積層することで立体物を造形する方式において、立体物の内部に相当する液体樹脂に対しては照射サイズの大きな紫外線光を照射し、立体物の表面に相当する液体樹脂に対しては照射サイズの大きな紫外線光を照射するように構成することで、上記実施例と同様の効果を得ることができる。また、粉末焼結法のように、粉末を層状に敷き詰め、レーザービーム等で直接焼結成形した層を積層することで立体物を造形する方式において、立体物の内部に相当する粉末に対しては焼結のためのレーザービーム等のサイズを大きくし、立体物の表面に相当する粉末に対しては焼結のためのレーザービーム等のサイズを小さくすることで、上記実施例と同様の効果を得ることができる。また、粉末固着法(インクジェットバインダ法)のように、粉末を層状に敷き詰め、インクジェット方式でバインダを添加して固着させた層を積層することで立体物を造形する方式において、立体物の内部に相当する粉末に対しては固着のためのバインダの量を多くし、立体物の表面に相当する粉末に対しては固着のためのバインダの量を少なくすることで、上記実施例と同様の効果を得ることができる。また、熱溶解積層法のように、熱可塑性樹脂(ABS樹脂、ポリカーボネート樹脂等)を高温で溶かして積層することで立体物を造形する方式において、立体物の内部を造形するための立体素の体積(熱可塑性樹脂の量)を多くし、立体物の表面を造形するための立体素の体積(熱可塑性樹脂の量)を少なくすることで、上記実施例と同様の効果を得ることができる。
【0119】
また、本実施形態は、いわゆる積層造形法の3Dプリンタのみならず、造形するための支持体(造形媒体)上に凹凸形状を再現するようなプリンタにおいても同様に適用することができる。例えば、凹凸形状を含む油絵や地形を表すジオラマ等の再現について、本実施形態を適用することで、高速かつ高精細に造形することが可能となる。
【0120】
また、図20の断面図に示すように、本実施形態における凹凸形状や立体物は、様々なタイプを採り得ることができる。図20において、形状2001は本実施形態で造形する凹凸形状や立体物の表面を表し、形状2002は本実施形態で造形する凹凸形状や立体物の内部を表す。また、形状2003は支持体、形状2004はサポート材(またはサポート台)を表す。例えば、図20(a)に示すように、立体造形物を平坦な支持体に造形でき、図20(b)に示すように、平坦ではない支持体に立体物を造形してもよい。また、図20(c)に示すように、支持体の上に設けたサポート材に対して立体物を造形してもよい。あるいは、図20(d)や(e)に示すように、凹部を含むような立体や、円柱状の立体を造形することもできる。なお、図20(a)から(e)において太線で示した部分は、立体物の表面に相当する部分であり、本実施形態によって、より小さな立体素を用いて高精細に造形され得る部分となる。また、本実施形態は、図20(a)から(e)で示した凹凸形状や立体物に限定されることはなく、様々な凹凸形状や立体物に対して、本実施形態を好適に適用することができる。
【0121】
また、必ずしも第一立体素が立体物の内部のみを造形しなくてもよい。例えば、図21の2101、2102、2103に示すように、立体造形物の表面の一部に第一立体素で造形された部分が露出してもよい。本実施形態は、大まかな形状を第一造形材で造形し、微細な形状を第二造形材で造形されることが特徴である。そのため、立体物の表面が比較的緩やかな形状であれば、より微細な造形を可能とする第二造形材を用いなくとも第一造形材のみで立体物の表面を造形してもよい。すなわち、本実施形態においては、おおよそ、第一造形材で造形される部分が立体物の内部に相当し、第二造形材で造形される部分が立体物の表面に相当する場合が多いというだけであって、一部が例外的に適用されていなくとも、立体物の一部に本実施形態を適用することで、本実施形態の効果を享受することができる。
【0122】
また、本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21